
Ill
us

tr
at

io
ns

 b
y

m
w

ie
ne

ra
rt

s.
co

m

: / 14 i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

Are Agile Methods
Good for Design?

John Armitage
Director of User Experience
BusinessObjects SA
Johnarmitage1@hotmail.com

In a recent series of consulting projects, I served

as the designer for a software development team

working with agile development methods, widely

known through the most severe of these methods,

Extreme Programming, or XP. The most salient

aspect of the agile methods movement [1] and of

XP is emphasis on rapid, iterative releases of

working products at the expense of sophisticated

planning and design.

This seemingly anti-design approach is anathe-

ma to most designers, whose very existence depends

on representing what is to be built. Although my

experience was frustrating at times, I tried to keep

an open mind and was curious to learn why agile

methods are gaining popularity. I came away with

insights about software development and the design

process that spurred me to write this article.

I believe that agile methods, however threaten-

ing or ridiculous they may seem, can benefit design.

To understand how, let’s briefly go back to the draw-

ing board...

A Product Development Metaphor

As a kid learning to draw, I would often indulgent-

ly render small parts of a drawing in rich detail, and

pay less attention to how these parts related to each

other. Lacking an overall spatial plan, I often ended

up with gross inaccuracies that ruined the drawing.

: / 15

<design>

i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

XP Guidelines [2,10]

• Complete product pieces sequentially, in relative
isolation of one another.

• Refactor the product periodically to ensure that
the pieces fit.

• Apply efforts to product construction versus
representations of the product.

• Create little or no documentation or specifications.

• Keep code and design simple and easy to change.

• Break down complex features until manageable.

: / 16 i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

<

My instructional books recommended starting

with a light sketch to plan the composition, and then

to gradually commit to areas of light and shade over

the entire surface to evenly develop the composition.

Maintaining such a balanced overview of the draw-

ing would reveal planning flaws sooner and allow

their correction. Initially I resisted drawing these

lines that would later need to be erased, but the

advice eventually worked; results became more pre-

dictable and the eraser became my friend. I still use

this fundamental approach to design complex soft-

ware systems, and in fact it is ideal in most formal

design instruction.

For digital product development, these drawing

stages roughly correspond to the product’s migration

through three basic forms or phases: requirements, spec-

ification, and builds resulting in the final product.

Commercial development processes, however, are rarely

ideal. Many approaches have been tried, and all involve

representing the end product in these forms and in this

order. Each form represents a “current version” of the

product expressed in different media and detail.

Agile Methods

Agile methods are unique primarily in their approach

to the quantity, scale, and frequency of these phases.

Agile projects are implemented more or less as a

series of small projects (called stories in the XP lexi-

con), strung together into a larger, ongoing project.

Each story has its own requirements, specification,

and product phases.

Acknowledging that large, long projects often

change course during development, agile methods

seek to produce finished, working, reliable code for

what has been worked on. These results can be

more valuable to a customer than an unfinished,

poorly written, and unreliable shadow of an initial,

overall design.

The agile movement was instigated and pio-

neered by software developers in reaction to a frus-

trating history of projects being delayed, going over

budget, and eventually collapsing under their own

weight [6]. Tired of working stressful jobs with long

hours on doomed projects, the founders blamed

volatile requirements and efforts to create sweeping,

ambitious, improperly targeted product designs

before any real code had been written.

Even though development models had matured

from being primarily ad hoc (little or no structured

process) to waterfall phases (sequenced handoffs

from discipline to discipline) to more interdisciplinary

blended phases (e.g., having designers advise on the

requirements and developers advise on the design),

project results were still disappointing. Ad hoc

processes typically resulted in chaos. Waterfall

processes, and to a lesser degree blended phases,

experienced trouble and delays because disciplines

made incorrect feasibility assumptions or acted in

absence of a shared product vision, or both.

If large projects could be reduced to a series of

mini-projects that are started, finished, tested, and

delivered to the customer in quick succession, perhaps

risk could be minimized. Customers could provide

feedback on delivered work to inform the next mini-

>

:/ 17i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

project. Iterations would be built on one another over

time, resulting in software systems that “grow” into

existence while actually being used, versus being

“determined” ahead of time. Iterations would be tested

for reliability. In the end, customers would be able to

get more of what they wanted faster, because they

would have had more flexibility with the requirements.

The risk of this approach is the inability to model

ahead of time what is to be built (to design) and ending

up with a well-crafted and reliable final product that

lacks a coherent structure and vision.

XP may appear to be merely an ad hoc process

with a catchy name, particularly in its disregard for

prescriptive design in favor of building what the cus-

tomer says they want or need next. Many designers

have experienced the ad hoc treadmill and work hard

to instill planning and discipline in the completion of

complex projects. Agile literature, however, purports

highly structured, disciplined methods (not always

extending to professional practice). XP seeks to break

down complex features into the simplest possible

forms and quickly build them. If the result works and

the customer likes it, the feature is kept and perhaps

enhanced. Below is a simple illustrative example:

A. In a standard scrolling list, you can:

1. Select one item

2. Select multiple items

3. Select discontiguous items

XP might implement a scrolling list allowing only

item 1. Although items 2 and 3 are plausible function-

ality extensions, having item 1 released sooner and

more reliably could provide more value.

Ad hoc development. Large structural errors

are possible.

Staged progression from low to high fidelity.

The ideal XP result: a series of finished pieces

assembled serially into a cohesive whole.

One risk of phased processes:

Design is accurate but implementation is

poorly crafted or unreliable.

Another risk of phased processes: Design never

ends and implementation is never finished, as

in Ted Nelson’s Xanadu [8].

The risk of the XP approach. Individual pieces

have value, but the larger system is disjointed.

The answer: Split your time investment

between overall design and detailed, iterative

development.

: / 18 i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

<

A key piece of XP that allows it to make the

pieces fit together and adapt is called refactoring.

Refactoring is XP’s eraser; it involves taking time out

from adding new features in order to rework and

integrate what has been done. It’s a bit like cleaning

up the mess after a long run of construction (or

doing redesign after much has already been built

and learned).

XP resembles iterative design, in that both

processes use short cycles of output and feedback. A

major difference, however, is that while iterative

design typically seeks to model, assess, and revise

larger systems at low and high fidelities, XP builds

and releases smaller systems strictly at extremely high

fidelities.

Implications for Design

To professional designers, agile methods are likely to

be threatening. In agile proponent Martin Fowler’s

essay “Is Design Dead?” [4] his rhetorical answer is

actually “no.” However, his use of design refers to

technical design versus user experience design [5]. In

fact, the agile community rarely mentions users or user

interfaces at all, which means that either they neglect

the user experience or are focusing on projects with less

need for sophistication in user experience (UE).

Whether it occurs in a large, speculative, upfront

effort, or in small, steady steps that grow into a coher-

ent product, design needs to occur nonetheless.

Perhaps the main benefit provided by UE designers is

the ability to imagine and represent how a disordered

set of functions and meanings can be synthesized har-

monically. Unfortunately for designers, XP relegates

the design role to short-term efforts to design and

redesign small, isolated elements. Less severe agile

methods, however, can benefit from both the design-

er’s vision and the practicalities of XP.

Agile Project Experience

In a series of three client-server software development

projects, our consulting team (two designers, one

project manager, one analyst, two to four developers)

worked with a client-driven agile process that fea-

tured one- to two-week release cycles. The products

were a touchscreen-based, media search-and-play

system for general recreational use and two related

To professional designers,
agile methods are likely to be

threatening.

: / 19i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

>

cataloging applications for use by a small group of

media librarians. All the products had high standards

for usability and appeal, so we were reluctant to aban-

don our user-centered design practices.

We evolved a hybrid approach that required

design work on three levels, done in parallel. The low-

level effort (typical for XP) supported the short-term

iterations by providing detailed component designs

to drive construction. A second level presented low-

fidelity redesigns of existing builds in order to inform

refactoring effort. This split duty limited the design-

er’s ability to optimize either effort with just “one

pass,” but because all design and product assets were

flexibly built, it was easy to layer on improvements as

the project progressed. In the later efforts, as detailed

later, we were able to design on a third level to pro-

vide overall product vision (see Figure 1).

Usage scenarios drove our design effort, taking

the form of linear, Shockwave-based storyboard

depictions of users completing workflows.

Storyboards showed how users would use a series of

components, or groups of user-interface (UI) func-

tionality (such as a browser tree, a form, or a dialog

box), to complete a task. In the storyboards, the

design would show typical (not comprehensive)

depictions of these components, just enough to gather

feedback from users and stakeholders on the design’s

overall merit. Concurrently, and upon design valida-

tion, the customer and engineering team would prior-

itize components for development and assign them to

iterations (see Figure 2).

Components chosen for an iteration were then

Figure 1. Multi-layered design efforts in a six-story agile

project. Dedicated UE design efforts are in red.

Figure 2. The component planning process.

: / 20 i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

<

designed in more detail—but not complete detail.

These components were then assembled into a rough

working version of the system for testing.

Components were added in later iterations and

changed as their designs changed.

A dialog box component provides a simple exam-

ple of this process (see Figures 3-5). The initial design

of a dialog box for creating and editing DVD chapter

lists used a custom list display with hairline-rule

dividers. Because the effort to build this design would

not fit within an iteration, and our development tool

(Visual Studio) made such custom work difficult, we

used a more standard list control in the first pro-

grammed version. The customer (and end users) liked

this so much that we abandoned the considerable

extra work to build the original design and merely

upgraded alignments and colors—and added the but-

ton icons. We then worked on other features with

more potential value.

This process may sound similar to a standard

iterative design process. However, it was different

(from what I have experienced) because only one low-

fidelity design was prepared, it was not shown to

users before being coded, and except for integrating it

with the current build, the developer worked in isola-

tion from other parts of the system. The result was

deemed “good enough” and the team moved on to

the next task.

Although the projects were successful, the UE

design effort in the first project was frustrating, partly

because the designers joined the project late. Because

the product featured complex navigation and interac-

tion capabilities, designing comprehensive alternative

system models within the weekly release schedule

was impossible. Instead (in a microcosm of how larg-

er products evolve over much longer periods), small-

er features were added and tested one-by-one, allow-

ing customer feedback on the design and perform-

ance. Feedback would accumulate until the overall

system design needed rethinking. To do this, one

designer would step out of the weekly release cycle.

After awhile, the designers became frustrated

with fixing symptoms of larger problems that could

not be solved within one iteration. We felt that we’d

designed the project several times over, constantly

editing, redoing, and combining elements, primarily

because of requirements that were always in flux.

Changing Requirements

The effort to eliminate changes to requirements has

always been a losing battle, and always will be.

Requirements change because they can, and software’s

mutable nature (compared to other product types)

makes its development more susceptible to (or accom-

modating of) change. Software has no raw materials or

physical structure to scrap, has fewer standards for

quality, has low manufacturing and tooling costs, and

has very rapid rates of innovation and evolution.

Perhaps it is more important to realize that in

many cases the project itself is the greatest influence

on the project. The more work that is done on a proj-

ect, the more the project context changes. Agile meth-

ods seek to benefit from the intelligence of experienc-

ing the real product’s existence, and the sooner the

>

:/ 21i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

better. Design, conversely, aims to predict what the

entire product will be before it exists. Proponents of

heavy up-front design, such as Alan Cooper [3, 7],

claim that adequate product intelligence should

reside in a specification. This can be true, but in cases

where technology is new or untried, requirements are

volatile, the domain unfamiliar, or the complexity

immense, it can be too risky to heavily invest in

assumptions without adequate “reality checks.”

In summary, agile methods exist to mitigate

product development risk. They are more empirical

than other methods, using trial and error to reduce the

risk of building the wrong thing, with the expense of

having more routine code rework and having to

maintain all development code close to release-quali-

ty. Essentially a series of very-high-fidelity design

experiments, they achieve low-level certainty by

accepting high-level uncertainty.

Why Now?

As a result of lowered software distribution costs

made possible by the Internet, it is economically fea-

sible to release new software versions of incremental-

ly greater value at a high frequency. Lower transac-

tion costs, for both development and distribution, are

now allowing trial and error to replace some of

design’s predictive expertise. Also, business relation-

ships in general are becoming more transactional,

meaning more deals are done, but at a smaller scale,

similarly to the lean sourcing and manufacturing

movement [9]. Agile methods also reflect more of a

service model versus a product model, with value

Figure 3. Initial design wireframe.

Figure 4. Initial build screenshot.

Figure 5. Revised design and build screenshot.

delivered in streams versus in bulk. In fact, commer-

cial Web site evolution is a good example of agile

methods at work en masse. Most sites have evolved as

a series of live experiments versus being driven by

monolithic plans.

Another point of view, and my personal suspi-

cion, is that XP is a reaction to a shortage of good soft-

ware application designers, architects, and strategists.

Software is difficult to model, and in a way, XP is just

a brute-force way for engineers to get work accepted

without design and designers.

Guidance for Designers

Despite the identified shortcomings, agile methods

can improve the design process. Iterative releases

being used by customers, even those having had lit-

tle design input, can serve as ongoing usability

tests. This arrangement also allows automated

usage tracking and testing tools to be brought into

play sooner and in a more relevant context. Lower-

risk release cycles can also encourage design exper-

iments (albeit at low levels), and gone are the omi-

nous specification documents to write. The fast

release pace gives an ongoing sense of accomplish-

ment, and because there are closer team interaction,

shared goals, and less solitary time invested in

elaborate design or engineering schemes, there are

less defensiveness and territoriality about individ-

ual designs.

Here are some tips for designers working in an

agile environment:

• Embrace a larger context and judge success by the

success of the team or project (which is perhaps the

essence of being interdisciplinary).

• Appreciate that providing partial solutions earlier

can be more valuable than providing full solutions

later on.

• Design solutions and work products that can easily

be changed.

• Learn to design the simplest possible version of

your idea, and add to it later.

• Think hard about what to design first and what to

leave for later.

• Be willing to throw out what’s done if it’s not work-

ing or if it was the wrong thing to do in the first

place.

• Learn to quickly jump from low-level to high-level

design tasks.

• Branch out from the build iterations to sketch and

model an overall vision, yet still respect the learn-

ings from early technical trials.

I believe that all projects and circumstances are

different and require flexibility in process. Perhaps

agile methods are best used in cases of exotic technol-

ogy, volatile requirements, lack of high-level architec-

ture expertise, or lack of high UE standards. XP-like

projects could be a good experience for entry-level

designers. The fast pace, simple scope, and ability to

see designs built quickly could be a good training

ground for the basics of interaction and of working

with developers.

In a way, designing software is actually not too

different from drawing. Advanced drawing instruc-

tion, in fact, has students repeatedly create figure

: / 22 i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

<

drawings one after another, rendered in impossibly

short times such as 15 seconds or less. The goal is to

eliminate perfectionism, loosen the gesture, and force

the artist to keep their eye on the subject. Having a

plan is good, but the best artists have a dialog with the

drawing. Agile methods can benefit design when they

allow the system, and customers, to talk back to the

designer with live experience, and afford the oppor-

tunity for the designer to respond.

: / 23i n t e r a c t i o n s / j a n u a r y + f e b r u a r y 2 0 0 4

>

ACKNOWLEDGMENTS

The author wishes to thank Jack

Hakim, Tom Spitzer, David

Thureson, and David Rowley for

their input to this article and the

work it describes.

REFERENCES

1 Beck, K., Beedle, M., van
Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt,
A., Jeffries, R., Kern, J., Marick, B.,
Martin, R.C., Mellor, S., Schwaber,
K., Sutherland, J., and Thomas, D.
The Agile Manifesto. Available at
http://agilemanifesto.org

2. Beck, K. Extreme Programming
Explained. Reading, MA: Addison-
Wesley, 1999.

3 . Cooper, A. The Inmates are Running
the Asylum. Indianapolis, IN: SAMS,
1999

4. Fowler, M. Is Design Dead?
Available at
www.martinfowler.com/articles/de
signDead.html

5. Fowler, M. and Taber, C. Planning
an XP Iteration. Available at
www.martinfowler.com/articles/pl
anningXpIteration.html, 4-6

6. Gibbs, W. W. Software’s Chronic
Crisis. Scientific American (Sept.
1994), pp. 86-95.
www.cis.gsu.edu/~mmoore/CIS33
00/handouts/SciAmSept1994.html

7. Nelson, E. Extreme Programming
vs. Interaction Design. FTP Online.
Available at
www.fawcette.com/interviews/bec
k_cooper/default.asp

8. Nelson, T. Project Xanadu
(http://xanadu.com/)

9. Wheelright, S.C., Clark, K.B.
Revolutionizing Product Development.
New York: The Free Press, 1992.

10. Xprogramming.com:
An Extreme Resource. Available at
www.xprogramming.com/xpmag/
whatisxp.htm

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without the fee, provided that copies are not

made or distributed for profit or commercial

advantage, and that copies bear this notice and the

full citation on the first page. To copy otherwise, to

republish, to post on services or to redistribute to

lists, requires prior specific permission and/or a fee.

© ACM 1072-5220/04/0100 $5.00

EDITORS Kate Ehrlich

Collaboration User Experience Group

IBM Research

One Rigers Street, Cambridge, MA 02142

617-693-1170 katee@us.ibm.com

Austin Henderson, Director,

Systems Laboratory Advanced Concepts & Design Pitney Bowes

35 Waterview Drive MS 26-21, Shelton, CT 06484

203-924-3932 austin.henderson@pb.com

