
Figure 1. The evolution of the Waterfall Model (a) and its long development cycles (analysis, design, implementation, test) to the shorter, iterative devel-
opment cycles within, for example, the Spiral Model (b) to Extreme Programming’s (c) blending of all these activities, a little at a time, throughout the
entire software development process.

0018-9162/99/$10.00 © 1999 IEEE70 Computer

I
n the beginning was the waterfall (Figure 1a). We
would get the users to tell us once and for all
exactly what they wanted. We would design the
system that would deliver those features. We
would code it. We would test to make sure the

features were delivered. All would be well.
All was not well. The users didn’t tell us once and

for all exactly what they wanted. They didn’t know.
They contradicted themselves. They changed their
minds. And the users weren’t the only problem. We
programmers could think we were making great
progress only to discover three-fourths of the way
through that we were one-third of the way through.

If long development cycles were bad because they
couldn’t adapt to changes, perhaps what we needed
was to make shorter development cycles. As Figure 1b

shows, the waterfall begat iterations.
The waterfall model didn’t just appear. It was a

rational reaction to the shocking measurement that
the cost of changing a piece of software rose dramat-
ically over time. If that’s true, then you want to make
the biggest, most far-reaching decisions as early in the
life cycle as possible to avoid paying big bucks for
them.

The academic software engineering community
took the high cost of changing software as a challenge,
creating technologies like relational databases, mod-
ular programming, and information hiding. What if
all that hard work paid off? What if we got good at
reducing the costs of ongoing changes? What if we
didn’t have to settle for taking a cleaver to the water-
fall? What if we could throw it in a blender?

Extreme Programming turns the conventional software process sideways.
Rather than planning, analyzing, and designing for the far-flung future, XP
programmers do all of these activities—a little at a time—throughout
development.

Cover Feature

Embracing
Change with
Extreme
Programming

Kent Beck
First Class
Software

Co
ve

r F
ea

tu
re

Analysis

Design

Implementation

Test

Time

Scope

IterativeWaterfall XP

(c)(b)(a)

October 1999 71

We might get a picture like the one shown in Figure
1c. It’s called Extreme Programming.

ANATOMY OF XP
XP turns the conventional software process side-

ways. Rather than planning, analyzing, and design-
ing for the far-flung future, XP exploits the reduction
in the cost of changing software to do all of these
activities a little at a time, throughout software devel-
opment. (The “XP Practices” sidebar will give you a
quick grasp of the practices and philosophy underly-
ing XP. These practices are designed to work together,
and trying to examine any one soon leads you to the
rest. The “Roots of XP” sidebar on page 73 traces the
historical antecedents of these practices.)

XP development cycle
Figure 2 shows XP at timescales ranging from years

to days. The customer picks the next release by choos-
ing the most valuable features (called stories in XP)
from among all the possible stories, as informed by
the costs of the stories and the measured speed of the
team in implementing stories.

The customer picks the next iteration’s stories by
choosing the most valuable stories remaining in the
release, again informed by the costs of the stories and
the team’s speed. The programmers turn the stories
into smaller-grained tasks, which they individually

XP Practices

Here is a quick summary of each of the
major practices in XP.

Planning game. Customers decide the
scope and timing of releases based
on estimates provided by program-
mers. Programmers implement only
the functionality demanded by the
stories in this iteration.

Small releases. The system is put into
production in a few months, before
solving the whole problem. New
releases are made often—anywhere
from daily to monthly.

Metaphor. The shape of the system is
defined by a metaphor or set of
metaphors shared between the cus-
tomer and programmers.

Simple design. At every moment, the
design runs all the tests, communi-
cates everything the programmers
want to communicate, contains no

duplicate code, and has the fewest
possible classes and methods. This
rule can be summarized as, “Say
everything once and only once.”

Tests. Programmers write unit tests
minute by minute. These tests are col-
lected and they must all run correctly.
Customers write functional tests for
the stories in an iteration. These tests
should also all run, although practi-
cally speaking, sometimes a business
decision must be made comparing the
cost of shipping a known defect and
the cost of delay.

Refactoring. The design of the system
is evolved through transformations
of the existing design that keep all
the tests running.

Pair programming. All production
code is written by two people at one
screen/keyboard/mouse.

Continuous integration. New code is
integrated with the current system
after no more than a few hours.

When integrating, the system is built
from scratch and all tests must pass
or the changes are discarded.

Collective ownership. Every program-
mer improves any code anywhere in
the system at any time if they see the
opportunity.

On-site customer. A customer sits with
the team full-time.

40-hour weeks. No one can work a
second consecutive week of over-
time. Even isolated overtime used
too frequently is a sign of deeper
problems that must be addressed.

Open workspace. The team works in a
large room with small cubicles around
the periphery. Pair programmers work
on computers set up in the center.

Just rules. By being part of an Extreme
team, you sign up to follow the rules.
But they’re just the rules. The team
can change the rules at any time as
long as they agree on how they will
assess the effects of the change.

accept responsibility for.
Then the programmer turns a task into a set of test

cases that will demonstrate that the task is finished.
Working with a partner, the programmer makes the
test cases run, evolving the design in the meantime to
maintain the simplest possible design for the system
as a whole.

Stories
XP considers the period before a system first goes

into production to be a dangerous anomaly in the life
of the project and to be gotten over as quickly as pos-
sible. However, every project has to start somewhere.

The first decisions to make about the project are
what it could do and what it should do first. These deci-
sions are typically the province of analysis, hence the
thin blue analysis rectangle at the top of Figure 1c. You
can’t program until you know what you’re program-
ming.

You put the overall analysis together in terms of
stories, which you can think of as the amount of a use
case that will fit on an index card. Each story must be
business-oriented, testable, and estimable.

A month is a good long time to come up with the
stories for a 10 person-year project. It’s true that it
isn’t enough to explore all of the possible issues thor-
oughly. But forever isn’t long enough to explore all of
the issues thoroughly if you never implement.

72 Computer

Release
Notice in Figure 2 that we don’t implement all of

the stories at first. Instead, the customer chooses the
smallest set of the most valuable stories that make sense
together. First we implement those and put them into
production. After that we’ll implement all the rest.

Picking the scope for a release is a little like shop-
ping for groceries. You go to the store with $100 in
your pocket. You think about your priorities. You look
at the prices on the items. You decide what to buy.

In the planning game (the XP planning process), the
items are the stories. The prices are the estimates on
the stories. The budget is calculated by measuring the
team’s output in terms of estimated stories delivered
per unit time.

The customer can either load up a cart (pick a set of
stories) and have the programmers calculate the finish
date or pick a date and have the programmers calcu-
late the budget, then choose stories until they add up.

Iteration
The goal of each iteration is to put into production

some new stories that are tested and ready to go. The
process starts with a plan that sets out the stories to be
implemented and breaks out how the team will
accomplish it. While the team is implementing, the
customer is specifying functional tests. At the end of
the iteration, the tests should run and the team should
be ready for the next iteration.

Iteration planning starts by again asking the cus-
tomer to pick the most valuable stories, this time out

of the stories remaining to be implemented in this
release. The team breaks the stories down into tasks,
units of implementation that one person could imple-
ment in a few days. If there are technical tasks, like
upgrading to a new version of a database, they get put
on the list too.

Next, programmers sign up for the tasks they want
to be responsible for implementing. After all the tasks
are spoken for, the programmer responsible for a task
estimates it, this time in ideal programming days.
Everyone’s task estimates are added up, and if some
programmers are over and some are under, the under-
committed programmers take more tasks.

Over the course of the iteration, the programmers
implement their tasks. As they complete each task, they
integrate its code and tests with the current system. All
tests must run or the code cannot be integrated.

As the customer delivers the functional tests dur-
ing the iteration, they are added to the suite. At the
end of the iteration, all unit tests and all functional
tests run.

Task
To implement a task, the responsible programmer

first finds a partner because all production code is writ-
ten with two people at one machine. If there is any
question about the scope or implementation approach,
the partners will have a short (15-minute) meeting with
the customer and/or with the programmers most
knowledgeable about the code most likely to be
touched during implementation.

Release

Years

Months

Weeks

Days

Iteration

Implementation

Stories

Tasks

Tests

Figure 2. XP according to various timescales. At the scale of months and years, you have the stories in this release and then
the stories in future releases. At the scale of weeks and months, you have stories in this iteration and then the stories remain-
ing in this release. At the scale of days and weeks, you have the task you are working on now and then the rest of the tasks in
the iteration. And at the scale of minutes and days, you have the test case you are working on now and then the rest of the test
cases that you can imagine.

From this meeting, the partners condense the list of
test cases that need to run before the task is done. They
pick a test case from the list that they are confident
they can implement and that will teach them some-
thing about the task. They code up the test case. If the
test case already runs, they go on. Normally, though,
there is work to be done.

When we have a test case and it doesn’t run, either

• we can see a clean way to make it run, in which
case we make it run; or

• we can see an ugly way to make it run, but we
can imagine a new design in which it could be
made to run cleanly, in which case we refactor
the system to make it run cleanly; or

• we can see an ugly way to make it run, but we
can’t imagine any refactoring, in which case we
make it run the ugly way.

After the test case runs, if we see how to refactor

the system to make it even cleaner, we do so.
Perhaps during the implementation of this test case

we imagine another test case that should also run. We
note the new test case on our list and continue.
Perhaps we spot a bigger refactoring that doesn’t fit
into the scope of our current test. We also note that
and continue. The goal is to remain focused so we can
do a good job and at the same time not lose the ben-
efits of the insights that come during intense interac-
tion with code.

Test
If there is a technique at the heart of XP, it is unit

testing. As you saw above, unit testing is part of
every programmer’s daily business. In XP, however,
two twists on conventional testing strategies make tests
far more effective: Programmers write their own tests
and they write these tests before they code. If pro-
gramming is about learning, and learning is about get-
ting lots of feedback as quickly as possible, then you

October 1999 73

Roots of XP

The individual practices in XP are not
by any means new. Many people have
come to similar conclusions about the
best way to deliver software in environ-
ments where requirements change vio-
lently.1-3

The strict split between business and
technical decision making in XP comes
from the work of the architect Christo-
pher Alexander, in particular his work
The Timeless Way of Building,4 where he
says that the people who occupy a struc-
ture should (in conjunction with a build-
ing professional) be the ones to make the
high-impact decisions about it.

XP’s rapid evolution of a plan in
response to business or technical changes
echoes the Scrum methodology5 and Ward
Cunningham’s Episodes pattern language.6

The emphasis on specifying and sched-
uling projects from the perspective of fea-
tures comes from Ivar Jacobson’s work
on use cases.7

Tom Gilb is the guru of evolutionary
delivery. His recent writings on EVO8

focus on getting the software into pro-
duction in a matter of weeks, then grow-
ing it from there.

Barry Boehm’s Spiral Model was the
initial response to the waterfall.9 Dave

Thomas and his colleagues at Object
Technology International have long been
champions of exploiting powerful tech-
nology with their JIT method.10

XP’s use of metaphors comes from
George Lakoff and Mark Johnson’s
books, the latest of which is Philosophy in
the Flesh.11 It also comes from Richard
Coyne, who links metaphor with soft-
ware development from the perspective
of postmodern philosophy.12

Finally, XP’s attitude toward the effects
of office space on programmers comes
from Jim Coplien,13 Tom DeMarco, and
Tim Lister,14 who talk about the impor-
tance of the physical environment on pro-
grammers.

References
1. J. Wood and D. Silver, Joint Application

Development, John Wiley & Sons, New
York, 1995.

2. J. Martin, Rapid Application Development,
Prentice Hall,Upper Saddle River, N.J.,1992.

3. J. Stapleton, Dynamic Systems Develop-
ment Method, Addison Wesley Longman,
Reading, Mass., 1997.

4. C. Alexander, The Timeless Way of Build-
ing, Oxford University Press, New York,
1979.

5. H. Takeuchi and I. Nonaka, “The New
Product Development Game,” Harvard

Business Rev., Jan./Feb. 1986, pp. 137-
146.

6. W. Cunningham, “Episodes: A Pattern
Language of Competitive Development,”
Pattern Languages of Program Design 2,
J. Vlissides, ed., Addison-Wesley, New
York, 1996.

7. I. Jacobsen, Object-Oriented Software
Engineering, Addison-Wesley, New York,
1994.

8. T. Gilb, Principles of Software Engineer-
ing Management, Addison-Wesley, Wok-
ingham, UK, 1988.

9. B. Boehm, “A Spiral Model of Software
Development and Enhancement,” Com-
puter, May 1988, pp. 61-72.

10. D. Thomas, “Web Time Software Devel-
opment,” Software Development, Oct.
1998, p. 80.

11. G. Lakoff and M. Johnson, Philosophy in
the Flesh, Basic Books, New York, 1998.

12. R. Coyne, Designing Information Tech-
nology in the Postmodern Age, MIT
Press, Cambridge, Mass., 1995.

13. J.O. Coplien, “A Generative Development
Process Pattern Language,” The Patterns
Handbook, L. Rising, ed., Cambridge Uni-
versity Press, New York, 1998, pp. 243-
300.

14. T. DeMarco and T. Lister, Peopleware,
Dorset House, New York, 1999.

74 Computer

can learn much from tests written by someone else days
or weeks after the code. XP primarily addresses the
accepted wisdom that programmers can’t possibly test
their own code by having you write code in pairs.

Some methodologies, like Cleanroom,1 prohibit
programmers testing or in some cases even com-
piling their own programs. The usual process has a
programmer write some code, compile it, make
sure it works, then pass it on to a testing organiza-
tion. The bench testing takes the form of single-
stepping through the code and watching variables,
or interpreting the results of print statements, or
poking a few buttons to make sure the list item
turns green.

The XP testing strategy doesn’t ask any more work
than the usual bench testing strategies. It just changes
the form of the tests. Instead of activities that evapo-
rate into the ether as soon as they are finished, you
record the tests in a permanent form. These tests will
run automatically today, and this afternoon after we
all integrate, and tomorrow, and next week, and next

year. The confidence they embody accumulates, so an
XP team gains confidence in the behavior of its sys-
tem over time.

As I mentioned earlier, tests also come from the cus-
tomers. At the beginning of an iteration, the customers
think about what would convince them that the sto-
ries for an iteration are completed. These thoughts are
converted into systemwide tests, either directly by the
customer using a textual or graphical scripting lan-
guage or by the programmers using their own testing
tools. These tests, too, accumulate confidence, but in
this case they accumulate the customer’s confidence
in the correct operation of the system.

WHEN SOMETHING GOES WRONG
Talking about how a method works when it works

perfectly is about like describing precisely how you
will descend a monstrous patch of white water. What
is interesting is precisely what you will do when the
unexpected or undesired happens. Here are some com-
mon failures and possible Extreme reactions.

Acxiom: Working
toward a Common Goal

Jim Hannula, Acxiom

On top of a data warehouse, Acxiom
built a campaign management applica-
tion using Forté’s distributed OO devel-
opment tool. The small development
team—consisting of 10 developers—built
the application by relying on sound OO
principles and a strong team development
approach.

During the final two years of the appli-
cation’s three years of development, the
team—comprised of managers, business
analysts, developers, testers, and techni-
cal writers—used Extreme Programming
techniques, which proved to be instru-
mental in our success.

We know we have a good design if it’s
simple. Some of our past designs tried
even to account for future iterations of
our application. We discovered that we
were not very good at that. If we use pat-
terns and communicate well, we can
develop a sound application that is flexi-
ble and can still be modified in the future.

Refactoring is a major part of our
development effort. It was evident to us
that if we were afraid to change some
code because we did not know what it

did, we were not very good developers.
We were letting the code control us. If we
don’t know what the code does now, we
break it and find out. It is better to imple-
ment a solid piece of code than it is to let
a piece of code control the application.

Unit testing was a hard piece to imple-
ment because Forté did not have a ready-
built testing framework. We developed
our own testing framework and have been
successful implementing it. Recently we
started using Java as a development lan-
guage and now use JUnit as a testing tool.

The key to XP is setting developer and
team expectations. We have found all
developers on the team must buy into
Extreme or it doesn’t work. We tell
prospective developers if they do not
want to follow our development style,
this is not a good team for them. One per-
son not buying in to the approach will
bring down the whole team. XP focuses
on the team working together to come up
with new ideas to develop the system.

When we first started with XP, some of
the developers did not want to follow it.
They felt that it would hurt their devel-
opment style and that they would not be
as productive. What happened was that
their pieces of the application were pro-
ducing the most problem reports. Since

they were not developing in pairs, two
people had not designed the subsystem
and their skills were falling behind the
other developers who were learning from
each other. Two well-trained developers
working together and with the rest of the
team will always outperform one “intel-
ligent” developer working alone.

A misconception about XP is that it sti-
fles your creativity and individual growth.
It’s actually quite the contrary. XP stimu-
lates growth and creativity and encourages
team members to take chances. The key is
to decide the direction of the corporation
and stand behind the hard decisions.

XP is not extreme to our team. It’s a
method that uses a common-sense devel-
opment approach. Everyone works to-
gether toward a common goal.

Team: managers, business ana-
lysts, developers, testers, and
technical writers

Application: campaign manage-
ment dbase

Time: three years

October 1999 75

Underestimation
From time to time you will commit to more than

you can accomplish. You must reduce the occurrence
of underestimation as much as possible by getting lots
of practice estimating. If you are overcommited, you
first try to solve the problem in the family. Have you
slipped away from the practices? Are you testing, pair-
ing, refactoring, and integrating as well as you can?
Are you delivering more than the customer needs in
places?

If you can’t find any way to go faster, you have to
ask the customer for relief. Staying committed to more
work than you can confidently complete is a recipe for
frustration, slipping quality, and burnout. Don’t do
that. Re-estimate based on what you’ve learned, then
ask the customer to reschedule. We can only complete
two out of three stories, so which two should we fin-
ish and which one goes in the next iteration or release?
Is there a story that has more critical parts and less

critical parts so we can split it and deliver the most
important parts now and the less important parts later?

Uncooperative customers
What if you get a customer who just won’t play the

game? They won’t specify tests, they won’t decide on
priorities, they won’t write stories. First, by complet-
ing functionality iteration after iteration, and by giving
the customer clear control over development, you are
trying to build a trust relationship with the customer.
If trust begins to break down, figure out if it’s your
fault. Can you do a better job of communicating?

If you can’t solve the problem on your own, you have
to ask the customer for help. Extreme programmers
simply don’t go ahead based on their own guesses.
Explain or demonstrate the consequences to the cus-
tomer. If they don’t change, make your concerns more
visible. If no one cares enough to solve the problem,
perhaps the project isn’t a high enough priority to go on.

DaimlerChrysler: The
Best Team in the World

Chet Hendrickson, DaimlerChrysler

The C3 project began in January 1995
under a fixed-priced contract that called
for a joint team of Chrysler and contract
partner employees. Most of the develop-
ment work had been completed by early
1996. Our contract partners had used a
very GUI-centered development method-
ology, which had ignored automated test-
ing. As a result, we had a payroll system
that had a lot of very cool GUIs, calculated
most employees’ pay incorrectly, and
would need about 100 days to generate
the monthly payroll. Most of us knew the
program we had written would never go
into production.

We sought Kent Beck to help with per-
formance tuning. He found what he had
often found when brought in to do per-
formance tuning: poorly factored code, no
repeatable tests, and a management that
had lost confidence in the project. He went
to Chrysler Information Services manage-
ment and told them what he had found,
and that he knew how to fix it. Throw all
the existing code away! The first full XP
project was born.

We brought Kent in as head coach; he
would spend about a week per month
with us. Ron Jeffries was brought in as

Kent’s full-time eyes and ears. The fixed-
price contract was cancelled, and about
one-half of the Chrysler developers were
reassigned. Martin Fowler, who had been
advising the Chrysler side of the project all
along and clashing with the fixed-price
contractor, came in to help the customers
develop user stories. From there, we fol-
lowed Kent as he made up the rules of XP.
A commitment schedule was developed,
iterations were laid out, rules for testing
were established, and paired programming
was tried and accepted as the standard.

At the end of 33 weeks, we had a sys-
tem that was ready to begin performance
tuning and parallel testing. Ready to begin
tuning because it was well factored and
backed up by a full battery of unit tests.
And, ready to begin parallel testing
because a suite of functional tests had
shown the customers that the required
functionality was present.

That increment of C3 launched in May
1997, not as soon as we had hoped. We
were slowed by two factors. First, we had
decided to replace only the internals of the
payroll system. We left all of the external
interfaces intact. Matching up the output
from our new system to the old payroll
master ended up being a much larger task
then we had originally estimated. Second,
we decided not to launch during any pay
period with special processing require-

ments, such as W-2 processing, profit shar-
ing, or general merit pay increases. This
effectively eliminates November through
April.

Since the launch of the monthly system,
we’ve added several new features, and we
have enhanced the system to pay the
biweekly paid population. We have been
paying a pilot group since August 1998
and will roll out the rest before the Y2K
code freeze in November 1999.

Looking back on this long development
experience, I can say that when we have
fallen short of keeping our promises to
our management and our customers, it
has been because we have strayed from
the principles of XP. When we have dri-
ven our development with tests, when we
have written code in pairs, when we have
done the simplest thing that could possi-
bly work, we have been the best software
development team on the face of the
earth.

Team: 10 programmers, 15 total
Application: large-scale payroll
system

Time: four years

Turnover
What if someone leaves? Won’t you be stuck with-

out documents and reviews? First, a certain amount of
turnover is good for the team and for the people on the
team. However, you’d like people to leave for positive
reasons. If programmers go home at the end of every
week seeing the concrete things they have accom-
plished for the customer, they are less likely to get frus-
trated and leave.

When someone leaves an XP project, it isn’t like
they can take away any secrets that only they know.
Two people were watching every line go into the sys-
tem. And whatever information does walk out the
door, it can’t hurt the team too much because they can
run the tests to ensure that they haven’t broken any-
thing out of ignorance.

New people on an XP team spend the first couple
of iterations just pairing with more experienced peo-
ple, reading tests, and talking with the customer. When
they feel ready, they can accept responsibility for tasks.
Over the course of the next few iterations, their per-
sonal velocity will rise as they demonstrate that they
can deliver their tasks on time. After a few months,
they are indistinguishable from the old salts.

Programmers that don’t work out with the team
are a problem, too. XP is an intensely social activity,
and not everyone can learn it. It also requires aban-

doning old habits, which can be difficult, especially
for high-status programmers. In the end, though, the
many forms of feedback in XP make it clear who is
working out and who isn’t. Someone who consis-
tently doesn’t complete tasks, whose integrations
cause problems for other people, who doesn’t refac-
tor, pair, or test …. Everyone on the team knows the
score. And the team is better off without that person,
no matter how skilled.

Changing requirements
The bugaboo of most software development is just

not a problem in XP. By designing for today, an XP sys-
tem is equally prepared to go any direction tomorrow.
Things that are like what you’ve already done will be
easier, just by the nature of refactoring to satisfy “once
and only once,” but those are precisely the things that
are most likely to happen. However, should a radically
new requirement arise, you won’t have to unwind (or
live with) a lot of mechanism built on speculation.

I didn’t initially realize the extent to which XP can
adapt to changing requirements. The first version of
XP assigned stories to all the iterations in a release,
as part of release planning. The team discovered that
they could get better results with less planning by only
asking the customer to pick which stories should be
in the present iteration. If a new story comes up, you

76 Computer

Ford Motor: A Unique
Combination of Agility and Quality

Don Wells, Ford Motor

Finance Systems at Ford Motor has
been developing the Vehicle Costing and
Profit System (VCAPS), an analysis tool
that produces reports on production rev-
enues, expenses, net income, and profit.
The input is a bill of materials, fixed costs
and expenses, and variable costs such as
labor hours. VCAPS assembles this data
into detailed cost analysis reports to sup-
port corporate-level forecasting and deci-
sion making.

Ford started VCAPS in 1993 and built
it with VisualWorks and GemStone
Smalltalk. VCAPS is now being main-
tained with a small staff and is to be
replaced with a newer system.

The VCAPS project challenged us two
ways. First, the analysts wanted modifica-
tions and new functionality before each
run. Constantly changing requirements
kept us in reaction mode. We never caught

up. Second, the system needed to be run
in a limited span of time. But the system
took a long time to process and required
lengthy manual input before producing
final output. A bug could waste precious
time by requiring a rerun.

XP offered us a unique combination:
agility to meet the volatile requirements on
time and quality to avoid the dreaded rerun.

We began XP with the planning game.
It was a failure. Customers and manage-
ment were unaccustomed to negotiating
schedules. The commitment schedule pro-
duced was perceived as lacking credibility
and utility. We had to swap in Microsoft
Project schedules, which could be modi-
fied without large meetings and could pro-
duce the kinds of artifacts management
was used to seeing and taking action on.

We continued by adding a few unit tests.
Automated unit testing was an enormous
success. After a year, we had 40 percent
test coverage and management had mea-
sured a 40 percent drop in bug reports. XP
was being noticed.

We solved problems by adding XP prac-
tices. Tests enabled continuous integration
and small releases. These allowed us to
roll in collective ownership and refactor-
ing. We were working toward simple
design. Building momentum, we tried pair
programming. We had to work hard to get
pair programming going. Our developers
found it awkward; it took a while to
become comfortable.

After a year and a half, the decrease in
system failures had reduced the number of
emergency releases to a point where cus-
tomers and managers noticed far greater
system stability. Overall, XP was very suc-
cessful in our environment.

Team: 12 programmers, 17 total
Application: cost analysis system
Time: six years

October 1999 77

Tariff System: Tests You Can Read
Rob Mee, Independent consultant

Tariff System is a subsystem of a large
Smalltalk/GemStone project at a major
international container-shipping company.
Using XP practices, Tariff System was
taken from inception to production in
three months by a team of three. The
resulting system proved to be unusually
stable and easy to maintain.

At the outset of the project, the team
resolved to adhere to several core XP prac-
tices: always program in pairs, use the sim-
plest design possible, refactor aggressively,
and write extensive unit tests. All of these
practices were very effective. One XP idea
that initially seemed far-fetched was writ-
ing tests before writing the code that sat-
isfied them. We were surprised to find that
in fact this helped bring our designs into
focus, enabling us to work more quickly.

Another practice we employed from the
beginning was collecting requirements
from users in the form of user stories. We

had mixed results with this. As program-
mers focused on coding, we found the role
of facilitating and negotiating with users
difficult. More important was the fact that
users needed lots of help writing stories
that were both relevant and unambiguous.
In the end, we felt that perhaps XP was
missing a project role. We needed some-
one from the development team whose
primary focus—and particular talent—
was interacting with users.

In our efforts to refactor test cases and fix-
tures, we discovered that creating little lan-
guages for our major domain objects
dramatically improved the readability and
brevity of our test code. It also practically
eliminated the time we spent thinking about
how to create object instances when writing
tests. We defined grammars for about ten of
our domain classes. Here’s a simple exam-
ple used to construct a Service Offering:

newFromString: ‘from Oakland to
Tokyo shipping toys: 20ft containers $500;
40ft containers $1000’.

The constructor uses a parser, automati-
cally generated from a grammar, to pro-
duce the domain object. The code to
instantiate this object using standard con-
structors would have taken many lines,
would have been difficult to read, and
would have distracted from the test case
itself.

Eventually, we discovered that we
could combine the individual domain lan-
guages into a larger description of the sys-
tem as a whole, which proved to be a
valuable tool in the expression of func-
tional tests.

don’t have to shuffle the remainder of the iterations,
you just put it in the pile. One or two weeks later, if
the story still seems urgent, the customer will pick it.

Planning one iteration at a time also introduces a
pleasing self-similarity. At the scale of months and
years, you have the stories in this release and then the
stories in future releases. At the scale of weeks and
months, you have stories in this iteration and then the
stories remaining in this release. At the scale of days
and weeks, you have the task you are working on now
and then the rest of the tasks in the iteration. And at
the scale of minutes and days, you have the test case
you are working on now and then the rest of the test
cases that you can imagine.

X P is by no means a finished, polished idea. The
limits of its application are not clear. To try it
today would require courage, flexibility, and a

willingness to abandon the project should your use
of XP be failing.

My strategy is first to try XP where it is clearly
applicable: outsourced or in-house development of
small- to medium-sized systems where requirements
are vague and likely to change. When we begin to
refine XP, we can begin to try to reduce the cost of
change in more challenging environments.

If you want to try XP, for goodness sake don’t try
to swallow it all at once. Pick the worst problem in
your current process and try solving it the XP way.
When it isn’t your worst problem any more, rinse and
repeat. As you go along, if you find that any of your
old practices aren’t helping, stop doing them.

This adoption process gives you a chance to build
your own development style—which you will have to
do in any case—to mitigate the risks should XP not
work for you and to continue delivering as you
change. ❖

Reference
1. S. Prowell et al., Cleanroom Software Engineering,

Addison Wesley Longman, Reading, Mass., 1999.

Kent Beck owns and operates First Class Software,
your typical one-person consulting company mas-
querading behind a fancy name and an answering
machine. In addition to two books and 50 articles, he
is the author of the forthcoming Extreme Program-
ming Explained: Embrace Change (Addison Wesley
Longman, Reading, Mass., 2000). Contact him at
kentbeck@csi.com.

Team: three developers
Application: shipping tariff cal-

culation system
Time: three months

