CHAPTER 5

Breakdowns and Processes During the Early
Activities of Software Design by Professionals

Raymonde Guindon
Herb Krasner

Bill Curtis
Microelectronics and Computer Technology Corporation
9390 Research Boulevard
Austin, Texas 78759

ABSTRACT

This chapter summarizes some of the main breakdowns (or difficulties) occurring early in
the software design process when professional designers work on a problem of realistic
complexity. One class of breakdowns is caused by lack of knowledge and another class is
caused by cognitive limitations. A third class of breakdowns is caused by a combination
of these two factors. The main breakdowns observed are: 1) lack of specialized design
schemas; 2) lack of a meta-schema about the design process leading to poor allocation of
resources to the various design activities; 3) poor prioritization of issues leading to poor
selection of alternative solutions; 4) difficulty in considering all the stated or inferred
constraints in defining a solution; 5) difficulty in performing mental simulations with
many steps or test cases; 6) difficulty in keeping track and returning to subproblems
whose solution has been postponed; and 7) difficulty in expanding or merging solutions
from individual subproblems to form a complete solution. We have also ohserved
serendipitous design and the process of understanding and elaborating the requirements
through exploration of the designer’s mental model of the problem environment. This
study provides many observations of breakdowns and design behaviors not reported in
previous studies and necessary prior to developing a model of the cognitive activities
during software design. This study also provides critical information to guide the design
of tools and methodologles to improve the efficiency of software designers.

MOTIVATION AND GOALS

The goal of this study is to identify the breakdowns most often experienced by
professional software designers and determine the software tools that would alleviate
these breakdowns, This chapter will not describe these tools but will concentrate on
describing the breakdowns. Breakdowns have been broadly defined as ineffective design
activities, undesirable consequences of these ineffective activities, activities thal are
difficult to perform because they tax the designers' limited cognitive resources, or causes
of these ineffective or difficult design activities. These breakdowns are likely to produce
design solutions that are incorrect. Our strategy toward the identification of breakdowns
has been to:

s Study designers with real, extensive, and widely varied software design experience.

o Give the designers a more complex and realistic problem than has been given in
other studies of software design, yet not so different that our results cannot be
easily compared to them (e.g., Jeffries, Turner, Polson, and Atwood (1); Adelson
and Soloway (2); Kant and Newell (3)).

s Use the observational technique of thinking aloud protocol rather than controlled
experimental manipulations because of the scarcity of previous empirical work on
goftware design. This initial study is exploratory and we have observed many
design behaviors and many breakdowns that will provide a foundation for
modeling cognitive activities during software design.

Our study differs from other studies of software design by individuals on two main
points. First, we are taking a next step in advancing the empirical study of software
design by using a more complex and realistic design problem than used in other software
design studies. Second, this study is especially orlented toward identifying the
breakdowns oceurring during software design by professional designers.

DESCRIPTION OF THE METHODOLOGY

Participants

Thinking aloud protoccls were collected from 8 professional programmers and
gystem designers. Three experienced designers were selected for a full protocol analysis
from these eight professionals. P& had a Ph.D. in Electrical Engineering with more than
10 years of professional experiente, mainly in communication systems and hardware
architecture. P8 had a Masters in Software Engineering with 5 years of experience,
mainly in real time systems. P3 was a Ph.D. Candidate in Computer Sclence with 3
years of professional experience, mainly in logic programming. These particular designers
were selected because they were considered by their peers to be experienced and
competent designers, because of the wide variety of their eduecational backgrounds and
years of experience, because their design solutions were considered the best among the
eight designers, and because of the wide variety of their design strategies and solutions,
We deliberately choose to analyze the widest spectrum of design behaviors in order to
gather a wide variety of breakdowns and design strategies.

Problem Statement

The lLift control problem ia currently a standard problem used in the areas of
software specification and software requirements modeling research. The goal is to design
the logic to move N lifts between M floors given the constraints expressed in the problem
statement. The problem statement is given in the Appendix.

Procedure

Thinking aloud reports were collected from participants who were asked to design
the logic for the N-lift problem, They were given two hours to produce a design sclution
that was in such a form and level of detail that it could be handed off to a competent
gystem programmer to implement. The participants were videotaped and given paper
and pencil to work their solution. The notes and diagrams produced by the participants
were time-stamped regularly by the experimenter. The transeript of each participant was
also time-stamped, and the written notes and diagrams were included in the transeript.
The procedure departed from typical verbal protocols in that the experimenter intervened
more substantively, often acting as a client and sometimes providing some help when the
participants encountered difficulties. There were two reasons for this departure. First,
in realistic design situations one or more people are typically available to answer

questions or arbitrate lssues in the requirements. This communication and negotiation
between client and designer is perceived as a eritical element in early design. Carroll,
Thomas, and Malhotra (4) have provided an analysis of the cyclic nature of these
interactions. At least one participant, P8, would frequently want to discuss design issues
with the experimenter as this represented his normal mode of designer-client interactions.
However, such a veridieal feature conflicis with the traditional methods for collecting and
analyzing wverbal protocols. Second, our objective was to generate as much design
behavior as poasible in order to observe a broad range of design breakdowns. The
participants were selected and the verbal protocols collected by the second author. The
videotapes and transeripts were independently analyzed by the first author later.

Protocol Analysis Process
The process of protocol analysis was divided into three major steps:

1. Enumeration of possible cognitive activities that could occur during the session
based on previous studies, the problem-solving literature in psychology, and
artificial intelligence models of design. The funetion of these preliminary models is
to guide the protocol ansalysis, though not limit it. New activities or interactions
between them are also sought.

2. Segmentation of the protocols into episodes indicating breakdowns or
corresponding to cognitive activities during software design.

3. Identification of the relations between the software design activities. Four main
types of relations were identified: 1) temporal (e.g., precedence, iteration,
interruptions, and resumptions); 2) transition between internal, mental activities
and external activities (e.g., from mental to external representation of lifts and
floors on paper); 3) transition between activities dealing mainly with the problem
domain (e.g., lifts, floors, buttons) and activities dealing mainly with the solution
domain (e.g., control structures, data structures); 4) functional composition (e.g.,
the activity of understanding the requirements was composed of shorter episodes
such as disambiguation of the problem statement through mental simulations, the
addition of an assumption, or the abstraction of critical statements).

Verbal protocol analysis is essentially an exploratory observational technigque
particularly suited for research in new domains. The study of cognitive processes during
software design is such a domain.

Issues of Validity Generalization

There are three issues that must be addressed in determining the validity of
generalizing results from these data to realistic design situations. These issues deal with
the task, the sampling of participants, and the external validity of the experimental
situation. As stated earlier, the lift problem is a standard exercise in research on
software specification techniques. Although it is not as complex a task as, for example,
designing a distributed electronic fund transfer system, it is nevertheless a next step in
increasing the technical challenge offered by tasks used in empirical studies of design.
Thus, as we begin to understand how designers marshal their cognitive resources to salve
problems of this complexity, we can move on to tasks of even greater complexity.

The second issue concerns how representative our sample of participants is of the
larger population of software designers. There is simply no reliable way to answer this
question given the current maturity of the field. That is, there are no population data
available against which to compare the variability of our sample. There is no standard
type of individual who becomes a software designer. Their educational backgrounds,

work experience, job settings, and variability of skills differ radically. Furthermore, there
is not even agreement on the relevant variables to measure if we wanted to characterize
this population. Another significant problem is that there is no standard job title or
description for those who perform software design.

We attempted to get a broad sampling of educational backgrounds, application
experiences, and previous working environments in the eight designers selected to
participate. Further, we selected three protocols for analysis that represented completely
different strategies in attacking the design. We make no claim that these protocols
represent the full range of strategies in the larger population of software designers.
Rather, we believe that since it is unlikely that a multi-environment population study of
software designers will be funded in the foreseeable future, the description of this
population must be pieced together from studies like this that describe the problem-
solving characteristics of a few designers in great depth.

The third issue concerns the extent to which the conditions under which the data
were collected are representative of those under which actual design occurs. Clearly,
designing programs of any significance normally takes more than two hours, unless the
designer has extensive experience in designing programs of great similarity. Our goal in
collecting these data was to gather information on a concentrated problem-solving effort
that would provide a broad range of cognitive behaviors and would display an interesting
array of breakdowns. We cannot be sure that additional breakdowns would not hawve
been observed had we carried the data collection out over several days or even weeks
with & more complex problem. Furthermore, some of the breakdowns may have been
exacerbated by the concentrated nature of the two-hour session. However, other studies
of software design by individuals have collected verbal protoeols over a session of two
hours (Jeffries, Turner, Polson, and Atwood (1); Adelson and Soloway (2); Kant and
Newell (3)). Therefore, we can at least compare our results to their results legitimately.

Finally, some of the breakdowns and processes we have cbserved were also reported
by Kant and Newell (3) and Adelson and Soloway (2), and more importantly in a study
of mechanical engineering design using a ten-hour design session by Ullman, Stauffer, and
Dietterich (5). This overlap between some of our findings and findings in other studies
performed in other domains and under different conditions supports the validity and
generalizability of our new lindings.

GENERAL OBSERVATIONS ON DESIGN BEHAVIOR

The three designers adopted very different strategies during design. A brief
characterization of their overall strategies lollows.

P8 seems to have the most relevant specialized computer science knowledge to solve
the N-lift problem - he has specialized design schemas relevant to distributed systems.
P8 uses these design schemas to decompose the problem into simpler subproblems.
He opts for a distributed control solution. He then decomposes the problem into two
subproblems, communication between each lift and route scheduling by each lift.
However, he clearly has better design schemas for the communication subproblem than
for the scheduling subproblem. He successively refines his solution for the
communication subproblem while he performs much more exploratory design for the
scheduling subproblem. By exploratory design, we mean design with many mental
simulations of the problem environment and mental simulations of tentative solutions
unguided by a plan. Another aspect of his design activities is that they are
issue-driven: he identifies some critical features his solution should have, such as

reliability and no single point of failure, and uses them to control the selection of
alternative solutions for many of the subproblems (e.g., selection of a control structure
and selection of a communication scheme between lifts). Moreover, P6 also consciously
generates many simplifying assumptions, which he evaluates for their plausibility, as a
complexity reduction strategy. So, P8's process is mainly characterized by the use of
specialized design schemas, by being issue-driven, and by the generation of simplifying
assumptions.

P8 seems to follow more closely than the other participants a meta-schema for
design. This meta-schema seems to be derived from software engineering practices,
especially the Jackson System Development method (6). P8 explicitly acknowledges the
need for exploring the problem environment to achieve a good understanding of the
requirements before seeking a solution. The problem environment is the set of objects,
events, and behaviors in the domain relevant to the computer system being designed
(e.g., floors, lifts, buttons, buildings, people waiting, fires). An important part of his
design activities is the representation of entities and relations in the problem environment
and their mental simulations. However, P8 does not seem to have as relevant specialized
design schemas as P8, which may have induced him in exploring the problem
environment. Possibly as a econsequence of exploring the problem environment, the
design process of P8 is partly controlled by recognition of partial solutions, at
different levels of detail or abstraction, without having previously decomposed the
problem into subproblems. We call such design process serendipitous design. As
another aspect of P8's process, he decomposes the problem into handling the requests
coming from floors and handling the requests coming from inside the lifts. He also
attempts, within this problem decomposition, to solve initially for one lift and then
attempts to expand the solution to N lifts. However, he experiences great difficulty in
merging the partial solutions from handling requests from floors and requests from lifts
and expanding the solution from 1 lift to N lifts. The decomposition of the problem into
requests from floors and requests from lifts, and the reduction of the problem from N
lifts to 1 lift does not appear to be based on a specialized design schema. Such a design
schema would have provided P8 a plan for a well-motivated decomposition of the
problem into subproblems and a merging of the partial solutions. So, P8's design process
is characterized by the use of a meta-schema for design, by exploration of the problem
environment, by serendipitous design, and by difficulty in merging the partial solutions.

P3's design activities appear the least systematic and the most loeally governed.
They are the least systematic because P3 does not seem to use a meta-schema for design
and he does not seem to use specialized design schemas to guide the decomposition of the
problem into subproblems. They are the most locally governed in the sense that he does
not exhibit exploration of the problem environment and consideration of alternative
solutions to problems. P3 does not, as opposed to P8, consider one or more issues as
erucial and select the solution from a set of alternative solutions that best satisfies the
issues, His approach seems mostly governed by a familiar computational paradigm,
logic programming. He produces many cycles of generating a tentative solution,
simulating it, debugging it locally, and simulating it again. He has difficulty with mental
simulations of the many tentative solutions and with keeping track of the test cases
during these simulations. So, P3's design process is characterized by a generate-test-
debug strategy and difficulty with mental simulations of tentative solutions.

ikewise, the solutions produced by the designers are quite different. We will
discuss mainly the solution architectures and the representation schemes of the solutions.

Pt's solution is a communicating ring of independent elevators. He selects

distributed control over centralized control. In this scheme, each elevator operates on its
own and passes information around the ring to the others, coordinating the schedules of
pickups that they had decided on independently. Pé's solution is represented as finite
state machines. In each elevator there are two communicating finite state machines; one
for handling the local processing of the elevator as it decides what stops to make along its
route, and the seeond for communicating with the other elevators independently.

P8 adopts the classic star architecture in which the elevators communicate through
a central process. PB uses abstract data types, data [low diagrams, and pseudocode as
representation schemes.

P3 works at developing a global model of system behavior described as a set of
logical assertions with initial thoughts of centralized control. P3 represents the behavior
of the system by logical assertions written in a Prolog style.

So, experienced designers can exhibit a very wide variety of design strategies, both
between and withio desigoners, This variety of design strategies is also accompanied by
different types of breakdowns (which will be deseribed in the next section). Finally,
design solutions vary widely between designers. These observations highlight the
complexity of the design process, These observations also highlight the eritical
contribution of specialized knowledge to the design process, and as a consequence, the
wide individual differences that will be observed between designers’ strategies. Finally,
these observations indicate that a wide variety of tools and methodologies are needed to
best support the variety of design strategies.

SOME OF THE BREAKDOWNS OBSERVED DURING DESIGN

The breakdowns that we are reporiing consist of both symptoms and causes of
difficulties during the design process. Moreover, these breakdowns are not necessarily
independent of each other. We observed two main classes of breakdowns, with & third
class being a combination of the other two. The first class consists of
knowledge-related breakdowns. They are due to 1) lack of specialized knowledge of
computational solutions corresponding to characteristics of the application domain, 2)
lack of knowledge/experience of the design process itself, or 3) lack of domain knowledge.
The second class of breakdowns are due to general cognitive limitations, They result
from 1) capacity limitations of short-term or working memory, and 2) the unreliable
retrieval of relevant information from long-term memory. They are also due to the
weakness of our standard tools and methodologies aimed at alleviating cognitive
limitations (e.g., checklists). The third class of breakdowns results from a combination of
both knowledge deficiencies and cognitive limitations, These latter breakdowns occur
because the lack of relevant specialized knowledge induces designers to use weak
problem-solving methods, such as generate and test and means-end analysis.
Unfortunately, weak methods can be very taxing cognitively and they often translate into
poor performance because they require search of a large space of poasibilities (Laird,
Rosenbloom, and Newell (7)). Moreover, the lack of specialized knowledge is also
associated with a lack of cognitive knowledge structures supporting memory for the
activities during the design process (e.g., supporting memory for postponed subproblems
or memory for test cases).

Knowledge-Related Breakdowns

Lack of Relevant Problem-Specific Design Schemas. The main determinant
of performance appears to be the presence or absence of specialized design schemas.
Design schemas are mental representations of software design families. Borrowing from a
definition given by Rich and Waters (8), a design schema consists of a set of roles
embedded in an underlying matrix. The roles of the schema are the parts that vary from
one use of the design schema to the next. The matrix of the schema contains both fixed
elements of structure (parts that are present in every occurrence) and constraints,
Constraints are used both to check that the parts that fill the roles in a particular
cecurrence are consistent, and also to compute parts to fill empty roles in a partially
specified occurrence. These schemas can be instantiated through refinements and
specializations to particular instances of software designs. The design schemas embody
the knowledge of alternative solutions to classes of problems. Problem-solving using
design schemas proceeds through recognition that the requirements may be an instance of
a known design schema followed by propagation of comstraints from the explicit and
implicit requirements and specialization of the design schema. Examples of design
schemas and their specializations are given in the work by Lubars and Harandi (0) and
Rich and Waters (8). The Inventory Control System design schema can be specialized
into the Reservable Inventory Control System schema and the Non-Reservable Inventory
Control System schema. A Library Inventory Control System schema is a specialization
of the Non-Reservable Inventory Control System schema. In the Library Inventory
Control System schema the role Check Out Book (an operation) is a specialization of the

role Dispense Inventory specified in the Non-Reservable Inventory Control System
schema.

Regarding retrievability, a design schema is composed of a deseription of the
conditions under which its solution is relevant. These conditions eontain an ahstract
representation of critical features in the given problem environment. For example, in the
N-lift problem the abstract representation could be in terms of many clients who might
make simultaneous requests for service to many servers (lifts) at different times and
locations. Such a description eould be sufficient to retrieve a design schema appropriate
for the N-lift problem. Regarding problem decomposition, s design schems also contains
a solution plan to guide the decomposition of the problem into subproblems, each
subproblem with its own design schema. The design schema as a cognitive structure also
supports the storage and retrieval of intermediate solutions and backtracking if
necessary, and as a consequence, reduces working memory load during design and
increases the probability that partial solutions and postponed subproblems will be
retrieved when needed. The design schema also guides the expansion of a reduced
solution or the merging of individual solutions to subproblems into & complete solution.

P8, because of his specialized design schemas for distributed and communication
gystems, could quiekly identify the main design issues (i.e., no single point of failure) and
knew alternative solutions to be evaluated (e.g., central vs. distributed soclutions for
control and communication between lifts). He could also quickly retrieve from memory,
for example, known solutions for posting messages and for avoiding a race condition.
However, for the subproblem of scheduling service and especially its subproblem of
choosing a route, for which he seems to lack design schemas, his design process appeared
much more exploratory and accompanied with mental simulations.

The following excerpts from the protocols indicate the use of such schematic

knowledge. P8 immediately recognizes that in scheduling N lifts the problem of control
arises. His design schema for control represents two alternatives, centralized and

n

distributed, which he immediately retrieves. His knowledge of the alternatives also
contains their advantages and disadvantages. He opts for distributed control. He then
recognizes the next problem to sclve, communication between lifts. He retrieves the
possible alternatives and again opts for distributed communication between lifts, where
each lift broadeasts which requesis it will service to all other lifts. He then recognizes the
problem of a race condition and immediately retrieves from his design schemas a solution
to the race condition problem, that is, arrange the lift in a ring for sequential polling of
the lift requests.

P8- "'m going to schedule the elevatora. Do we have a central controller? It
doesn’t say in the problem. We have a central controller or a disiributed controller, is
that up to mef ... The good news about central comtrol 18 il's an easier algorithm ve.
diastributed contrel. The bad news ts that you have a single point of fatlure... I'll start
of f by thinking about a distributed control system...”

P8- "Let’s say all the elevators are sititng down at the bottom floor and there's an
up button pressed on floor three. Someone's got to post that request and someone’s got
to pick it up and mark it that he's responding to it. That implies a centralized place to
poat the requests and we're back to the aingle point of fadlure... Well, you could
broadeast a meassage to all the other elevators that you are servicing number one. Seema
like the algorithm is: every elevators look at all the buttons all the time; he sees an up
posted on floor number three; ... one of them grabs if and post a message ..."

P68 "Now we have to make sure we don't get in a race condition. And we can do
that algorithmically usually. You can do some kind of ring system by allowing them to
scan in sequence and tell one another when they've got acanned so they don't get in a
race.”

P3 applies a familiar computational paradigm, logic programming, but seems to
lack relevant specialized design schemas. P3 recognizes at the beginning of the session
that the lift problem is not a type of problem he is used to solve: "... this ia different
Srom what I am used to thinking about because we don't jusl have one HKft we can
decide algorithmically whot to do about ...". As a consequence, P3 adopts central control
for its computational simplicity: "... Maybe I can assume there's some central processor
that can receive signals from all the lifts and decide on things? ... Well, I think 1t
might be eastest to do it that way. "

Lack of or Poor Meta-Schema for Design. The next main determinant of
performance appears to be the presence or dibsence of a meta-schemsa of software design.
A design meta-schemsa is a schema about the process of design itself and not about a
particular class of problems. The meta-schema iz used to control the design process. A
design meta-schemsa guides the execution of design activities and resource management.
A design meta-schema represents design process goals and their alternatives and guides
the amount of effort spent in different activities. For example, a design meta-schema will
help answer questions such as:

#» How much time and money should be spent on the complete design process?

¢ How much time and money should be spent on exploring the problem
environment?

¢ How much time and money should be spent exploring alternative solutions for
identified subproblems?

» Which subproblem should be attempted to be solved next?

» How many alternative solutions should be considered for the selected subproblem?

P8 has been trained as a software engineer and he seems to be using a meta-schema
about design to guide the resources he allocates to various design activities and the
amount of exploration dome. This meta-schema is based on the design technique
developed by Jackson (8). P8 first explores his mental model of the problem environment
using various representation techniques to a much greater extent than P8 and P3 belore
proceeding to defline an initial solution. The problem environment is a part of the real
world, outside of the designed computer system, with which the computer system
interacts. It contains the objects, properties, behaviors, and constraints in the world that
are relevant to the design of a solution. In our case, the problem environment of a lift
gsystem contains such entities as Moors, lifts, floor buttoms, lift buttons, people, people
waiting, requests for lifts, buildings, lift doors, lift panels, the safety of passengers, etc.
The designer produces a mental model of the problem environment, possibly incomplete
and inconsistent, based on the requirements and the designer's knowledge about the
world. The mental model of the problem environment specifies more information than is
contained explicitly in the requirements, and will often be more complete than the
requirements or may sometimes be inconsistent with the stated requirements. The
purpose of exploring the problem environment is to increase the completeness of the
requirements and to discover unstated constraints, properties, behaviors, or objects that
may generate constraints on the solution.

The following excerpt exemplifies how P8 uses a meta-schema about design to guide
how much time he spends on various design activities and the amount of exploration
done. About twenty minutes after the beginning of the session, while P8 is still exploring
the problem environment, he shifts to a subproblem at a very low level of detail. He
starts exploring the subproblems of handling inputs on an interrupt basis and of
scheduling the service to lift requests. He then dramatically shifts back to & high level of
abstraction. *Butl af this point | feel I might be getting ahead of myaelf, so I want to
think about other basic strategies. For instance, usually when I'm doing a design I try
to think aboul things in a data abstraction way or object-oriented way. So now I'm
trying to see if I can think about the objects and the ayastem kind of independently.”
About 5 minutes later, one can again see from the protocol how P8 seems to apply
consclous strategies of resource allocation: "... I'm sort of working at a high-level now,
but I juat have the feeling that if I maybe just tried working at a lower level for a
second | might get aome ideas ... just kind of imagine in my mind how I could actually
do this at some deeper [i.e., more concrete, precise] level”. Again about 14 minutes [ater,
P8 makes clear that he is applying some strategies to allocate resources to different
activities during design: "... I feel I still need to think about the problem. On the other
hand, I feel a little Wt frustrated because I don't know why things havent gelled enough
yet. And 80 on the other hdnd, I'm impatient to sort of have things gelling; but on the
other hand, I feel like there's some relationship between lift requests and [loor regquests
that I feel I just havent really grasped that yet.” P8 recognizes that he should explore
the problem in greater detail before adopting a solution.

P8 combines exploration of the problem environment and issue-driven design. P8
does not seem to use as sophisticated a meta-schema about design as P8. Nevertheless,
about sixteen minutes after the beginning of the session, where he has already explored
cursorily the subproblems of posting lift requests and servicing the requests, his use of a
meta-schema based on software engineering practices is revealed by hls comment: "I'm
just putting doun the eriteria which I'm basing this algorithm on, and I want to be
sure [get the requirements that I'm trying to satiafy before I get the solution... I do not
want to fall in the trap of solutions without requirements.”

We hypothesize that the use of a meta-schema for design is particularly useful if

the designer lacks more specialized relevant design schemas. The use of a meta-schema
about design helps the designer control the amount of effort spent in different activities
during design (e.g., exploration for understanding the problem emvironment, exploration
and evaluation of different solutions).

Poor Prioritization of Issues Leading to Poor Selection from Alternative
Solutions. Tong (10) views design as a dialectic between the designer and what is
possible. Design can be conceived as the process of producing an optimized artifact given
a set of imterrelated or independent constraints, explicit or implicit, imposed by the
problem, the medium, and the designer (see also Mostow (11)). Examples of constraints
provided by each of these sources are:

» the problem
o & given (perhaps informal) functional specification
o limitations of the available media (e.g., available hardware and software)
o implicit and explicit requirements on performance and usage (e.g., cost, power,
speed, space)
o implicit and explicit requirements on the form of the artifact (e.g.,
maintainability, reliability, reusability, simplicity)
o the design process itself
o time available
o allowable costs
o tools available (e.g., type of workstation, special hardware)
o team work or individual work
o organizational procedures
the designer
¢ knowledge of the application domain
o knowledge of the class of system being design (i.e., specialized design schemas)
o knowledge or experience of the design process itself (i.e., meta-schema for
design)
o cognitive and motivational attributes.

Very good designers seem to know how to prioritize and balance these constraints on the
basis of their domain knowledge, knowledge of the type of system to be designed and
developed (i.e., design schemas), and their knowledge of the design process itsell (i.e.,
design meta-schema). Following this prioritization, they allocate their time to the various
subproblems according to their relation to these priorities. So, this third breakdown is
related to management of resources and to the meta-schema of the design process.

Part of this prioritization process is the evaluation of alternative solutions based on
a set of selected criteria as described above. These evaluation criteria are called 1ssues
and their alternatives. For example, P8's main issue is rellability and no single point of
failure. He infers this issue from his knowledge of the problem domsin and the class of
system he is designing. When dealing with the subproblem of control, and its
alternatives as centralized vs., distributed, he evaluates the two alternatives and opts for
distributed control because of its perceived greater reliability. He does likewise when
considering alternatives for communication schemes between lifts. The following exeerpt
demonstrates his evaluation of alternative solutions on the basis of the inferred issue of
no single point of failure.

P6- "The good news about central control is 1t's an easier algomthm va.

distributed control. The bad news ias you have a single point of failure... You would
rather not have a single point of failure becauase if, you know if all the elevatora go

74

doumn because it goea doun... You would not want everything to go down... Se, I'll start
off thinking about a disiributed control system you got to poat that request and then
someone's got to pick it up and mark that he's responding to ¢t. That set of worda
tmplies a centralized place Lo post the request and we're back to the single point of
Jailure, ... Well, you could broadcast a message to all the other elevators that you are
servicing number one. Seems like a simple algorithm ..."

Breakdowns Due to Cognitive Limitations

Difficulty in considering all the stated or inferred constraints in refining
a solution. This breakdown represents a failure to integrate known or assumed
constraints in the design solution. These failures occurred even though these constraints
were explicitly given in the problem statement and the problem statement was available
throughout the session to the designers.

In the example below, P3 knows the econstraints that all floors must be serviced
equally and that direction of travel must be kept. In his design he decides to keep the
elevator going in one direction until all outstanding requests in this direction are satisfied.

P3- "If there are atill requests and those requests are higher than we want to go,
then we'll keep going up... If an elevator was going up, it keeps going up until all up
requesta are satiafied ... that inasures that requeats will eventually be met, otherunae
there could just be oscillating between floor one and floor two.”

Nevertheless, later, he forgets about his solution on these constraints and evaluates
improperly his overall solution. P3 seems to believe that requests to go down while the
lift is going up are going to be serviced immediately. As a consequence, the lift would
not keep direction of travel, violating a problem constraint.

P3- "well this is interesting now, it brings up the questions of what i f an elevator
18 on ita way up to a floor to pick up somebody up there and a person snatches it at the
[loor below and wanis it to go down... it's going to be priority driven and that's nasty...”

A somewhat related breskdown is to disregard certain relevant aspects of the
problem - the "rose-colored glasses™ syndrome. In the excerpt below, P3 proposes a non-
deterministic solution to allocate floor requests to lifts. He also acknowledges that this
may jeopardize the requirement that all floors be given equal priority, thereby violating a
given constraint. He nevertheless adopts the non-deterministic solution without any more
analysis of its consequences.

P3 - "Our processor will look to see what elevators are moving up and down, Welll
do thie non-deterministically. Maybe that's dangeroua for this priority (all floors given
equal priority) but OK."

Difficulty in performing complex mental simulations with many steps or
with many test cases. Designers find it very difficult to mentally simulate their
partial or complete solutions. They find difficult to simulate the interactions between
components of the artifact. They also find difficuit to simulate the behavior of a
component if it extends over many steps. We also observed the multiple simulations of
the same test case and the failure to simulate a crucial test case during evaluative
simulations, leading to incorrect assessment of the correctness of the solution to a glven
subproblem and hindering progress on other subproblems. To help mental simulations,
designers often resorted to diagrams. However, because they were poor medium to

represent changes in location and time, they were not sufficient to prevent the
breakdowns. The following excerpts show how designers had difficulty even with the
simplest simulations.

PR - "..it'a kind of confusing, there's li fts (requests) and there's floors (requests)
and it says "all requests for floors within lifts must be serviced eventually with floors
being serviced sequentially (in the direction of travel). Apparently that means ... Let me
give a better example ... I'll have to draw a picture.”

P3 - "..the way I've written this doesnt capture the continuity of direction.
Cause thia just looks to see some other, We've happened to have reached some [loor,
this now just picks some other request. Oh, no, that's right, this tries to find a request
that's in the same direction.”

P8 - "When an interrupt happens it adds a request to my list and the structure of
requesta are floor request, a lift request, or the emergency button... Let's say the third
guy wants to go the fifth floor. Let's say there's a floor request on the. Oh, I missed
something here. Floor requeat has originating floor and direction... Could | borrow that
pencil? (to draw a picture).”

The next excerpt shows how the mental simulation of the test cases is at the

beginning quite systematic and quickly becomes unsystematic and finally incomplete as
other concerns attract the attention of the designer.

P3 - "... Given the fact that somebody in a lift has pushed a ‘go to floor’ button
(that’s a floor he wants to go to). First of all, if that lift is at that floor then I can
just delluminate the button..." Here, he digresses for about one minute. *.. On the
other hand, if he push a lift button and he's not at the floor he requested, what I'll do
18 I'll put that into this global base which means that by the deamon watching, the light
will go on. And that's all I really have to do other than examine this and decide which
way the elevators move. So I'm trying to handle the reguest right now... So really all
I'm doing ie filtering out requests that can be handled simmediately, but OK, let’s go
with that for a second.... I'll handle emergencies later.” He digresses for about 30
seconds and then changes topic drastically. He abandons the simulations of the other test
cases, those requests that cannot be handled immediately. "Ok. Now comes time to
build @ mechaniam which causes all the stuff to change.”

Breakdowns Due to Lack of Knowledge and Due to Cognitive Limitations

Difficulty in keeping track and returning to aspects of problems whose
solution refinements have been postponed. When focusing on one aspect of the
problem and postponing the solution refinement of others, the designer must be able to
remember to return to the postponed subproblems. If the designer falls to do so, the
partial solutions could be incomplete and could not be merged or expanded into a
complete solution. This problem is especially acute if the designer does not have
specialized design schemas for the given problem, since its structure acts as an aid for the
storage and retrieval of intermediate solutions. However, failing to return to a postponed
subproblem is not always detrimental. A designer may uncover a new solution or adopt
a new strategy that makes useless returning to a postponed subproblem. Nevertheless,
this is different than falling to return to a subproblem because one forgets to look at
one's mental notes or external notes or because these mental notes or external notes are
insufficient.

In the following excerpt, P8 explicitly mentions an aspect of the problem he plans
to return to. He forgets to return to it as he concentrates on the decomposition of the
problem into requests from floors and requests from lifts and on merging the partial
solutions. Note here that postponing that subproblem is appropriate because it is at a
lower level of detail than the other subproblems he is handling. However, the postponed
subproblem is crucial for the complete solution.

P8- "It seems ltke in my interrupt system I dont just want ¢ way of sequentially
handling requests. I'm really going to need to be able to scan all cutstanding requests
because of the service constraints, I think I'Nl do that next. Capture these constraints
in some way. *

Difficulty in expanding or merging partial sclutions into a complete
solution. The designers in our study had difficulties expanding their solution, from 1
lift to N lifts, or in merging their partial solutions, handling requests from lifts and
handling requests from floors. Kant and Newell (3) also observed that the merging of the
individual solutions was very difficult in the convex hull problem. Onece acceptable
solutions have been reached for some or all of the subproblems, these solutions must be
merged together or expanded to compose a solution for the complete problem. This
expansion relies on a history of the design process, and general and specialized computer
science knowledge. The expansion of partial solutions actually seems difficult for most
designers (this was also observed in Kant and Newell (3)). We hypothesize that the
expansion of or merging of partial solutions is more difficult than the decomposition of
the problem into smaller problems for three reasons:

1. Evaluative simulations for the merged or expanded solutions are more complex,
more taxing cognitively than evaluative simulations for the partial solutions to the
subproblems. This is because merged or expanded solutions are more complex,
they have more solutions components and more interactions between these
components than partial or reduced solutions.

2. Certain problem decompositions based on obvious or surface features of the
problem environment (e.g., number of lifts - solve for 1 lift and expand to N lifts)
may suggest solutions that do not reflect the structure of the original problem and
for which no simple solution expansion exists. For example, in the case of the 1-
lift problem there are no notions of coordination, communication between lifis,
and race condition, which are crucial in the N-lift problem.

3. One view of the progression from design to solution/implementation is of a process
of dispersion. When a designer breaks the problem into subproblems and refines
the solution for each subproblem into more implementation-oriented
representations, the implementation-oriented concepis blur the structure the
original problem to solve. The solutions to the subproblems are thenm more
difficult to merge because their original correspondence to each other has been
altered. This should be more acute for complex problems where the solution of
individual subproblems extends over a long period of time.

There is possibly a fourth reason. If a designer does not [follow balanced
development, the partial solutions will not be at the same level of detail and will be
difficult to merge. This could happen for example to P8 who performed serendipitous
design. However, it is difficult to precisely define when partial solutions are at the same
level of detail and can, as a consequence, be mentally simulated. Therefore, it is difficult
from the protoeol to identify whether two partial solutions could not be merged because
they were not at the same level of detail.

In the following excerpts from P8, each separate segment comes from different
times in chronological order in the session and they capture the difficulty of merging the
solution for one lift into a solution for N lifts.

*...'m basically considering what's happening for one lift. I'm imagining that
everything happens independently. That's not a good assumption to make. [guess I'm
considering thie a global list,” He then attempts to solve the scheduling of requests and
to perform evaluative simulations for IV lifts.

" .Well the fact that | have N lifts makes it kind of complicated. So I'll just try

to consider ihe case of one lifi, try to simplify it... ['m going to back up now and try to
handle this with one lift.*

RELATIONS TO OTHER STUDIES AND OTHER OF OUR
FINDINGS

We will now relate some of our brenkdowns to other of our findings or to other
studies. Adelson and Soloway (12) studied expert designers (about eight years of
professional experience) in three contexts: 1) designing an unfamiliar artifact in a
familiar domain; 2) designing an unfamiliar artifact in an unfamiliar domain; and 3)
designing a familiar artifact in a familiar domain. They also studied two novice
designers, with less than two years of experience as designers. If one were trying to
compare our designers to those of Adelson and Soloway’s study, we could tentatively
define: 1) P8, an expert designing an unfamiliar artifact in a familiar technical domain;
2) P8, an expert designing an unfamiliar artifact in an unfamiliar technieal domain; and
3) P3, an expert/novice designing an unfamiliar artifact in an unfamiliar technical
domain.

The lack of specialized design schemas seems the primary breakdown to alleviate,
The reasons are both empirical and logical. P6's design solution was considered superior
to P8's and P3's. P8 also exhibited a more balanced systematic design process than P8
and P3. P6 appeared to have more relevant specialized design schemas than P8 and P3.
These design schemas are provided by his expertize in a relevant technical domain, i.e.,
communication systems. Deslgn schemas are assumed to represent a plan to decompose &
problem into subproblems. As a consequence we believe that design schemas underly
balanced development. During balanced development, which was deseribed by Adelson
and Soloway (2), each solution component is developed at a similar level of detail to
permit mental simulations.

Design schemas are also believed to provide a cognitive structure to help store
partial solutions and their evaluations and to help remember which subproblem to focus
on next. As a consequence, they are believed to support mental note-taking. Mental
note-taking was observed by Adelson and Soloway (2) and described as a mechanism
supporting balanced development. As a consequence, a lack of specialized design schemas
will worsen another breakdown, the difficulty in keeping track and returning to
postponed subproblems. This breakdown was rarely observed in P8 but was very
frequent in P3.

The lack of relevant specialized design schemas appears to be associated with
another breakdown, difficulty in expanding a reduced solution or merging of partial
solutions. A design schema provides a plan for a well-motivated decomposition of the
problem into subproblems. The partial solutions from such decompositions can be easily
merged together to form a complete solution. When a problem is not decomposed on the

basis of a design schems, the partial solutions may be difficult to expand or merge
together. P8 had very little difficulty merging his partial solutions, while this was
particularly difficult for P8.

Finally, we believe that the use of specialized design schemas frees the designers
from reliance on weak problem-solving methods such as generate and test and means-
ends analysis. These weak problem-solving methods, especially generate-and-test, can be
very taxing cognitively. In fact, P3 had the least relevant specialized design schemas and
adopted a "generate-and-test-and-debug™ strategy. Mot surprisingly, he experienced
many difficulties with mental simulations with many steps or many test cases,

The next important breakdown is the lack of mets-schema of the design process
which leads to poor allocation of resources and time to the various activities during the
design process. We believe that relevant specialized design schemas obviate the need for
sophisticated meta-schemas about the design process. Specialized design schemas provide
for systematic decomposition of the problem and for solutions to each subproblem. The
need to carefully manage resources is less critical in this context. However, when
specialized design schemas are lacking, the need to carefully balance exploration of the
problem environment, consideration of alternative solutions, and evaluations of selected
tentative solutions is critical for the quality of the solution reached. While P8 seemed
have less specialized design schemas relevant to the problem than P6, he appeared to
have a sophisticated design meta-schema, which was lacking in P3. P8's solution was
considered better than P3's. P8's design meta-schema guided him to explore the problem
environment before focusing a testing and debugging solutions. We speculate that the
exploration of the problem environment induced serendipitous problem-solving activities,
By serendipitous design, we mean a design process controlled by recognition of partial
solutions, at different levels of detail or abstraction, without having previously
decomposed the problem into subproblems. We hypothesize that serendipity in design
arises from a form of data-driven processing as opposed to goal-directed processing, such
as described by Anderson (13). This data-driven processing can be triggered by aspects
of the problem environment at different levels of detail or abstraction. The conecept of
serendipity in design is similar to the idea of opportunistic problem-solving (Hayes-Roth
and Hayes-Roth (14)), though different in some crucial aspects, The main difference is
that in serendipitous design the partial solutions are not synergetic, they do not
necessarily Interact and they do not fulfill more goals than originally anticipated. An
important observation to make is that serendipitous design does not follow balanced
development. Moreover, P8 did not extensively exhibit mental note-taking. However, we
believe that when specialized design schemas are lacking, the presence of a design meta-
schema supporting important exploration of the problem environment is advantageous.
We speculate that exploration of the problem environment induces serendipitous design,
as opposed to balanced development. However, in the absenee of specialized design
schemas we believe serendipitous design is advantageous. In fact, serendipitous design
might be hallmark of an important type of design, designing new innovative software
systems. For such systems are not simply modifications of previously well understood
systems, they introduce genuinely new ideas. As a consequence, their design cannot rely
on computer science knowledge embodied in specialized design schemas. Moreover,
because of real-life constraints designers may often face the situation of designing systems
outside their areas of expertize, that is, for which they lack specialized design schemas.
Finally, a certain amount of exploration of the problem environment is always desirable
as it permits uncovering critical missing information in the requirements. In all these
cases, we need to develop tools and methodologies which permit designers to benefit as
much as possible from serendipitous problem-sclving, as opposed to discourage it because
it does not follow the prescriptive practices from software engineering.

While this is a preliminary study, it is very encouraging to see that similar design
processes and breakdowns have been observed in other very different fields. After the
completion of this study, we became aware of the work by Ullman, Stauffer, and
Dietterich (5) on the mechanical design process. They collected verbal protocols from
four professional engineers working on problems related to their areas of expertize. Our
designer P8 performed a great deal of serendipitous problem-solving, probably underlied
by his extensive exploration of the problem environment. Ullman, Stauffer, and
Dietterich labelled these problem solving activities opportunistic. We believe that the
name opportunistic is misleading, as synergy did not appear in the partial solutions
reached by the designers. The partial solutions did not satisfly unanticipatedly more
goals than they were originally meant to. Interestingly, Adelson and Soloway (12)
described some design behaviors which may be related to serendipitous design. The
particularly relevant observation is that the experienced designer designing a familiar
object in a familiar technical domain departed from balanced development and
gystematic expansion of his solution when dealing with the mspect of the problem that
was unfamiliar to him, the funetionality of a particular chip.

Ullman, Stauffer, and Dietterich also observed that not all designers followed
balanced development (even though all their designers were experienced). They observed
the use of diagrams to prevent breakdowns from difficulty of mental simulations, even
though diagrams were only partly successful. They also observed that designers forgets
to return to postponed subproblems. They also noticed that designers have a tendency to
elaborate mainly one main design idea throughout the design session with few
considerations of major changes to the basic design.

So, it appears that experienced designers are aware of the power of exploration of
the problem environment in uncovering new important information (i.e., as part of their
meta-schema about the design process). They use exploration of the problem
environment when dealing with unfamiliar information or when progress toward a
solution is insufficient using balanced development. This exploration of the problem
environment induces problem-solving that does not follow balanced development but is
more appropriately described as serendipitous.

Similarly, Flower and Hayes and their colleagues have observed rapid shifts between
levels of abstraction and detail in the planning and writting of documents and the use of
design schemas and of meta-schemas (15). Finally, Schoenfeld (16) has observed similar
behaviors in mathematieal problem solving.

CONCLUSIONS

While the study reported in this chapter is an exploratory study, it provides a
wealth of observations that enrich our understanding of the software design process by
individuals. Owur findings were related to previous studies of the design process by
individuals and revealed new behaviors and some important mew questions about the
design process.

Our observations of designers working on the N-lift problem show that designers
use a wide variety of design strategies, both between and within designers, in addition to
the top-down refinement approach described in software engineering. We also found that
our designers were able to work at different levels of abstraction and detall and not just
follow a balanced development strategy. We also observed serendipitous problem-solving,
not reported in previous studies of software design by individuals,. We also observed a
great emphasis on understanding and elaborating the requirements through mental

simulations. We have observed a wide wvariety of breakdowns, also not reported or
emphasized in previous studies: 1) lack of specialized design schemas; 2) lack of & meta-
schema about the design process leading to poor allocation of resources to the various
design activities; 3) poor prioritization of issues leading to poor selection of alternative
solutions; 4) difficulty in considering all the stated or inferred constraints in defining a
solution; 5) difficulty in keeping track and returning to subproblems whose solution has
been postponed; 8) difficulty in performing mental simulations with many steps or test
cases; and 7) difficulty in expanding or merging solutions from individual subproblems to
form a complete solution.

There was also overlap between our findings and the findings of other studies in
varied fields (e.g., mechanical engineering and mathematical problem-solving). This
overlap suggests that we are tapping general problem-solving strategies for design
problems., This also suggests that the tools we are designing to alleviate the breakdowns
have wider applicability than software design. This overlap also increases confidence
about the validity of the findings and their generalizability.

For each breakdown, we have recommended software tools or methodologies to
alleviate them (Guindon, Krasner, and Curtis (17)). In further studies, we will test the
effectivencas of these tools and methodologies. These further studies will be indirect tests
of the hypotheses raised in this study. In addition, they will provide empirical results on
the influence of software tools on the design process. We will also explore in greater
depth the npature of the application-specific design schemas, their role in design
performance, their role in the different expertize exhibited by our designers, their relation
to the breakdowns we have observed, and how software tools could be designed to
alleviate lack of design schemas.

REFERENCES

1. Jeffries, R., Turner, A.A., Polson, P., & Atwood, M.E. (1881). The Processes
Involved in Designing Software. In J.R. Anderson (Ed.), Cognitive Skills and
Their Acquisition. Hillsdale, N.J.: Erlbaum, 225-283.

2. Adelson, B. & Soloway, E. (1985). A Cognitive Model of Sojftware Design.
Technical Report 342, Department of Computer Science, Yale University.

3. Kant, E. & Newell, A. (1984) Problem Solving Techniques for the Design of
Algorithms. Information Processing and Management, 28(1), 87-118,.

4. Carroll, JM., Thomas, J.C., & Malhotra, A. (1979). Clinical-Experimental
Analysis of Design Problem Solving. Design Studies, 1(2), 84-02.

5. Ullman, D.G., Stauffer, L.A., Dietterich, T.G. (1987) Preliminary Results of an
Experimental Study of the Mechanical Design Process. FProceedings of the
Workshop on the Study of the Design Process. Qakland, California.

6. Jackson, M. (1083). System Development. Englewood Cliffs, N.J.: Prenctice
Hall.

7. Laird, J., Rosenbloom, P., & Newell, A. (1988). Universal Subgoaling and
Chunking. Kluwer Academic Publishers.

8. Rich, C., & Waters, R.C. (1988) Toward a Requirements Apprenctice: On the
Boundary Between Informal and Formal Specifications. M.LT. AL Memo Ne.
007.

9. Lubars, M.T., & Harandi, M.T. (1087) Knowledge-Based Software Design Using
Design Schemas.” Proceedings of the Ninth International Conference on Software
Engineering, Monterey, California., pp 253-262.

10. Tong, C. (1984). Knowledge-Based Circuit Design. Ph.D. Dissertation,
Department of Computer Science. Stanford University.

14

11. Mostow, J. (1985), Toward Better Models of the Design Process. Al Magazine,
44-57.

12. Adelson, B. & Soloway, E. (1985). The Role of Domain Experience in Software
Design. [EEE Transactiona on Software Engineering, Vol. 11, No. 11.

13. Anderson, J.R. (1083). The Architecture of Cognition. Cambridge, MA:
Harvard University Press,

14. Hayes-Roth, B, & Hayes-Roth, F. (1979), A Cognitive Model of Planning.
Cognitive Science, 3(4), 275-310.

15. Flower, L., Hayes, J.R., Carey, L., Schriver, K., Stratman, J. (1986). Detection,
Diagnosis, and the Strategies of Revision. College Composition and
Communication, Vol. 37, No. 1.

16. Schoenfeld, A.H. (1987) Mathematical Problem Solving. Academic Press,

17. Guindon, R., Krasner, H., Curtis, B. (1987). A Model of Cognitive Processes in
Software Design: An Analysis of Breakdowns in Early Design Activities by
Individuals. MCC Technical Report in preparation.

ACKNOWLEDGEMENTS

We wish to thank Glenn Bruns, Jeff Conklin, Michael Evangelist, and Colin Potts

for very insightful comments and criticisms on an earlier version of this paper.
APPENDIX
PROBLEM STATEMENT

An N-lift (N-elevator) system is to be installed in a building with M floors. The
lifts and the control mechanism are supplied by a manufacturer, The internal

mechanisms of these are assumed (given) in this problem.

DESIGN THE LOGIC TO MOVE LIFTS BETWEEN FLOORS IN THE

BUILDING ACCORDING TO THE FOLLOWING RULES:

1. Each lift has a set of buttons, 1 button for each floor. These illuminate when
pressed and cause the lift to visit the corresponding floor. The illumination is
cancelled when the corresponding Moor is visited (i.e. stopped at) by the lift.

2. Each floor has 2 buttons (except ground and top), one to request an up-lift and
one to request a down-lift. These buttons illuminate when pressed. The buttons
are cancelled when a lift visits the floor and is either traveling in the desired
direction, or visiting the floor with no requests outstanding.

In the latter case, if both floor request buttons are illuminated, only 1 should be
cancelled. The algorithm used to decide which to service first should minimize the
waiting time for both requests.

3. When a lift has no requests to service, it should remain at its final destination
with its doors closed and await further requests (or model a "holding™ floor).

4. All requests for lifts from floors must be serviced eventually, with all floors given
equal priority (can this be proved or demonstrated?).

5. All requests for floors within lifts must be serviced eventually, with floors being
serviced sequentially in the direction of travel (can this be proved or
demonstrated?).

8. Each lift has an emergency button which, when pressed causes a warning signal to
be sent to the site manager. The lift is then deemed "out of service®. Each lift
has & mechanism to cancel its "out of service™ status,

