Collaborative Software Design & Development

Coordination

Dewayne E Perry
ENS 623A
Office Hours: T/Th 10:00-11:00
perry @ ece.utexas.edu
www.ece.utexas.edu/~perry/education/382V-s08/
Coordinating Teams

- Multiple locations for teams
 - Separate floors, buildings
 - Separate locations (e.g., Oak Hill and Parmer Lane)
 - Separate states, countries, time-zones, cultures

- Increasing globalization
 - Labor costs
 - Round the clock development
 - Business needs
 - Required local offices
 - Required native employees

- Geographical and temporal separation
 - Informal, unplanned, ad hoc communications critical in supporting collaboration and teamwork
 - As size and complexity of the software system increases, the need for informal communication increases dramatically
Coordinating Teams

- Tom Allen: Managing the Flow of Technology
 - Conflicting goals that need to be met
 - The activities of the various disciplines and specialties must be coordinated to accomplish the goals of multi-disciplinary projects
 - Projects must be provided with state-of-the-art information in the technologies they rely on
 - Best accomplished though face to face communication
 - Functional organization
 - Historically oldest
 - Disciplines/specialties are grouped together
 - Appropriate where fast pace of change
 - Project organization
 - Single point of contact
 - Appropriate where duration of project is long

- Bases for coordinating geographically projects (Lucent)
 - Functional areas of expertise
 - Product structure
 - Process steps
 - Customization
Coordinating Teams

Functional areas of expertise

What: expertise localized

Benefits:
- Better load balancing
 - Smaller set, availability
- Better way to develop/enhance expertise
 - Mentoring, keeping up to date

Problems:
- Critical: assignment of responsibility
 - Feature management
- Unexpected events tend to be disruptive
 - Hard to find appropriate support

Coordination needs
- Co-location
- Accurate project plans
- Detailed development process
Coordinating Teams

Product structure

What: organize along architectural structure
- Optimal: one component at a single site
 - Need good interfaces

Benefits: independent operating environments
- Don’t need same processes, environments
- Do need standards, defined interfaces
- Don’t need extensive retraining of acquired companies/people
- Accommodates different countries, cultures

Problems
- Local unit testing works well – local expertise
- BUT system manager – spans all components – no local expertise – experts dispersed
- One feature, many components
 - Originally separate components
 - Now a unified product with coordination across components

Coordination:
- Co-location helps
- Standards and interfaces
- Defined milestones to coordinate development
 - Eg, originally 3 different project management systems
 - No milestones in common between the three
Coordinating Teams

Process Steps

What: separate steps - handoffs between steps

Benefits:
- Closer to the customer
 - Useful if market is for multiple markets
 - Deployment critical for customer satisfaction
- Better use of scarce resources
 - Eg, expensive test labs

Problems:
- Temporal dependencies - handoff delays, different priorities
- Handoff points
 - Need clear agreement - eg, 100% tests
 - Person along with release across geographical boundaries

Coordination:
- Clear, agreed to specifications for trade-offs
- Stable plans for dates
- Shared understanding of development processes
Coordinating Teams

 withStyles 1

 Customization

 What:
 - One site has the core code
 - Other sites do customization for market specific use
 - Hybrid: process steps and architecture

 Benefits: close to the customer
 - Useful for telecomm because of local requirements, standards, local repair and familiarity of local infrastructure
 - Good division of labor and code ownership
 - Need clean separation of code and customized
 - Appropriate ownership
 - Need agreed handoffs

 Problems:
 - Trust - between core and custom
 - Compatible infrastructure issues - tool version, test labs, etc
 - Coordinating processes
 - Lack of documentation

 Coordination:
 - Clean split between core and customization
 - Handoff points
 - Documentation
Coordinating Teams

General Problems

Distribution of project “mass”
- Unequal distribution
- Central site is where decisions are made
 - locus of informal conversation
 - Aware before formal decisions made
- Satellite sites, constantly surprised
 - Seems like fighting upstream instead of going with the flow
- Out of sight, out of mind
- Solution: more time in travel, communication and information gathering

Finding experts
- Lack of expertise of distant system areas
- Lack of understanding of the internals of components at remote sites
- Lack of knowledge about what happens during other processes
- Lack of knowledge of core or how core is customized
- Solution: personal networks, travel and face to face time
Project Coordination

- Model of software development projects:
 - Organization
 - Defines management and organizational structure
 - Process
 - Activities, transformations, dependencies and interactions to produce software artifacts
 - Technology
 - Defines technical aspects of the artifacts and the tools applied to them

- Our hypotheses
 - Organization is not independent of process
 - Process is not independent of technology

- Two projects considered – they have
 - executed a complete development cycle
 - well-documented post mortems of their experience
 - quantitative data about interval, quality and cost.
Project Coordination

- **Project variables**
 - Cost, quality and time interval
 - Will focus on one variable: time interval

- **Reasons for focus:**
 - Reduction in interval enables faster response to customer
 - There are always inefficiencies in established processes
 - Customer-added value versus no-added value
 - Reduced interval → reduced carrying costs

- **Analysis approach:**
 - Compare established vs case study
Project Coordination

YO Packet Feature Development
- IPBG - ISDN Packet Business Group
- CNCS - Conditional Notification & Channel Selection
- PTIS - Packet Trunk Interface Standard
- MLHG - Packet Multi-Line Hunt Group

Code size, Staff size, Faults
- IPBG 12.8 9.3 3
- CNCS 19.1 13.9 4
- PTIS 14.0 10.2 2
- MLHG 8.8 10.2 2
- total 54.6 39.8 12

Challenge:
- Reduce development interval from 16 to 12 months
- Product quality goal: .23 faults/KNCSL
Project Coordination

Standard Development

- many formal handoffs
- quantized monthly intervals

Milestones and times

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Milestone Description</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q10</td>
<td>FSD Complete</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>Requirements DS</td>
<td>3 months</td>
</tr>
<tr>
<td>Q8</td>
<td>Design DS</td>
<td>3</td>
</tr>
<tr>
<td>Q7</td>
<td>DU DS, Coding, DU Test</td>
<td>4-6</td>
</tr>
<tr>
<td>Q6</td>
<td>Capability Test Pass</td>
<td>2-3</td>
</tr>
<tr>
<td>Q5</td>
<td>Fit Test Pass</td>
<td>3</td>
</tr>
<tr>
<td>Q2</td>
<td>SV/FOA Complete</td>
<td>4-5</td>
</tr>
</tbody>
</table>
Project Coordination

YO Development

- Alters two factors
 - The many formal handoffs
 - Quantized monthly intervals

Solution

- Change from functional organization to interdisciplinary team
- Team empowered to make technical decisions

Results

- Minimized the number of formal reviews → interval reduced
- Exploited characteristics of problem → less fault insertion
 - Eg, same expert designed all the difficult fault recovery scenarios
Project Coordination

FNMS-R3 Development

- Enhanced release of ~45KNCSL in C++
- On a base of 140KNCSL
- 25 people
- 3 major features and number of minor ones
- Previous release took 16 months
 - Too unresponsive to customer needs
 - Too unstable in the field

Goal:

- Shrink overall cycle time
- Improve overall quality by removing defects early
- Decouple features from each other
 - So high priority could be delivered as early as possible
Project Coordination

Standard Development

- No formal process in place for the development of features
- Schedule-driven - ie, management plan
- Incremental development -
 - 5 major releases planned
 - But much higher due to fixing problems
- System cutover 2 months late
Project Coordination

FNMS-R3 Development

- Altered
 - Added standard quality gate techniques
 - Design reviews
 - Code inspections
 - Decoupled features that could be developed in parallel
 - Functional \rightarrow\ interdisciplinary team organization
 - Empowered teams to be responsible for their feature and feature specification
 - Within individual developments, as much in parallel as possible

- Results
 - Reduced cycle time – 25% to 12 months
 - Short features implemented and delivered very quickly
 - Defects removed earlier with very few problems
 - Increased effectiveness of development process
Project Coordination

Observations and conclusions

- Both projects displayed the same strong trends
 - Even tho in different parts of the business
 - Even tho in different kinds of software development
- Both had strongly empowered teams
- Both did what they said they were doing