
How free software developers work
The mobilization of “distant communities”

Didier DEMAZIERE (CNRS, laboratoire Printemps, UVSQ)
François HORN (CLERSE, IFRESI)

Nicolas JULLIEN (MARSOUIN)

Free software are programs distributed with their source code (the text of the program written
in a programming language that is comprehensible for humans) and with the authorization to
modify and redistribute them freely, which differentiates them radically from private or
“proprietary” software.

Their development is based on the participation of volunteers within a cooperative
organization that relies a great deal on the organizational facilities provided by the Internet.

This configuration leads to questions on the characteristics of the collective action that
enables the transition from individual voluntary commitments that are potentially volatile and
unstable to the completion of a collective production that involves continuity and
sustainability. The production of free software cannot be considered the contingent result of a
spontaneous convergence of individual, independent commitments. It presupposes certain
forms of motivation for the participants to work, who are in turn capable of ensuring a certain
continuity in their commitments and of coordinating the organization of their contributions.
Because even if a software program is a text, it is an “active” text that works insofar as it is
made up of a list of instructions that are automatically executed by a machine, which requires
an extremely strong coherency of the different parts of the text (Horn, 2004).

Empirical preliminary observations show that developers have a wide range of statuses
(students, employees of research centers or private companies engaged in activities related to
free software or not at all…) This infers heterogeneous links between the activity of
developing free software and salaried work. The former can take place outside of working
(salaried) hours, exclusively or not, but it can also take place during working (salaried) hours
and thus can be, according to the case, hidden, tolerated, unofficial, official, required,
recognized or valued. The development of free software takes place within plural legal and
temporal systems.

These heterogeneous figures extend well beyond the scope of volunteer work and they
indicate also another stake in this productive activity: the cooperation between contributors
without which it would be impossible to develop a useable product. Yet, in general, these
contributors are not enrolled in the same organization, are dispersed, have computer-mediated
relationships via the Internet, and are not linked by the lines of an organization chart
(Gensollen, 2004)

The absence of direct, codified and prescribed interaction between the producers is
counterbalanced by sharing the sense of belonging to a specific group with a strong identity.
At least this is how we can interpret the repeated references to “free communities” on the part
of contributors. This indigenous terminology does not reveal its true meaning immediately,

1

but it provides a clue to understanding the way the collective activity is carried out in the
absence of organizational levers that usually make up the framework of work activities and
the participants at work.

The work of free software developers is therefore both an individual activity carried out in
extremely heterogeneous conditions and a collective action with original production methods.
We propose to analyze this work starting with the paradoxical notion of a “distant
community”, that aims to illustrate the tension between, on the one hand, the strength of the
sense of belonging to a specific world identifiable in the discourse of the participants and, on
the other hand, the distances that separate the contributors in terms of relationships, status,
and background. In doing this the aim is to produce a description, necessarily plural, of the
different forms of “distant communities” that enables the production of goods in unique social
and organizational conditions. More generally speaking, this notion points to methods of
coordination that combine two forms of collective action that are usually contrary and
antagonistic: a communitarian form based on the subjective feeling of belonging to the same
community and a form of partnership based on the coordination of common interests and
sharing of objectives (Tönnies, 1887, Weber, 1921).

At first, we will examine the ways the individual participants organize themselves in order to
contribute to a project and we will focus on the forms of cooperation and coordination used to
deal with the constraints of efficiency and quality associated with the distribution of a
product. Secondly, we will look at the other side of the coin and examine the ways individual
participants take action and we will underline the mechanisms of commitment and
participation that account for their contribution to the production of free software. These two
dimensions, that in our opinion are inseparable, are explored through a survey carried out with
free software developers1.

I.A collective project: organizing production from a distance

The production of free software is often carried out according to a plan where one person
alone writes the entire program which is obviously limited in size. Even in this case, the
updates, the correction of bugs, and the further developments can be socialized. And for more
ambitious projects, which is the case of most well-known free software, the cooperation of
several developers who write fragments of the program is required. Rules must be defined and
decision-making bodies must be set up to organize the interfaces, distribute the work,
combine the contributions, and edit the final product. Producers of private software distribute
work according to organization charts and give assignments to a hierarchy that monitors the
execution of tasks and coordinates the work of the developers. “Free” production has been
analyzed as being founded on a “set of customs of cooperation that are the opposite of
management by coercion” (Raymond 1998), or on strategies of free cooperation based on
“give and take” (Printz 1998). These organizational forms that are barely hierarchical and
hardly formalized are like the “model of a bazaar” compared to the “model of a cathedral”
(Raymond, 1998) and reflect an emerging, more general, model referred to as “distributed
knowledge” (Thévenot, 1997).

1 In this respect our study is quite different from previous studies of the “motivations” of developers based on
questionnaires (FLOSS, 2002). If we lose statistical width we gain in details of the process of participation of
developers by linking them with the operating rules of the groups and projects within which they are applied.

2

Before examining the workings of real collectives oriented towards the production of specific
software, we will describe several transversal properties that structure and organize the work
of free software developers.

A.Linking isolated workers and coordinating individual production

Contributing to a free software program is essentially a highly individual activity, as Ernest2, a
Debian (Linux distribution) developer points out: “it remains a solitary job; Debian is 1,000
people working alone who make up a whole”. In the same way, Linus Torvalds, the initiator
of the Linux project, considers that “free software is made by craftsmen who are passionate
about their art”.

But in order for these different contributions to make up a software program, it is vital that
collaboration be organized due to the properties of the product.

The aggregation of individual production in a collective significant and useful collective
product is possible due to a series of organizing mechanisms of the production that, while
they are different from institutional, coded or legal regulations, are efficient nonetheless.

The first mechanism is founded on a rigorous modular structure of the software that enables
the creation of bits and pieces, and composition through assembling the fragments written
independently by different people. This open and modular architecture is necessary because of
the absence of a hierarchy with the power to channel and guide the work and contributions of
the developers. Designed to facilitate cooperation between participants, it is also unanimously
considered as a decisive factor for the quality of the software, but is rarely respected by
commercial companies (Jullien, 2001). Moreover it allows for “the bulk of the architecture,
implementation and creation phases of a software program to be carried out at the same time”
(Brooks, 1996)

The second mechanism is founded on two characteristics of the software: the complexity of
this technological object which means that a system composed of many developers working
on the same program for a long period of time remains a phase of increasing efficiency and
secondly the intangible character of software that allows it to circulate rapidly at practically
no cost and which explains that all users can benefit from improvements without additional
investments. The development of programs in the form of free software “engenders gigantic
effects of learning by doing, i.e. taking full advantage of a fantastic distributed intelligence:
millions of users that find problems and thousands of programmers who find how to get rid of
them” (Foray, Zimmermann, 2001). In particular, this method of development is particularly
efficient in eliminating errors, a task that constitutes a large part of the work involved in the
creation of a software program. This is different from proprietary software that is more often
than not revised by people very close to the authors and who make the same mistakes. A free
software program can be examined by people who use a wide range of methods and tools
which means that “each problem will be rapidly isolated and the solution will be obvious to
someone” (Raymond, 1998).

The third mechanism consists in the verification of individual production. The setting up of
one (or more) authoritative bodies that control and arbitrate between different contributions
and select developments that are validated for integration in the software program is

2 The names refer to the free software developers we have interviewed. They have been modified to protect the
privacy of the people we have met.

3

systematic in all the projects. The way they are established and the way they operate can
differ, but their existence is proof of a formal and explicit organization. Thus Bernard
describes a world that is “very, very structured. And then there is competition. Several people
can propose different modules to solve a particular problem, and it is this group of decision-
makers that for one or another component in the software is going to compare them and say:
we’ll select this one and not the other. Therefore competition is open in intellectual terms, if I
might say so, and after there is really a selection”. Individual production is not prescribed or
ordered by a decision-making body but it is always evaluated and validated or rejected. We
must however underline the fact that in this form of organization that is strongly horizontal
even if it is not a totally flat network, the decision-making bodies have a unique technical
legitimacy based on competence recognized by other developers and do not have any
economic power over them. The absence of private appropriation of the software produced
provides the possibility for a group of developers who are unhappy with the decisions made to
develop an alternative project based on the existing software program (Himanen, 2001).

The fourth mechanism is identification of the work of each contributor: the lines of code are
signed by their authors. The name of the developer is written near the parts of the source code
on which he has worked and also in most free software programs there is a file entitled
“credits” that lists the principal contributors to the software program and their participation. In
a free software program the part that was done by each developer is publicly exposed which
enables everyone to judge its quality. This point is very important because the qualities of a
software program are not directly perceived through its use in that it is in fact a product in a
system that interacts with other software programs and hardware components. In a free
software program “the availability of the source code involves the programmer’s sense of
pride because he knows that he is going to be judged by his peers. And for a computer
programmer there are few personal satisfactions greater than having contributed to writing a
program that is appreciated, used, taken up and improved over 10 years by thousands of
programmers and millions of users because of its inherent qualities” (Di Cosmo, Nora, 1998)

These last two mechanisms allow for a fifth one: competition which influences the relation
between contributors. Each developer can judge the quality of his work and his recognition:
the selection of his proposal to contribute to a program, the choice of his suggestion for a
correction, the integration of his program in a distribution, the number of times his software
program is downloaded. Raymond (1998) insists on “the prospect of auto gratification by
taking part in the action and being rewarded by constantly seeing (even on a daily basis)
improvements of their work”. The visibility of contributors creates competition and “a
situation where the only possible evaluation of success in this competition is the reputation
that each person earns with his peers (…) The participants compete for prestige by
contributing time, energy, and creativity” (Raymond, 2000). Taking into account the
heterogeneity of the legal and temporal systems within which the developers evolve, it is not
certain that this competition leads always to an intensification of commitment and to an
increase in time and energy spent by each participant. But at least it contributes to regulating
access to and the maintenance of this work and helps produce quality. In a way, the free
software program model is organized according to the same principles as scientific research:
free circulation of information that is criticized publicly, verification by peers, proposals for
alternative solutions, and fierce competition between teams (Lang, 1999).

These regulatory mechanisms ensure that isolated or distant participants come together around
collective projects. But they differ according to the project and thus configure differentiated
organizational modes that we are now going to explore.

4

B.Different organizational systems, different social groups

Free software programs form a heterogeneous collection which has consequences on the
methods used to produce them: the number and characteristics of the contributors, the
organization of cooperation, the role and interest given to potential users. Thus, the general
mechanisms identified earlier find special adaptations in each project. The way that tasks are
distributed, the quality of programs is evaluated, errors are detected and corrected, and
contributors are recruited corresponds each time to specific configurations. And each
configuration can be considered as an attempt to build efficient cooperation and beyond that a
minimal group solidarity between “distant” workers.

Certain characteristics reveal the organizational diversity of what we have decided to call
“distant communities”: the size of the circle of principal contributors (which can moreover
vary a great deal as the project evolves), but also the size of the other circles (secondary
contributors who propose minor corrections, users who report errors); the characteristics of
the initiators of the project, who can be individuals or public and private institutions of
various sizes; the properties of the links that unite them, that can be limited to participation in
the project or have been established before (network of alumni or colleagues in a particular
field of study, a consortium of companies that have other objectives, etc.); the nature of the
objectives and perspectives that reunite them and that can oscillate between multiple
components that are not exhaustive (taking up a technical challenge, developing a market
niche, defending certain values, etc.); the origins and the circumstances behind the project
launch (improving particular functionalities, reviving a dormant project, planning ambitious
objectives, etc.) We can only present here the elements of a few cases that are sufficient to
suggest the range of organizational modes.

A frequently encountered case, in particular for small projects, is characterized by a hermetic
and set hierarchy that is confined to the monopolization of the decision-making process by
one person. Its workings are designed to delimit and maintain distance, not only in space but
also socially, between the decision-maker and the contributors. This configuration is always
founded on a singular story, that of an individual who writes a software program and proposes
it to a file server. His product then is in contact with many users, who in certain cases can be
very numerous, and some of whom do not fail to propose corrections, extensions or
developments. But the initiator of the program tries to maintain the monopoly on the
validation of further developments, and in some ways to relegate the other developers to
secondary contributions (reporting errors, peripheral functions of the initial module).

As long as the contributions remain limited and occasional, the boundary remains clearly
defined between occasional contributors and the initiator who is the guarantor of the product.
The latter can thus reinforce his legitimacy and his recognition and maintain the monopoly,
resulting from his initial personal initiative, concerning the free software program he created.
The multiplication of the number of users and contributors, which is an indication of the
growing success of the software, does not necessarily modify this organization because the
initiator can form a small team by associating certain developers who are more regular or
more significant contributors who will then control the contributions but also manage the
contributors. An example that is close to this system can be found in the typographic
composition software called Tex, created and controlled by Donald E. Knuth since 1978.

Another system corresponds to projects launched and piloted, at least during the initial stage,
by a group characterized by personal relations between people that share common
experiences or similar backgrounds. This social and/or spatial proximity of the initiators is

5

often associated with a specific form of organization the basis of which is the image they have
of themselves as IT professionals. This self-image is all the more solid in that the
development activities are carried out in a professional environment. It then becomes highly
effective and structuring in terms of the sense of belonging to a group and the definition of
standards for the quality of the products. This preoccupation with the product introduces a
pronounced differentiation between developers and users who are considered in some ways as
the profane. This borderline is both distinct and permeable since the group of developers is
not closed: outsiders who propose contributions that prove their technical competence can
enter after cooptation, often confirmed by a vote by members of the group. The latter organize
among themselves the distribution of the work, specialization in certain tasks, and definition
of responsibilities for certain modules of the software program. One illustration of this is
Apache software which is developed within the context of their professional activities by a
group of computer programmers, systems administrators and software users of the Web server
of the NCSA that was formed when the latter announced that it was dropping the product and
stopping maintenance.

The efficiency of this type of organization has given rise to efforts to reproduce it with a core
of initiators that is not made up of individuals but various institutions (companies, research
centers…).These consortiums, the foundation of which can be encouraged by the government,
group together partners who know each other through previous relations. The organization of
developments is even more structured than in the case of a group of individuals. Here again
the borderline is very clear between users and core developers, but the success of the first
developments can lead to recruitment within the consortium of new partners which serves to
amplify the project and reinforce its credibility. We can cite the example of the consortium
ObjectWeb (a middleware platform), established by large French companies and research
centers that has expanded recently to include American, German and Japanese companies.

A third form is organization around a central institution (a private or public company, a
research lab), that initiates the project, allocates capital (in the form of salaried work),
manages its development, and is in some ways the symbolic proprietor. However, the project
does not remain confined within the framework of the institution and the circle of its
employees as the principle of producing free software is to provide the source code of the
program and therefore the possibility for any user to make his personal contribution. The
choice of developing free software corresponds moreover to the desire of the institution that
initiates the project to benefit from outside contributions. The institution that undertakes the
project maintains, however, a central role in relation to the different circles of developers. It
exerts direct and permanent control over the principal developers who are paid employees and
linked by contract to the institution and organizes their activities.

As far as secondary contributions by users are concerned, they are examined and evaluated
according to formal procedures. Generally, the participation of outside contributors takes
place via websites and mailing lists devoted to the software program and can be structured by
holding conferences. The evolutions of the software are thus all the more controlled in that
outside contributors who are particularly productive and recognized by the decision-making
body of core developers can eventually be recruited by the institution responsible for the
software. Groups are therefore clearly segmented and the relations between core members are
encysted within a professional relationship.

6

There are many examples of similar types of organization: research centers (the INRIA with
the Scilab project), universities (University of Paris VII and Alliance software), companies
(Zope software developed by an American company of the same name, CPS software
developed by Nuxeo in France). Sometimes a company that edits a private software program
decides to transform it into free software (Open CASCADE for Matra Datavision,
Code_Aster for EDF).

Finally there is the case of larger, more widespread and heterogeneous groups that have
modified their organizational rules as the group has grown in size to include members that are
dispersed geographically and have no links due to social interaction. These groups of
developers can include several hundred members which can create specific problems in
regulating production and inevitably problems preserving the very identity of the group.

The initiators, who form the core, participate, in varying degrees, in the same social networks
formed notably during school, but when the group expands this community based on common
experience disappears and the social cohesion of the group is threatened. The growth of the
group is both the result of the success of a product that interests many users, including
developers, and the sign of a strategy of openness on the part of the founders. In this case, the
longevity of the group and of the project is ensured by entry barriers in such a way that we
can witness a paradox: the groups that seem the most open, i.e. the largest ones, are also the
most exclusive i.e. the most selective. Recruitment is based on cooptation which ensures that
all the members share the same technical competencies and values, as if this proximity of
dispositions compensated for the distance between the positions occupied.

The fact remains that this improbable equation between the expansion of the group and
selectivity for new members implies that the software produced is particularly attractive and
creates more interest than usual. Moreover, these membership barriers help maintain less
division of labor in the group and a sort of equality of situation or status so that any member
can take charge of the organization of a given module.

The Debian project can be considered an example of this case (Auray, 2004, Conein, 2004). It
has over one thousand members that all have the status of “developer-maintainer” with no
hierarchy (a “project leader” elected once a year represents the project with outside partners
but has no internal functions). Only individuals, excluding all institutions, can belong to
Debian and membership applications are very numerous. Therefore a long and formal
procedure has been set up that has several phases. Sponsorship by a member of the group, a
technical aptitude test, and a test of the candidate’s knowledge of Debian’s philosophy
guarantee that all the members share the same set of values concerning free software.

These examples show that the solutions adopted to organize distant production are highly
diversified and reflect the constraints inherent in the projects developed, prolong the dynamics
of the project launch and express the orientations of the initiators. The underlying issue of
these various organizational modes is constant: creating a group made up of separate and
distant individuals. To continue our exploration of this phenomenon it is necessary to
understand what leads individuals to participate in this production.

II.The process of individual commitment

Most economic studies on the participation in the production of free software reckon that
commitment is based on “classic” economic incentives, through financial valorization later on

7

of the competencies of contributors to relatively successful free software programs: getting an
interesting job, having privileged access to financial resources. This argument is based on the
fact that a system which identifies precisely the contribution of each person to a free software
program allows a developer to build a reputation that works as a powerful signal of
competencies that are difficult to evaluate directly (Foray, Zimmermann, 2001, Lerner, Tirole,
2002). Our empirical investigations highlight processes of involvement that are more complex
(cf. also Corsani, Lazzarato, 2004) and tend to confirm what Raymond wrote (2000): certainly
“ sometimes the reputation acquired (…) can spread in the real world and have significant
financial repercussions [through] access to a more interesting job offer, to a consulting
contract, or by attracting the interest of an editor” but “this type of side effect is rare and
marginal (…) which is insufficient as a convincing explanation”.

We have mostly met computer programmers for whom the commitment to free software had
neutral, even negative consequences, from a material point of view. An extreme case is that of
Ernest, a young computer programmer who left a consulting job paid 400 € a day to join a
SSLL (Société de Services en Logiciels Libres, free software company) where he could spend
all his time developing free software…for 1200 € a month. Of course it could be argued that
his investment will be profitable later, but it seems that even when there are opportunities for
financial rewards they are not systematically snatched up as we can see from the experience
of Richard, manager of one of the first free software companies during the boom of the
dotcom economy: “Imagine that in those days, like all the other free software companies, we
didn’t draw a salary at all or we allowed ourselves the minimum wage. We had companies
like BNP and AXA come to us and say: you’re a free software company. Would you like
to…? So we said no. But we did hesitate a bit; there was a way for me, because I held 49% of
the shares, to get several hundred thousand francs. And then the Americans VA Linux and
Linux Care came to see us! And it was difficult to resist their siren’s song. We held out only
because we wanted to create a different kind of company”.

Above all the validity of the hypothesis of motivation through financial incentives is founded
on the premise of a contribution based on a calculated choice, anticipating the long term
effects on a career. Yet, what our interviews show is that it is a more progressive
commitment, sustained by a growing familiarity with programming activity and the “social
world” of developers (Strauss, 1978) and accentuated by memorable experiences through
which computer programmers build a sense of participation and interaction with other free
software developers. If the individuals have their own, individualized production, this is a link
in the chain of cooperation that, of course, organizes the specific technical know-how, but
above all is personified in work habits, categories of perception, universes of discourse
(Becker, 1988). Then, commitment to the development of free software is intelligible as a
career choice.

A.The career of a free software developer

The interviews reveal several salient characteristics of a free software developer’s work. It is
organized in sequences that correspond to a succession of positions in the corresponding
social world. Mobility from one position to another is the product of the encounter between
personal motivations and integrating social environments. Career advancement corresponds to
behavior that becomes stable and public and a reinforcement of the links of cooperation
(Becker, 1963). Career progress does not only mean enrichment of technical competencies,
but also the accumulation of social competencies involving ways of seeing and doing things,
and codes that belong to each social world (Hughes, 1958). We have tried to identify the
successive sequences that correspond to different modifications: in the behavior and activities

8

of the individual, in the perspectives and meanings he attributes to his activity, and in the
interactions and relations established with other developers.

Accessing the source code: increasing technical competence.

Development of free software concerns only those that are “passionate about IT” and who
describe themselves as such i.e. people that not only have highly specialized and esoteric
knowledge acquired through intensive use of IT tools and almost always a college degree in
IT, but who also have a keen interest in programming. This frequently leads to the desire to
access the source code of a given software program to correct the errors or make adaptations
that were not planned for certain specific situations. A typical case is that of Stallman, the
“inventor” of free software in response to a printer that kept jamming. He couldn’t modify the
software that was driving the printer in order to solve the problem.

A complementary source of motivation is the desire to understand how a software program
works in order to learn programming. Thus Pascal explains: “the awareness of the importance
of the phenomenon, of the importance of licenses, etc.., did not happen right away. That is to
say, at first what interested me was only to have access, to be able to do things with it. I
wasn’t concerned at the time with cooperative development […] We had a systems
programming course and I asked the teacher if by chance we could have the source codes of
the Unix shell to see how it was made”. On the same note Ernest told us: “when I started
university, I said to myself: hey, at the university we’re going to have to use Unix, so why not
see for myself beforehand how it works. And then there was Linux, which is like Unix, which
is free software that I should be able to install on my computer”. Symmetrically, for many
teachers learning computer programming requires being able to show how the programs are
constructed.

Examining the source code of a software program seems normal to most computer
programmers. But it is impossible in the case of private software. For this reason, computer
programmers turn to free software in order to satisfy their needs or their curiosity. This initial
phase of acculturation to free software is often encouraged by attending certain institutions,
notably universities, which are historically favorable to free software. Even if this happens in
an organized social context, it nevertheless is a response at this stage to a personal and often
occasional need and it is disconnected from learning the significance associated with free
software programs and from knowledge of how they are produced.

Producing a contribution and distributing it gradually

It remains that this acculturation takes place collectively, even if the geometry of the groups
involved is limited to students enrolled in the same program of studies and their teachers.
Some of the members of these groups, who often are only familiar with one particular free
software program, are going to play a more active role. This process is in general very
progressive. It usually starts by visiting the website of the software in order to follow its
evolution and then is extended to participation in mailing lists which is often indispensable
because of the initial difficulties involved in using free software. This participation, which
consists at first of sending questions and can lead to proposals of answers to questions written
by other users, enables the development of distant interactions outside the initial circle of
colleagues and friends. The first contributions are often secondary: reporting bugs,
translations and improving documentation…

9

These sporadic contributions and shared experiences enable the integration of a group and
familiarization with its discourse which gives meaning to the actions carried out and can give
rise to the desire for those who are competent to deepen their participation by proposing
corrections and writing more important modules. The distribution of these first contributions
is done gradually, by reaching larger and larger circles as the value of the production is
recognized. The first recipients are the closest peers, then more distant colleagues but whom
the contributor still knows personally, and then distant peers accessible through the website.
This gradual distribution is a sort of initiation process combining a probationary period for the
novice and validation of his production. Paul describes his experience of commitment to
typography software: “Little by little, I became interested. There were things that I found,
notably as a Frenchman, that didn’t work the way I wanted them to, on a typographical level.
So, I started to develop things and then to talk to colleagues I knew. It’s not public; it’s
exchanging between people who know each other, let’s say on an interpersonal level. And
after, you submit that on public servers and it’s recuperated by people that you don’t
necessarily know. But that’s a second phase. That’s not when you start. Well, obviously, the
first stuff you do, it’s like painters, you don’t paint the Mona Lisa right away. So, you don’t
want to submit stuff that is going to be criticized by more competent people. I think that it’s
after a while that you say: Hey, that might be worth it. Finally, it’s usually colleagues who
say: You should submit that, really…”

In the first phases of a developer’s career there is therefore a control mechanism through local
networks of the quality of his production. When this is made public and available for all users,
the person who produced it becomes a bona fide contributor because he has managed to
participate in the reciprocal and social mechanisms of the products that are the basis of free
software. He then assimilates the significance and the implications of his behavior. This
evolution is enabled by the nature and organization of free software since the improvements
that are proposed and accepted can benefit directly all users, the modified software can be
used directly at no additional cost.

But beyond the technical conditions, it is truly a gradual and socially regulated process that
allows an individual to attain the status of free software contributor. It then seems only natural
to allow others to benefit from one’s personal contribution when one has benefited from the
work of other developers. Paul explains: “I started using it, I think like most other free
software users. It’s a thing that’s available free…Plus its nice because it’s not the fact that it’s
free but that it’s open, that is to say, if their aren’t exactly the functionalities you want in the
software you can add them, modify them, so obviously it seems normal to share with the
community of…If you have added something that can be useful for others, it seems normal
that…You add it to the common pot, it’s obvious”.

 Joining different groups and becoming a recognized professional

The final step of the process, followed by a minority of contributors, consists in becoming
what could be called a free software “professional”, i.e. someone who collaborates on free
software projects during working hours, whether he is specifically in charge of this task,
exclusively or not, or whether he manages to devote, more or less officially, a significant
number of working hours to this activity. For this reason the free software “professionals”
have a greater time commitment (in terms of length and stability) and make up the “core” of
the communities that ensures the regulatory, organizational and structural functions described
earlier.

1

This situation implies occupying a professional position compatible with a continuous and
stable commitment to this collective activity. Working in these jobs can result in the gradual
transformation of an existing job description enabling the developer to devote a growing share
of his time to working on free software or the search for a new job that is in keeping with his
participation in free software, sometimes after a period on substantial unemployment benefits.
In the commercial world it can be the choice to work for a free software service provider, the
creation of such a company, or more recently a job devoted entirely or partially to free
software in a “traditional” IT company.

This professionalization is not only the institutionalization or the recognition of technical
competencies. It corresponds to the acquisition of shared symbolic references and the
adoption of specific values and beliefs that are the characteristics of this social world. This
commitment to the development of free software is remunerated, but it is also often a
commitment in favor of free software. There are thus strong beliefs that motivate a quasi-
professional commitment in favor of free software, as expressed, for example, by Alain who,
after having worked for a large IT company joined a free software firm and currently holds a
job in a university where he devotes most of his time to free software: “let’s say that for
someone who has a technical profile, free software is great because if allows you to have
control in society. You can have a political role; you can try to change the world by doing
something in your field of competency. Belonging to a free software association, doing free
software, is a concrete way of changing things and to say to yourself that you’re not wasting
your life, you know. So that’s what makes me tick. I think it’s the main motor for a lot of
people”.

On the other hand, the heterogeneity of the positions held by free software professionals
suggests a differentiation in their backgrounds, their work and the significance that they
attribute to their jobs. This is the point that we are going to examine now.

B.Contrasting reasons for commitment

Free software developers have above all been studied in terms of the diversity of their
ideological motivations. Blondeau and Latrive (2000) reckon that they form an “improbable
coalition” made up of “neoliberals, libertarians, Third-Worldists, and proto-Marxists”. The
main thing they have in common seems to be the will to defend the freedom of software users
and to thus promote specific individual and collective uses: “the freedom to use the program
whatever the usage; the freedom to study the functioning of the program and adapt it to your
needs; the freedom to redistribute copies and therefore to help your neighbor; the freedom to
improve the program and share the improvements with the public, so that the entire
community benefits from them” (Stallman, 1998). These different ideological currents
converge in the battle against monopolies, the biggest one being Microsoft. In France, this
type of justification can be found in the existence of several associations that promote free
software (APRIL, AFUL, FSF…), in the vivacity of exchanges (not only technical) that
circulate on their mailing lists and between these associations as well as the many events that
attract large audiences where both technical objects are presented (free software) and lively
debates are held.

Thus the social world of free software is not uniform and career paths can be very different.
We are going to explore this diversity of backgrounds and the meanings that are associated
with them using material from four interviews with professionals selected for the contrasting

1

points of view they present, the positions occupied, the activities carried out, the values
championed, the beliefs defended and the network of membership.

A selfless activity akin to public research

Paul is a university mathematician. His first contact with free software resulted from his need
for a typographic software program that could enable him to edit mathematical characters.
However, as early as 1978, an American academic named Knuth had developed Tex over
which he maintained complete control but around which numerous software programs were
created, the most well-known being LaTex. LaTex is a free software program controlled by a
small but changing team (mostly American in the beginning, its members are now exclusively
European) and made up of academics and computer programmers working for scientific
editors.

Paul, who was seduced by certain functionalities of this English language software, carried
out some small developments to adapt it to the specificities of French typography and
published them gradually. This is how he got in contact with the person in charge of the
multilingual interface of LaTex with whom he collaborated closely. Progressively, Paul found
himself taking care of gallicization modules and then developing other modules. This activity
takes up more and more of his time in addition to involvement and responsibilities in
Gutenberg, an association of French-speaking users of Tex.

His contribution to LaTex is closely linked to his job: “Was it during my working hours or my
leisure time, it’s impossible to say. But after all, even if it is during my working hours, if it’s
useful for the community it is no more useless than ideas I can have about math. I don’t think
that I have cheated on the state if I did it during work. And on the other hand, if I did it during
my free time, since I had fun doing it, and in return I benefited from all the work the others
have done on a volunteer basis, I think that I haven’t been cheated”. This interpenetration,
even confusion, between work and free time has two different meanings that also converge.
On the one hand, the software activity is an intellectual activity that should be part of “public
domain”, “exactly like research for the state that pays academics or others to develop free
software”. On the other hand his work as a LaTex developer provides him with satisfaction
and quasi-professional recognition that he defines as more “rewarding” than research in
mathematics: “In a way, I find it more rewarding to develop something that people use that to
write a theorem that no one will use or maybe 30 years after I die. I enjoy it and its true that
sometimes people tell me: Ah! You’re the one that did that? I use it, I’m happy to see what
you’re like”.

Paul therefore defends a model of development and publication of free software that he
qualifies as “user-friendly” and efficient because it enables the production of better quality
software. He also compares it very clearly against the market economy which according to
him should not include the production and distribution of software because he sees the
possibility of creating “different relationships between people. People come to see me and
they buy nothing. I can help them and someone else will help me. You can call it a barter
economy; you can say what you want, but it’s still much friendlier”. His opinions are shared
by all the members of the community of LaTex users. Therefore he was violently opposed to
one of the people in charge of Gutenberg that wanted to commercialize a gallicization
extension for LaTex, an act which Paul considers as “betrayal of the spirit in which we all
work”. He personifies the categorical rejection of the software market and the refusal to use
proprietary software and wryly refers to himself as “sectarian”: “I don’t want anything to do
with it. Including the machines that I administer at the university. If you want to use

1

Windows, you can have somebody administer it, but not me. It’s against my principles. I am
for free software and therefore in my place there is free software. If you need something else,
go see someone else. So, I do have a sectarian side, I admit it”.

An alternative activity transposed, in the business world

Richard was passionate about computer programming at an early age. After university studies
in IT and jobs as a traditional computer programmer in several large companies he created his
own company in 1993 and developed “totally proprietary” software used to transfer
information from Newton PDAs to company file servers. At the same time he followed the
development of Linux (he was an Apple developer and “bought a PC just to see what it was”).

The event that was going to make him switch definitively to free software was the decision by
Apple to discontinue Newton in the beginning of 1998 which forced his company to shut
down: “that day I said to myself: I’m never working on proprietary software again”. He
decided to redirect his business and create one of the first companies in France (and one of the
only ones that is still independent) devoted to systems administration and specific
developments based on free software.

Since Richard managed the company he had little time for development. However, he
continued to develop in his free time a software program for electronic voting and
collaborative publication for the internal needs of the company. The project that he started
“for fun” grew bigger and he soon spent all his time on it, living on unemployment benefits
after leaving the company after a drop in business. A first version as free software was
published and Richard created a new company that commercializes services related to this
software program.

Even if Richard works in the business world, he claims to be part of an alternative production
model. Moreover, he freely evokes his past as a militant for the far left and considers free
software as a “political stake”: “It’s still the first resource, the first product that is not on the
way to being privatized but on the way to being socialized. We are privatizing water, soon air
when it will be polluted. Well, here is a thing that’s being created, and we say: look, this
belongs to society”. His political convictions are closely associated with his professional life,
as if they were being carried out, transposed, and realized. Thus the two companies belong to
the employees and the salaries are uniform. Furthermore, he has promoted the setting up of a
network of companies related to free software that have identical values and that pool “all the
information, whether in accounting, finance, economy, customers”. This sharing of
information claims to be a transposition of the organizational system of free software to the
world of business. Because just as Richard is convinced that “free software sill supplant all
the other software” because of the efficiency of its development system, he thinks that a
network of companies owned by employees constitutes an economic model that will win out
in the long term compared to traditional companies. He already points to as proof the greater
resistance of this type of company to the recent crisis that rocked firms built around free
software.

An innovative activity that corresponds to a commercial niche

Bernard has a different approach to free software. Even though he is also the founder of a
company based on free software, he insists on the similarities with “traditional” companies.
He was very concerned with questions of network infrastructure in his initial job as a
computer programmer in a company and witnessed the development of the Internet “the very

1

basis of which is the development of free software”. He was convinced that with the success
of the Internet free software would invade progressively the different “layers” of IT and
“slowly permeate, through a viral process, the entire information system of companies and
eject proprietary software from the market”. He deduced an inevitable progression of the
distribution of free software and saw in this activity the emergence of a sector of development
worth promoting. But his hierarchy did not share his intuitions and he decided with some
former acquaintances that were confronted with the same lack of understanding on the part of
their employers to found in 1999 a company based on free software and which employs
around 10 people today. The company’s main business is the commercialization of system
and network integration services by using numerous existing free software programs. The
employees participate in communities created around these tools and submit “corrective
patches” and software modules they have developed. The company has created a free
software platform that enables all the applications of a company to communicate between
each other no matter what their function or status (free software or not).

Bernard considers that “the strength of free software today” is that it constitutes a “new way
of producing software”: “companies that haven’t understood that yet are going to be in deep
trouble as time goes by, in that it’s the same as sharing the cost of the R&D that there can be
in the software. Before, you needed to put maybe twenty developers on line to obtain a soft.
Today, you only need one person, or maybe two, knowing that you have the community
working with you on the software”. If groups that produce free software operate “informally”,
which is “not reassuring at all for rational minds that swear by the ISO label”, they are,
according to Bernard, “more innovative and more efficient” than traditional organizations
(“today it takes an average of three days to correct a bug”).

He is proud to belong to the “economic sphere” of free software that he compares against the
“philosophical sphere” that he deems “sectarian”. For him, debate about free software seems
unproductive in relation to client companies (“free software is a problem between
programmers”) and his pragmatic attitude has led him to “insert free software in proprietary
architectures” which shocked “free software purists” (“we have a pact with the devil”). A
client needs to be “convinced that the free software presents a financial and functional
interest, integrating a little bit of free software in his proprietary architecture and knowing
how to show him that little by little we can insert a maximum number of free software
programs in his network and information infrastructure”.

A buoyant activity supported by intense militancy

The first contact Pascal had with the source code of a software program concerned a computer
game and allowed him to understand how the game had been programmed. When he was a
student at the ENS (Ecole Normale Supérieure) in France he learned about Minix, an
operating system developed by an academic and the source code of which was public. Minix
was rapidly replaced by Linux which interested him immediately and which made him aware
of the strength of a “truly cooperative model” compared to development by an “isolated
individual, however talented he may be and whatever his professional and intellectual
competencies”. His first contributions to free software happened within the framework of his
first job as a researcher in mathematics: he proposed corrections and developed improvements
for the use of a library program of mathematical algorithms.

1

In 2000 he created a company that currently employs 15 people. The company develops
applications for clients (in particular administrations) by using a free applications server that
was itself developed with a free programming language. Within this framework the
employees propose corrections and contributions to the platform and the language on which
the services are based and help to popularize them. Using developments carried out for
clients, the company has created a “framework” that it distributes in the form of free software.

In addition to managing the company and organizing the community created around this
software, Pascal has an important commitment and has had important responsibilities in one
of the principal associations for the promotion of free software, of which he is a founding
member. As he explains, “the aim at the start was to share something that interested me from
a technical point of view, which I was even passionate about, and then progressively, it
became a professional activity”. This job of “popularizing free software, of preaching to
managers and decision-makers, of helping counter attacks that can happen against free
software” is complementary to his professional activity in his company that “is interesting
because it encourages the development of free software on all levels”. He claims to have a
pragmatic approach to free software that after its initial successes will not become established
on work stations without accepting to integrate proprietary software, going against those in
favor of the exclusive use of free software. He criticizes developers of free software who are
only preoccupied with the technical perfection of their creations without thinking about the
needs of users. He is overjoyed by the progress in the way free software is made that
combines “both a business and technical approach”.

Finally the stories of Paul, Richard, Bernard and Pascal are unique: besides the different
processes they use to invest in the development of free software, they attribute different
meanings to this activity carried out in disparate biographical and institutional conditions. The
sharing of a minimum base of competencies (particularly technical), of beliefs (in the
efficiency of cooperative work) and belonging (to the same social worlds that they call “free”)
does not erase these differences.

Conclusion

“Free communities” constitute a paradoxical world because it is extremely open via the
Internet and at the same time extremely selective and distinctive because of the competencies
required of members. Our empirical results allow us to conclude that there is a great disparity
of principles and rules of social organization of these groups on the one hand, and of spirits
and significance of belonging on the other hand. However this diversity comprehends a
common problem: how to produce a whole when we are separated; how do we create
cohesion over such distances? The production of free software highlights specific work that
can not be relegated to telecommuting or distance work on the part of the employees of the
same organization, characterized by the cooperation between distant workers and free from
the constraints imposed by an outside or collective authority constituted by being in a
network.

We have tried to highlight the crucial stakes. The first concerns the creation of cooperation.
We have identified the transversal mechanisms that ensure control over the work and the
workers. Nevertheless we can find different interpretations according to the history of the
projects and the groups that initiate and develop them. The second concerns that creation of
commitments. We have identified general processes that shape the career of a free software
developer. And this career follows different paths according to the individual’s background

1

and his social status. Thus the reduction of the distance between members takes on multiple
social forms; and symmetrically belonging to a production group requires multiple social
links.

The successive, but separate, analysis of these two dimensions enables us to note the tension
between, on the one hand, the collaborative activity and the sense of belonging (to a group, a
world, a community) that results from this participation and, on the other hand, the relational
distance and the individualization of commitments that result from this isolation. The
conclusions reached are temporary, but it appears in any case necessary to cross these two
dimensions in order to obtain distinct figures of the paradox we have called a “distant
community” and identify the segmentations of the free software world organized around
individual forms of organization and mobilization.

1

Bibliography
Auray N., 2004, "La régulation de la connaissance : arbitrage sur la taille et gestion aux

frontières dans la communauté Debian", Revue d'économie politique, Numéro
"Marchés en ligne et communautés d'agents".

Becker H. S., 1963 (translated 1985), Outsiders. Etude de sociologie de la déviance, Paris, A-
M. Métailié.

Becker H.S., 1982 (translated 1988), Les mondes de l’art, Paris, Flammarion.
Blondeau O., Latrive F. (editors), 2000, Libres enfants du savoir numérique, Paris, L’Eclat.
Brooks F. P., 1995 (translated 1996), Le mythe du mois-homme: Essais sur le génie logiciel,

International Thomson Publishing.
Conein B., 2004, “Communautés épistémiques et réseaux cognitifs: coopération et cognition”,
Revue d'économie politique, Numéro "Marchés en ligne et communautés d'agents".
Corsani A., Lazzarato M., 2004, La fuite par la liberté dans l’invention du logiciel libre,

Journal des Anthropologues, n° 96-97, 127-150.
Di Cosmo R., Nora D., 1998, Le hold-up planétaire: La face cachée de Microsoft, Paris,

Calmann-Lévy.
Gensollen M., 2004, "Biens informationnels et communautés médiatées", Revue d'Économie
Politique, Numéro "Marchés en ligne et communautés d'agents"
FLOSS, 2002, Free/Libre and Open Source Software: Survey and Study, Final Report,

http://www.infonomics.nl/FLOSS/report
Foray D., Zimmermann J.-B., 2001, L’économie du logiciel libre: organisation coopérative et

incitation à l’innovation, Revue Economique, 52, 77-93.
Himanen P., 2001, L’éthique hacker, Exils
Horn F., 2004, L’économie du logiciel, Paris, La Découverte.
Hughes E.C., 1958, Men and their work, Glencoe, Free Press.
Jullien N., 2001, Impact du logiciel libre sur l’industrie informatique, Thèse de doctorat en

économie de l’Université de Bretagne Occidentale, 315 pages.
Lang B., 1999, “Ressources libres et indépendance technologique dans les secteurs de

l’information”, Technique et science informatique, 18, 8, 901-914.
Lerner J., Tirole J., 2002, “Some simple economics of open source”, Journal of Industrial

Economics, Vol. 52, 197-234.
Printz J., 1998, Puissance et limites des systèmes informatisés, Paris, Hermès.
Raymond E. S., 1998, La cathédrale et le bazar, traduction de Blondeel S.,

http://www.lifl.fr/~blondeel/traduc/Cathedral-bazaar/Main_file.html
Raymond E. S., 2000, “A la conquête de la noosphère”, in Blondeau O., Latrive F. (editors),

op. cit.
Strauss A., 1978, “A world social perspective”, in Denzin N (ed.), Studies in Symbolic

Interaction, volume 1, Greenwich, JAI Press.
Thevenot L. 1997, “Un gouvernement par les normes. Pratiques et politiques des formats

d'information”, in Conein B., Thevenot L. (editors), Cognition et information en
société, Raisons Pratiques, 8, 205-242.

Tönnies F., 1887 (translated 1965), Communauté et société, Paris, Reitz.
Weber M., 1921 (translated 1971), Economie et société, Paris, Plon.

1

http://www.lifl.fr/~blondeel/traduc/Cathedral-bazaar/Main_file.html
http://www.infonomics.nl/FLOSS/report
file:///C:/DOCUME~1/JULLIEN/LOCALS~1/Temp/article auray ECM-REP v3.rtf
file:///C:/DOCUME~1/JULLIEN/LOCALS~1/Temp/article auray ECM-REP v3.rtf

	I.A collective project: organizing production from a distance
	A.Linking isolated workers and coordinating individual production
	B.Different organizational systems, different social groups

	II.The process of individual commitment
	A.The career of a free software developer
	Accessing the source code: increasing technical competence.
	Producing a contribution and distributing it gradually
	 Joining different groups and becoming a recognized professional

	B.Contrasting reasons for commitment
	A selfless activity akin to public research
	An alternative activity transposed, in the business world
	An innovative activity that corresponds to a commercial niche
	A buoyant activity supported by intense militancy

	Conclusion

