
The FreeBSD Project: A Replication Case
Study of Open Source Development

Trung T. Dinh-Trong and James M. Bieman, Senior Member, IEEE

Abstract—Case studies can help to validate claims that open source software development produces higher quality software at lower

cost than traditional commercial development. One problem inherent in case studies is external validity—we do not know whether or

not results from one case study apply to another development project. We gain or lose confidence in case study results when similar

case studies are conducted on other projects. This case study of the FreeBSD project, a long-lived open source project, provides

further understanding of open source development. The paper details a method for mining repositories and querying project

participants to retrieve key process information. The FreeBSD development process is fairly well-defined with proscribed methods for

determining developer responsibilities, dealing with enhancements and defects, and managing releases. Compared to the Apache

project, FreeBSD uses 1) a smaller set of core developers—developers who control the code base—that implement a smaller

percentage of the system, 2) a larger set of top developers to implement 80 percent of the system, and 3) a more well-defined testing

process. FreeBSD and Apache have a similar ratio of core developers to people involved in adapting and debugging the system and

people who report problems. Both systems have similar defect densities and the developers are also users in both systems.

Index Terms—Software engineering process, process measurement, qualitative process analysis, testing and debugging, reliability,

maintenance process, maintainability, open source software, measurement, defect density, code ownership, FreeBSD.

�

1 INTRODUCTION

BOTH the trade press and researchers have examined
open source software (OSS) development [3], [4], [12],

[13]. The key attribute of OSS development is unique in that
these systems are developed by a large number of
volunteers. However, some OSS projects are supported by
companies with paid participants, in addition to many
volunteers. Unlike most commercial development, project
participants have the freedom to work on any part of the
project. There are no assignments and deadlines. In general,
developers do not create a system-level design, a project
plan, or lists of deliverables.

Proponents of OSS development claim that the quality of
OSS development is equivalent or even superior to
traditional commercial development and “many companies
are drawn by the low cost and high quality of open source
software” [21]. Claimed advantages of OSS development
tend to revolve around the notion of “freedom”—anybody
can have a copy of the program and can contribute to the
improvement of the system [9], [14], [25], [26] so that OSS
development “directly leads to more robust software and
more diverse business models” [29]. Since everybody can
access and review anybody else’s work, developers can
learn from each other and improve their overall software
development skill [14]. Also, OSS developers can work
without interference and in their own time, resulting in
great creativity [21]. We find many claims that OSS is

developed faster, cheaper, and the resulting systems are
more reliable [6], [9], [14], [17], [19], [24], [26], [29].

Others challenge the value of OSS and question its long-
term success. Possible weaknesses of OSS development
include a lack of a formal process [27], poor design and
architecture [1], [21], and development tools (such as CVS)
that are not comparable to those used in commercial
development [27]. Messerchmitt [15] argues that OSS
development will not be effective for software systems
with a majority of the users that are not programmers. He
explains that, since the developers of such systems are not
users, the developers will not understand the users’ needs
and OSS development mechanisms lose their advantages.

Although OSS development has been investigated, only
a few studies are accompanied by empirical evidence. In
one empirical study, Schach et al. examine 365 versions of
the Linux kernel and report that the kernel size, in lines of
code, has increased linearly with the version number, while
the number of common couplings has increased exponen-
tially [25]. These results suggest that Linux will become
difficult to maintain unless it is restructured.

Godfrey and Tu also studied the evolution of Linux by
examining 96 versions of the kernel [9]. They found that,
although Linux is very large (over two million lines of
code), it has continued to grow at a “superlinear” rate for
several years. Given that the growth of large commercial
systems tends to slow down when systems become larger,
Godfrey and Tu’s results suggest that OSS systems have a
growth rate that is much greater than that of traditional
systems.

Mockus et al. propose that key requirements for the
success of an OSS project can be expressed in seven
hypotheses [17]. These hypotheses were first developed
through an empirical study of the Apache project, which is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005 481

. The authors are with the Software Assurance Laboratory, Computer
Science Department, Colorado State University, Fort Collins, CO 80523.
E-mail: {trungdt, bieman}@cs.colostate.edu.

Manuscript received 22 Oct. 2004; revised 8 Feb. 2005; accepted 19 Feb. 2005;
published online 29 June 2005.
Recommended for acceptance by A. Hassan and R. Holt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0225-1004.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

described by Mockus et al. as a pure OSS project—a project
without major commercial support. After conducting the
second study on a larger project, Mozilla, which is
supported by a company, Netscape, the authors refined
the hypotheses.

One or two case studies cannot conclusively determine
the nature of OSS development. There are just too many
differences between application domains, project partici-
pants, project support, and project lifespan. Understanding
the nature of a software process such as OSS development
will require many case studies. Our objective is to obtain
further evidence to help determine whether or not the
hypotheses represent general rules by examining other
open source systems.

Our goal is to identify 1) the common characteristics in
the development processes of successful OSS projects and
2) the quality of software that was produced using these
processes. Thus, we repeated the Mockus et al. study on a
different OSS development project [2], the FreeBSD
project, an open-source version of the Unix operating
system. We selected the Mockus et al. study for replica-
tion because it addresses both the requirements of success
in an OSS project and the quality of an OSS software
product. Furthermore, Mockus et al. measure product
defect density, an external software quality attribute. In
contrast, other empirical studies of OSS development
measure the rates of code growth [9] and the degree of
common coupling [25], which are internal quality attri-
butes. Ultimately, external quality attributes are most
important as these are what users actually observe.

FreeBSD was selected for this study because it is a
“successful” OSS project. FreeBSD is well-known—in July
2003, FreeBSD was used in almost 2 million Web sites with
nearly 4 million host names [18]. The project Web site
shows a list of about 100 software vendors who offer
commercial products and/or services for FreeBSD. The
FreeBSD development process is well defined, well docu-
mented, and easy to access. Information concerning the
FreeBSD development process is readily available through
an e-mail archive, a bug database, and a CVS repository.
Moreover, FreeBSD is similar to Apache and Mozilla in
technical complexity, size of user community, and continu-
ing success. Thus, one would expect the hypotheses
developed in the Mockus et al. study to apply to the
FreeBSD project as well if they are, in fact, accurate.

FreeBSD is mature and has been active since 1993. It has
a longer history than either Apache or Mozilla. The long
history allowed us to examine project activities over a nine
year period, compared to the three year period of the
Apache project studied by Mockus et al.

We were able to assess five of the seven hypotheses
posed by Mockus et al. Our results support three of the
hypotheses and suggest revisions to the others. Our data
also supports stronger conclusions about the reliability of
OSS. Mockus et al. suggest that the defect densities in OSS
releases are lower than that of feature-tested commercial
code. However, they did not find such an improvement in
post-release defect densities. Our study finds that both
feature-tested and post-release defect densities of FreeBSD

are at least equivalent to that of the commercial software
systems.

In this paper, we extend the results of our prior case
study [2]. An analysis of top developers who contribute
more than 80 percent of the code base reveals differences
between the FreeBSD project and Apache. In particular, we
compare each three year period of the FreeBSD project to
the three years of Apache project data reported by Mockus
et al. and find notable differences. A reexamination of the
FreeBSD data allowed us to recompute data on defects to
improve accuracy; we now include only confirmed code
defects in the analysis. The updated analysis allowed us to
proposed additional revisions to the hypotheses. We also
provide a detailed description of the research tools that we
used to extract data from the open source archives.

2 THE HYPOTHESES

The objective of the Mockus et al. case studies of the Mozilla
and Apache projects was to understand the processes that
are used to develop successful OSS and to compare their
effectiveness with that of commercial development [17].
Mockus et al. found that the Apache project was managed
by an informal organization consisting entirely of volun-
teers. Every Apache developer had at least one other job, so
that they could not work full-time on the project. On the
other hand, the Mozilla project was managed by a
commercial company, Netscape, and some of the devel-
opers worked on the project full-time and for pay. Never-
theless, the processes used in these two projects had many
traits in common. The identification of these common traits
led to seven hypotheses about successful OSS development:

H1. “Open source developments will have a core of
developers who control the code base, and will create
approximately 80 percent or more of the new function-
ality. If this core group uses only informal ad hoc means
of coordinating their work, the group will be no larger
than 10 to 15 people.”

H2. “If a project is so large that more than 10 to 15 people
are required to complete 80 percent of the code in the
desired time frame, then other mechanisms, rather than
just informal ad hoc arrangements, will be required in
order to coordinate the work. These mechanisms may
include one or more of the following: explicit develop-
ment processes, individual or group code ownership,
and required inspections.”

H3. “In successful open source developments, a group
larger by an order of magnitude than the core will repair
defects, and a yet larger group (by another order of
magnitude) will report problems.”

H4. “Open source developments that have a strong core of
developers but never achieve large numbers of con-
tributors beyond that core will be able to create new
functionality but will fail because of a lack of resources
devoted to finding and repairing defects.”

H5. “Defect density in open source releases will generally
be lower than commercial code that has only been
feature-tested, that is, received a comparable level of
testing.”

482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

H6. “In successful open source developments, the devel-
opers will also be users of the software.”

H7. “OSS developments exhibit very rapid responses to
customer problems.”

3 STUDY METHOD

3.1 Research Questions

Mockus et al. [17] answered the following questions about
Mozilla and Apache and their development processes:

1. “What were the processes used to develop Apache
and Mozilla?”

2. “How many people wrote code for new function-
ality? How many people reported problems? How
many people repaired defects?”

3. “Were these functions carried out by distinct groups
of people, that is, did people primarily assume a
single role? Did large numbers of people participate
somewhat equally in these activities, or did a small
number of people do most of the work?”

4. “Where did the code contributors work in the code?
Was strict code ownership enforced on a file or
module level?”

5. “What is the defect density of Apache and Mozilla
code?”

6. “How long did it take to resolve problems? Were
high priority problems resolved faster than low
priority problems? Has resolution interval decreased
over time?”

We sought answers to the same questions concerning the
FreeBSD project. Out of these six groups of questions, we
obtained data to answer the first five. To answer the
questions about the development process, we studied the
documents provided in the FreeBSD project website [23]. To
help answer our questions, one member of the Core Team
(this term is used in FreeBSD to refer to the group of
developers that control the code base) provided us with a
hidden Web address of the “FreeBSD internal pages” (it is
hidden in the sense that we cannot find any way to navigate
to this page from the FreeBSD home page). The FreeBSD
internal pages provided guidelines and requirements for
the FreeBSD committers. In the FreeBSD project, committers

play a role that is similar to developers in the Mozilla and
Apache projects. In addition, committers may be elected to
the Core Team. We also sent each member of the current (at
the time) nine Core Teammembers a set of questions, which
are displayed in Fig. 1. Four Core Team members
responded with their answers.

After developing a draft description of the FreeBSD
development process, we sent the description to the Core
Team members and GNATS Administrator to verify the
accuracy of our account. We received suggestions for minor
revisions, which we used to improve the accuracy of the
description.

3.2 Data Sources

In order to answer the quantitative research questions at the
beginning of Section 3.1 (questions 2 through 4) for
FreeBSD, we obtained the necessary data from the project

CVS repository, the bug report database, and the e-mail

archive. The CVS repository contains all of the code and

related documentation that is committed to the project from

1993 until the present. The bug report database contains

information describing all reported problems, as well as the

status (such as fixed, under test, or open) of each problem.

Each bug report is called a PR and assigned a reference

number. The e-mail archive contains every e-mail message

exchanged between the developers since 1994. Due to the

nature of open source software, the locations of the

developers are distributed world wide, and they rarely

meet with each other. Developers generally exchange

information about the project via e-mail. According to

Mockus et al. [17], e-mail archives record all information

about an OSS project. However, the main disadvantage of

using e-mail archives as a primary source for information is

that the format is usually informal.

3.2.1 CVS Repository

FreeBSD, like many OSS projects, uses a Concurrent Version

Control Archive (CVS) as the version control tool. When-

ever a developer needs to change the code base, he or she

can check out the corresponding file, make the change, and

check the file back into the CVS. CVS not only stores the

latest version of the code base, but also stores the history of

the code that is changed [7].
FreeBSD developers maintain two branches of the code:

The Current branch contains all of the on-going projects

(many are under test and not ready to be released) related

to FreeBSD and the Stable branch, which is the official

released version of FreeBSD. In this research, we retrieved

information about FreeBSD code from the Current branch.

The FreeBSD CVS repository is available to the public and

anybody can make a mirror copy of it.

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 483

Fig. 1. Questions sent to each of the FreeBSD Core Team members.

3.2.2 Developer E-Mail Archive

The FreeBSD project maintains many different e-mail lists
for various purposes. We studied all of the e-mail messages
sent to freebsd-bugs@FreeBSD.ORG to report problems. Out
of 51,156 PRs recorded in the bug report database, 16,115
were also recorded in the freebsd-bugs e-mail list. We used
this list to extract the names of those who reported problems
and the number of problems reported by each person.

3.2.3 Bug Report Database

The FreeBSD project records every reported problem using
a GNATS database. Further information about the GNATS
database is available from the GNU website [22]. Each
report contains a description of the problem, the name of
the reporter, the reported date, and other information. The
FreeBSD official Web site provides a GNATS Web-based
interface that allows one to query a set of bugs based on
matching PR field values, including priority, state, severity,
and class. The result of the query is a list of PRs with the
following information: the status, the reported date, the
PR tracker identification (ID), the person who takes the
responsibility to fix the problem, and a short description of
the problem. To find more information about a PR (i.e., the
name of the PR submitter), one must follow the PR link to
open a new page with the full description of the PR.

For our research, we used this Web-based interface to
search for the total numbers of the code-related PRs in the
Stable branch and in the Current branch. We created
queries concerning code-related PRs in the two branches,
and counted the total number of PRs in the result. To query
the code-related PRs only, we selected the PR class to be
sw-bug. The other PR classes include doc-bug, support,
change-request, mistaken, duplicate, wish, update, and
maintainerupdate. A description of the problem classes,
given to us by one of the FreeBSD GNATS administrators, is
shown in Table 1. To find the PRs in the Stable branch only,
every Stable release has the keyword “-STABLE” in its
release name. Hence, to find the PRs in the Stable branch,
we made a query to search for all PRs that contain this
keyword. Note that every PR includes information about
the name of the release that contains the problem.

3.3 Data Extraction Tools

Retrieving information manually from the FreeBSD CVS
repository and e-mail archive is not feasible due to the large
size of the data sets. For example, the CVS repository
records about 527,930 changes to the src directory. We
developed a set of Java-based tools to extract useful data
from the CVS and the e-mail archive. The extracted data
includes the number of committers and the number of
deltas committed by each person. The following discussion
provides an overview of the tools that we developed; an
appendix contains further details.

3.3.1 Retrieving Information from the CVS Repository

One approach to retrieving information from the FreeBSD
CVS repository is to use CVS commands through the
Internet. This approach can lead to consistency problems
since it requires repeated access to the repository several
times to extract the desired data. During the process of
accessing the repository, the repository can change as
committers continuously modify source code and other
documents.

The approach used in this project is to download the
entire CVS repository and store a copy in our computer
system, which represents a snapshot of the FreeBSD project
history. We retrieved this CVS copy in early April 2003 and
used the CVS command “log” to retrieve information about
all deltas committed to the code base (the “src” directory)
from the start of the repository until the day we down-
loaded it.

Each delta includes the time of the delta, the
corresponding file, the number of lines deleted and
added, the login name of the developer who committed
the change, and a short description of the change. We
developed a set of tools to scan the log to record the
number of people that contributed code, the number of
changes committed by each committer, the total number
of changes committed by all committers, and the total
number of lines of code added to the code base. We
assume that each developer uses just one login name to
commit the code. We distinguish between the code
updated to fix problems and the code updated or added

484 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 1
The Description of PR Classes

to implement a new feature. We assume that descriptions
of deltas to fix bugs contain the keyword “PR.” Deltas
without this keyword are assumed to be deltas that add
new features. We also distinguish between deltas that
contribute to code (files with “.h” and “.c” extensions),
and deltas to noncode files (such as readme files and
script files).

3.3.2 Retrieving Information from the E-Mail Archive

We downloaded the FreeBSD e-mail archive and stored a
copy in our computer system. The e-mail archive is
structured into several directories, each having messages
that are exchanged in an e-mail list. The directory pr stores
all messages that relate to bug reports. We assume that each
PR in the e-mail archive contains the name of the originator
in a line started with the key word “Originator.” We
extracted the number of people who reported the bugs and
the number of bugs reported by each person. We retrieved
this information using the same technique used to obtain
the number of code contributors and the number of deltas
committed by each contributor.

3.4 Data for Commercial Projects

For this paper, we reused the data describing commercial
projects that was provided in the Mockus et al. study [17].
These projects are denoted as projects A, C, D, and E.
According to Mockus et al., “project A involved software
for a network element in an optical backbone network” and
“projects C, D, and E represent Operations Administration
and Maintenance support software for telecommunication
products.” Mockus et al. also claim that the processes used
to develop these systems were very well-defined.

4 RESULTS

First, we examine the collected data to answer the research
questions, then we evaluate the hypotheses.

4.1 Answers to the Research Questions

4.1.1 Q1: “What Was the Process Used to Develop

FreeBSD?”

FreeBSD is an operating system derived from BSD Unix, the
version of Unix developed at the University of California,
Berkeley. According to the FreeBSD developers [23],
FreeBSD can run on x86 compatible, DEC Alpha, IA-64,
PC-98, and UltraSPARC architectures. As described by
Godfrey and Tu [9], an OSS project can be forked into an
alternative OSS project when a subset of developers are
unhappy with the “official” or main branch. The BSD Unix
project is an example of this phenomenon which forked into
FreeBSD, OpenBSD, and NetBSD. The FreeBSD project
started in 1993. At the time of this study in 2003, there were
35 released versions (from 1.0 to 5.0).

FreeBSD maintains two branches of its code base. The
Current branch consists of on-going projects which need to
be tested and are still unstable. The Stable branch is mature
and comparably well-tested; releases are formed from the
Stable branch.

Roles and Responsibilities. Contributors to the code
base play one of three main roles: Core Team member,
committer, and contributor. In an OSS project that is not

commercially supported, every developer (including Core
Team members) and contributor is a volunteer and most
likely has a paid job. Thus, most volunteers contribute to the
FreeBSD project part-time, perhaps during nights or week-
ends. The Core Team is a small group of senior developers
who are responsible for deciding the overall goals and
direction of the project. The Core Team assigns privileges to
other developers and resolves conflicts between developers.
Core Team members are also developers—they contribute
code to the project. Usually, a Core Team member may also
have to manage some other specific areas such as
documentation, release coordination, source repository,
and GNATS database.

When the FreeBSD project began, the Core Team
consisted of 13 members. According to the current by-laws
of the project, the Core Team consists of seven to nine
members who are elected to two-year terms by active
committers. Any active committer (active within the latest
12 months) can be a candidate for membership in the Core
Team. An early election is called if the number of Core
Team members drops below seven.

Committers are developers who have the authority to
commit changes to the project CVS repository. According to
the by-laws of the project, a committer must be active
within the past 18 months. Otherwise, the Core Team can
revoke the committer’s privileges. An active contributor can
be nominated to be a committer by an existing committer.
The Core Team can award committer privileges to a
candidate. A new committer is assigned a mentor, who
supervises the new committer until he or she is deemed to
be trustable and reliable.

Contributors are people who want to contribute to the
project, but do not have committer privileges. They usually
begin to contribute by registering on the project mailing lists
so that they can be informed about the activities. Con-
tributors may test the code, report problems, and also
suggest solutions.

Identification of work to be done. There are two main
tasks that need to be done in any project: developing new
features and fixing defects. Although it is the responsibility
of the Core Team to decide the direction of the project, it
rarely happens in reality. Instead, according to Core Team
members, individual committers usually determine their
own project, for example, adding a feature. Sometimes,
committers may form teams to work on large projects.

Project defects reported by contributors are tracked using
the GNATS database. There are three ways to report a
problem: 1) use the send-pr command of FreeBSD, 2) use a
Web-based submission form provided in the FreeBSD Web
page [23], or 3) send an e-mail to Freebsd-bugs@FreeBSD.
org. If one of the first two methods is used, the PR will be
automatically added to the GNATS database. The third
method (sending e-mail) is less desirable because a
committer must personally process the e-mail—he or she
must manually read the message and add a PR to the
database. Also, e-mailed problem reports may be ignored
because of the huge volume of messages received each day.

A PR has the following fields: reference number,
responsible committer, submitted date, severity, reporter
name, state, and description. A PR may be in one of several

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 485

states: open (just submitted, no effort to fix it yet), analyzed,
feedback, patched, suspended, or closed (the bug is fixed or
cannot be fixed). The FreeBSD Web page also provides a
guideline for problem reporters to help them to make the
description as informative as possible.

Assigning and performing development work. A
committer can search through the open PRs in the bug
report database and assign a PR to himself or to another
committer who should be able to solve the problem. Many
PRs have solutions suggested by the person reporting the
defect. Contributors can scan the PR database and propose
solutions to open PRs. Although contributors do not have
access to change the code base, they can test solutions in
their own copy of the code and send the solution to the
corresponding assigned committer. A contributor may also
send a solution to the e-mail list as a follow-up message.
The committer responsible for the PR can communicate
with the bug reporter and all interested contributors to
discuss the problem and possible solutions. A committer
may solve the problem directly or use a solution proposed
by a contributor. After testing a proposed solution, the
committer can insert the solution into the Current code
base. Sometimes, a committer will insert a solution into the
Stable code base directly if the problem does not exist in the
Current code base. If, over time, no new defects related to
the fix are reported, the committer can close the problem.

To implement new features, a committer (or a team of
committers) writes code, tests it, and then adds the code to
the Current code base. Before the release date of a new
Stable release, a committer can decide to merge their new
code with the Stable version.

Testing. Committers must test their own code (with the
help of interested contributors) before they can commit
their code to the Current branch. The thoroughness of
testing depends on the judgment and expertise of a
committer. Also, before merging code to the Stable branch,
a committer can perform a process called merge from current

(MFC). After developing new code, committers set a
countdown period and ask other developers and contribu-
tors to test the code. If no new defects are found at the end
of the countdown, a committer may assume that the code is
acceptable.

Another form of testing may be considered a form of
system test. Before releasing a new version, a release
candidate is introduced to the committers and contributors.
The release candidate is tested and fixed until a Release
Engineer Team decides that the system is ready. However,
no committer is assigned to be a tester; volunteers test the
release candidates.

Code inspection. A committer may want to commit a
piece of code to a file or portion of the system that is the
responsibility of another committer, the active maintainer.
The active maintainer must review and approve new code
before it is added to the code base.

A developer can determine the active maintainers of a
code location by using the CVS command log, which will
indicate who is currently changing the code. Committers
may assign themselves to be active maintainers of a location
by putting their name in a README file or a makefile.

A committer who plans to make a significant change to
code is expected to ask some other committers to review the
changed code. Committers in the Release Engineer Team
review code 30 days before a release date.

Managing releases. The Release Engineer Team man-
ages FreeBSD releases. A Core Team member volunteer is
the chief of the team. The other members of the team are
volunteers selected from the committers. A new version of
FreeBSD is released every four months using the following
timetable:

. Forty-five days before the release date: The Release
Engineer Team announces to every developer that
they have a 15 day period to integrate their changes
to the STABLE branch.

. During the 15-day period: Committers will perform
the MFC for their code.

. Thirty days left: The Release Engineer Team
announces a 15-day code slush period, during which
the team will review the added code to the previous
release. During the code slush period, only limited
changes are allowed, such as bug fixes, documenta-
tion updates, security-related fixes, minor changes to
device drivers, and other changes that are approved
by the Release Engineer Team.

. Fifteen-days left: The code base enters a code freeze
period. During code freeze, a release candidate is
built every week and distributed for widespread
testing, until the final release is ready. The only
changes allowed during the code freeze period are
serious bug fixes and security repairs.

Comparing the FreeBSD process to that of Apache and

Mozilla It is more appropriate to compare FreeBSD with
Apache rather than Mozilla since both Apache and FreeBSD
are not commercially supported projects. In contrast,
Mozilla is a hybrid project—it is supported by a commercial
company with paid participants. The process used to
develop FreeBSD is very similar to that of Apache. Both
projects use the same or very similar 1) developer roles,
2) concepts of code ownership, and 3) mechanisms to assign
tasks to developers. However, the FreeBSD project has a
more well-defined testing process than the one used in the
Apache project. FreeBSD includes a form of system testing
during the “code freeze” period, while Apache does not.

4.1.2 Q2: “How Many People Wrote Code for New

Functionality? How Many People Reported

Problems? How Many People Repaired Defects?”

To determine the number of people involved in writing
code for FreeBSD, we used the CVS “log” command to
retrieve the user names of the committers who update code
in the src directory. The src directory contains the code in
the Current branch of FreeBSD; it does not include any
application code provided by third parties. A total of
354 committers added code to the src directory from 1993 to
April 2003.

Following the steps in the Mockus et al. case study [23],
we counted the number of distinct people who contributed
code to fix defects and the number of people who
contributed code for new features. The src directory

486 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

contains source code (files with .h or .c extensions), text files
such as README files, and shell scripts. A total of
224 committers checked in 11,406 deltas to fix problems.
Among these deltas, 5,893 deltas are source code files
checked in by 197 committers. Also, 337 committers
checked in 516,540 deltas for new features; 301,969 of these
deltas are source code files checked in by 290 committers.

An examination of the archive of the e-mail list freebsd-

bugs@FreeBSD.ORG determined the names of contributors

who reported problems. A total of 6,082 unique individuals

(based on names) reported 16,115 problems. The e-mail list

probably does not include all bug reporters since there are

51,156 PRs in the GNATS database. Because we did not find

an exhaustive list of bug reporters, we conclude that there

are at least 6,082 bug reporters. This is enough data for us to

evaluate the corresponding hypothesis (Hypothesis 3).

4.1.3 Q3: “Were These Functions Carried Out by

Distinct Groups of People, That Is, Did People

Primarily Assume a Single Role? Did Large

Numbers of People Participate Somewhat Equally

in These Activities, or Did a Small Number of

People Do Most of the Work?”

A comparison of the IDs of the developers who fixed bugs

to the IDs of those who added new features can answer the

first part of the question. The analysis shows that 220 out of

354 committers added code to do both tasks. A comparison

of the committers’ names with bug reporters’ names

provides further insight. The comparison used committer

names from the FreeBSD website and the bug reporter

names from the e-mail archive. At least 183 committers also

report bugs. We cannot determine if there are additional

developers who report bugs because we do not have the full

list of bug reporters. Nevertheless, the data indicates that

FreeBSD contributors do not primarily assume a single role.

A FreeBSD committer can contribute code both to fix bugs

and to add new features, as well as report errors.

The results from Mockus et al. [17] indicate that a small

group of less than 15 committers committed more than

80 percent of the new source code (code for new features).

However, our results, shown in Fig. 2, indicate that the top

15 committers contribute only 56 percent of the deltas

adding new source code; it took the 47 top committers to

contribute 80 percent. We also found that a total of 36 people

were members of the Core Team at some period, and 36 top

developers (not all of them are in the Core Team)

contributed about 75 percent of new source code. Note that

this data is for the deltas that affected source code (.h and

c files). We performed the same analysis on the deltas that

affected all files (not just source code) in the src directory

and got similar results.

The FreeBSD project is of much longer duration than the

Apache project. FreeBSD had been in operation for more

than 10 years, while Apache had been in operation for three

years when the case studies were conducted. In order to

verify the possibility that the length of the operation time

dictates the number of the top developers, we analyzed the

accumulated distribution of the FreeBSD source code

changes to add new features in each three-year period.

We use three-year periods to make it easier to compare

FreeBSD to the Apache project, which had been in operation

for three years when the Mockus et al. [17] study was

conducted.
Fig. 3 shows the accumulated distributions of the

FreeBSD deltas in the 1994-1996, 1997-1999, and 2000-2002
periods:

. 1994-1996: Two hundred and nine committers added
new source code in the 1994-1996 period. The top 15

committers added 69 percent of the new source code

and the top 29 contributed 80 percent.
. 1997-1999: The number of committers who contrib-

uted new source code decreased to 161 during the

1997-1999 period. However, the top 15 committers

still contributed about 69 percent of the new source

code. The top 27 committers contributed 80 percent

of the new source code.
. 2000-2002: The number of new source code con-

tributors increased to 263. However, the top 15 com-

mitters only contributed 59 percent of the new
source code. It took the top 42 committers to

contribute 80 percent of the new code.

These results suggest that the number of top devel-

opers—those who contribute 80 percent or more of the

source code—in the FreeBSD project was always larger than

that of the Apache project. The number of the top

developers in the FreeBSD project is actually comparable

to the number of the top developers in the Mozilla project

(Table 2). These results suggest that the number of top

developers does not depend on the length of the time a

project has been in operation.
Fig. 4 shows the cumulative distribution of the source

code changes that were checked-in to fix defects. The top

15 contributors checked-in about 40 percent of the deltas,

and the top 50 developers contributed about 70 percent of

the fixes. This result is somewhat similar to the Apache case

study [17]. A small number of committers added most of

the new features, but the effort required to fix defects is

more evenly distributed.
Among the 6,082 individual reporters reporting 16,115

defects, the top 15 reporters reported between 49 and

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 487

Fig. 2. Distribution of developer (committer) contributions of source code

deltas adding new features.

100 problems each, which represents 0.6 percent of the

PRs. There were 3,370 reporters who reported one bug,

1,875 reporters who reported two bugs, and 447 who

reported three.

4.1.4 Q4: “Where Did the Code Contributors Work in the

Code? Was Strict Code Ownership Enforced on a

File or Module Level?”

The study of the Apache project [17] suggests that there is

no strict code-ownership involved in OSS developments.

The result of our study strongly supports this suggestion.

Our study shows that, among 26,048 .c and .h files, only

30 percent of the files were modified by one committer,

25 percent by two committers, 15 percent by three

committers, and 8 percent by 10 or more committers. One
file was changed by 74 developers.

In fact, every committer has the privilege to make any
change to any file in the system. Code ownership in
FreeBSD does not exist. Instead, FreeBSD committers are
only required to respect each other by asking for a code
review before committing code to files that are actively
maintained by other committers.

4.1.5 Q5: What Is the Defect Density of FreeBSD Code?

Following the approach used by Mockus et al. [17], we

measure the number of defects per thousand lines of code

added and per thousand deltas. Among the PRs recorded in

the GNATS data base, we only counted the problems that

require a correction to software. These PRs are categorized

into the class “sw-bug.” The “mistaken” and “duplicated”

PRs are obviously not real problem reports. The “change-

request,” “update,” and “maintainer update” PRs are also

not reports about defects. The “doc-bug” PRs are the reports

about defects in the documents, hence, they are outside the

scope of interest. We also counted the deltas and lines of

code added to the src directory only since this directory

contains the Free-BSD code.

To determine the defect density after feature test, we

counted the “sw-bug” occurrences in all FreeBSD branches.

The defect density after release is determined by counting

only PRs of the Stable branch. The result is shown in Table 3.

We compare the result with the defect density in the

Apache and the four commercial software systems as

reported by Mockus et al. The four commercial projects

are denoted as projects A, C, D, and E. There is no data for

the postfeature defects in Project A.

The results indicate that, after feature tests, the defect

density of FreeBSD is similar to Apache and is lower than

that of the commercial systems. The results also indicate

that the defect density of FreeBSD after release is at least

equivalent to or better than that of the commercial

telecommunications software systems used in our compar-

ison. The testing strategy used in the FreeBSD project

appears to be as effective as those used in commercial

practice, at least in the systems used in the study. The case

study provides empirical support for claims that OSS

systems are not less reliable than commercial software

systems [19], [6].

4.2 Evaluating the Hypotheses

We examine each hypothesis concerning successful OSS
projects in order:

H1: A core of 10 to 15 developers in an OSS project will
control the code base and create approximately 80 per-
cent or more of the new functionality.

In FreeBSD, the code base was controlled by the Core

Team, an elected core of developers. A total of 36 people
were members of the Core Team at some time over the

period studied. These Core Team members contributed

47 percent of the new functionality deltas. The core team

contained 13 members at the beginning of the project;

later, the team size was restricted to between seven and

488 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Fig. 3. Distribution of developer contributions of new source code during

each three-year period.

nine members, perhaps because the larger sized group

was unwieldy.

Thus, the size of the Core Team was smaller than that
given in H1, and the Core Team members contributed
much less of the functionality. A possible explanation for
why the FreeBSD Core Team members contributed a
smaller portion of the functionality than the correspond-
ing group in the Apache project is that FreeBSD is a larger
project, with more than 10 times as many deltas, as
shown in Table 2. In addition, each FreeBSD Core Team
member also had to spend time for other responsibilities
such as coordinating the CVS mirror sites, managing the
Release Engineering Team, or managing the mailing lists.

We also examined a larger group of influential

developers, the “top developers”—developers who con-

tribute 80 percent or more of the code base, to match the

80 percent threshold used in the Mockus et al. study. As

is shown in Table 2, there were between 28 and 42 top

developers over the 10 year period studied. Thus, the

number developers who contribute 80 percent of the

code base is larger than that given in H1.
We suggest that H1 is overly proscriptive. A more

realistic hypothesis will separate the core developers
from the top developers as follows:

H1’. A core of 15 or fewer core developers will control the
code base and contribute most of the new functionality.
A group of 50 or fewer top developers at any one time
will contribute 80 percent of the new functionality. The
group will represent less than 25 percent of the set of all
developers.

H2. In projects where more than 15 people contribute

80 percent of the code, some formal arrangements will be

used to coordinate the work.

FreeBSD had more than 15 top developers throughout

the project. In fact, in every three-year-period that we

studied, the number of FreeBSD top developers was
always more than 15. Compared to Apache, FreeBSD

uses additional mechanisms to coordinate code contribu-

tion. These mechanisms include the use of release

engineering teams, a system test procedure, and a set

of rules to assign committer and core team privileges.

FreeBSD also has guidelines for “assigning” develop-

ment tasks, unit testing, and inspection. However, most

of these mechanisms are still informal. The system test
procedure is informal; for example, it does not have a

well-defined criterion to determine when the testing

should stop. Also, FreeBSD lacks a mechanism to verify

that developers follow the development guidelines.

Therefore, our results do not fully support H2 and

suggest a revised hypothesis:

H2’. As the number of developers needed to contribute
80 percent of OSS code increases, a more well-defined
mechanism must be used to coordinate project work.

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 489

TABLE 2
The Number of Developers (Dev), Top Developers (TopDev—Developers Contributing 80 Percent

or More of the Source Code and Percent of Developers Who Are Top Developers (percent TopDev)

Fig. 4. Distribution of developer (committer) contributions of source code

deltas to fix errors.

H3. A group that is much larger than the core will repair
defects, and an even larger group will report problems.

The FreeBSD project was consistent with the
relationship in H3 between the relative size of Core
Developers, those who repair defects, and those who
report problems.

H4. OSS projects without many contributors, in addition to
the core, may create new functionality, but will fail
because of a lack of defect discovery and repair
capability.

Since FreeBSD did have many contributors, we could
not evaluate H4.

H5. Defect density in OSS releases will be lower than
commercial code that has only been feature-tested.

The results from FreeBSD are consistent with H5.
Based on our results from the FreeBSD project, which
separates unstable releases from final releases, we revise
H5 as follows:

H5’. Defect density in OSS releases will be lower than
commercial code that has only been feature-tested. If an
OSS has a mechanism to separate unstable code from
stable code or “official” releases, then the defect density
of the stable code releases will be equivalent to that of
commercial code after release.

H6. Developers will be users of the software.
The developers of FreeBSD were clearly users, thus

supporting H6.

H7. There will be rapid responses to customer problems.
Unfortunately, we do not have enough data yet to

evaluate H7.

5 THREATS TO VALIDITY

Like most case studies, there are threats to validity. We

assess four types of threats: construct validity, content

validity, internal validity, and external validity. Construct

validity refers to the meaningfulness of measurements

[10], [20]—do the measures actually quantify what we

want them to? To validate the meaningfulness of

measurements, we need to show that the measurements

are consistent with an empirical relation system, which is

an intuitive ordering of entities in terms of the attribute

of interest [5], [11], [16]. The variables in this study,

which include counts of defects, deltas, and the size of

the different project groups, match those used in the

Apache study. A count of the deltas in the code base is

an intuitive measure of the relative contribution of project

members, and a count of defects is an intuitive indicator

of code quality. However, not all deltas or defects are

equal, but the large number of deltas and defects should

minimize the impact of the variability of delta size or

defect severity. Counts of the number of members in the

different OSS development groups do not appear to

represent any threat to construct validity.

Content validity refers to the “representativeness or

sampling adequacy of the content ... of a measuring

instrument” [10]. The content validity of this research

depends on whether the individual measures of deltas and

defects adequately cover the notion of the relative contribu-

tion of developers and code quality respectively. The count

of deltas quantifies only one aspect of relative contribution.

We only look at one quality attribute, defects. It is always

difficult obtaining quantitative indicators of all aspects of

quality. One real concern is that the qualitative under-

standing of the process used is based on informal dialogue

with only a subset of Core Developers. A representative

sample of all Core Developers and committers might offer

different insights. Also, there is an implicit judgment in this

research, which is that all of the OSS projects involved

(FreeBSD, Apache, and Mozilla) may be considered

successful OSS developments. One may always debate

such judgments.

Internal validity focuses on cause and effect relation-

ships. The notion of one thing leading to another is

applicable here and causality is critical to internal

validity. This study did not really lend itself to a

statistical analysis of correlations between variables. In a

sense, we did not have a control—an OSS system that is a

failure. In addition, the hypotheses were expressed as

necessary conditions for success, but they are not

490 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 3
Defect Densities in FreeBSD, Apache, and Four Commercial Systems

sufficient conditions. A project may satisfy all of the

organizational conditions, yet fail due to other external

reasons. For example, there may turn out to be little user

interest in the OSS product. Thus, a study of a failed

project would shed little light on the hypotheses.

Ultimately, we can find conclusive evidence only when

the hypotheses can be clearly rejected—when data from a

successful OSS project contradicts the hypotheses. An

intuitive argument does support a causal relationship

between OSS project organization and success.
External validity refers to how well the study results can

be generalized beyond the study data. An adequate study
should be valid for the population of interest [28]. A general
problem with case studies is that they may or may not
apply to other projects. One objective of this project is to
add another piece of evidence to that collected by Mockus
et al. [17]. Thus, this study has reduced the threats to the
validity of the earlier study.

There are some specific threats to the validity of this
research. There is a lack of information about the
commercial systems. In order to evaluate the quality of
OSS development, we compare the defect density of
FreeBSD with commercial products A, C, D, and E, which
were provided in the Apache and Mozilla case studies [17].
These commercial projects were chosen so that they are
comparable to Apache, which may not be completely
comparable to FreeBSD, as shown in Table 4.

Another threat is that we studied only 16,115 out of a

total of 51,156 PRs to extract the names of the problem

reporters. The key result is that the number of problem

reporters in FreeBSD is larger than the number of

developers (committers) by an order of magnitude (this

result supports Hypothesis H3). Obviously, if we exam-

ined all PRs, the number of problem reporters would

have been even larger, and it will not affect our

conclusion at all.
Finally, to avoid the replication of experimental errors

caused by the specific research tools used by Mockus et al.
[17], we independently developed our own data extraction
and analysis tools.

Further research can reduce the threats to validity.

Studies that include additional product quality indicators

(other than defects), such as adaptability, will reduce

threats to content validity. In addition, studies of the

distribution of deltas, and a wider sampling of developers

and PRs can reduce content validity threats. Clearly,

additional case studies of both OSS and commercial

development will reduce threats to external validity.

6 CONCLUSIONS

The goal of this study was to better understand the nature
of Open Source software development and to see if prior
case study results can be replicated in a study of another
system.

This study repeated the work of Mockus et al. [17], a

study of Apache and Mozilla, on FreeBSD. We conclude

that the FreeBSD process is fairly well-defined and

organized; project members understand how decisions are

made, and it appears fairly effective.
We examined whether the FreeBSD project supported

six hypotheses proposed by Mockus et al. We gathered
enough data to evaluate hypotheses H1, H2, H3, H5, and
H6. Our data supports hypotheses about the relationship
between the number of core developers, developers, and
contributors (H3), the defect density of OSS (H5), and
that OSS developers are also users (H6). Our results show
that the hypothesis about core developers (H1) needs
revision. FreeBSD uses a smaller group of core developers
to control the code base. However, a larger group of top
developers contribute 80 percent of the code base. Our
results do not support the hypothesis about the need for
a formal arrangement to coordinate the work (H2)—in the
FreeBSD project, more than 15 developers contribute 80
percent of the code, yet the guidelines for assigning task,
testing, and inspection are informal. We also extend the
hypothesis concerning the defect density of OSS (H5).
Our data suggests that the defect density after release of
OSS is equivalent to that of the commercial software
systems. We cannot test hypotheses H4 due to the nature
of FreeBSD. Hypothesis H7 concerning the time to
respond to customer problems was not tested due to a
lack of data.

Additional studies of existing, on-going open source and

commercial software projects are clearly needed to gain

further insights into the nature of software development.

The following is a sample of open questions that can be

answered only through further research:

1. What are the factors that distinguish between
successful and unsuccessful OSS projects? Answer-
ing this question, relevant to evaluating Hypoth-
esis 4, requires the development of criteria to
identify unsuccessful OSS projects and in-depth
studies of them.

2. Do the hypotheses hold with successful, but smaller
OSS projects? In particular, do small OSS projects
require large groups of code contributors and bug
reporters?

3. What testing techniques are used in the OSS projects
that exhibit higher reliability than equivalent com-
mercial software? Answering this question requires
developing an assessment mechanism that can
objectively compare the reliability between OSS

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 491

TABLE 4
Comparisons between FreeBSD, Apache,

and Four Commercial Systems

and commercial software and an examination of the
testing process, tools, and criteria used in these
projects.

Results from efforts to answer these and other related
questions can surely lead to improvements in development
methods. The advantage of studying OSS projects is that
process and product data is readily available.

APPENDIX

TOOLS USED TO EXTRACT DATA

We developed our own tools to extract data from both the
CVS repository and the the email archive maintained by the
FreeBSD project. Here we provide details describing the
mechanisms used by the tools, and the tool design. Tools
are available from the authors for use in further research.

A.1 Analysis of Log Files

The result of executing the CVS “log” command is stored in
a log file. Fig. 5 displays a segment of the log file that
represents one delta. The log file consists of a sequence of
segments; each segment describes the deltas for one file
using the following format:

. The log of all deltas committed to a FreeBSD file is
grouped into a set of continuous lines. The first line
of a segment denotes the name of the file. In Fig. 5,
line 2 shows the beginning of the log of deltas made
for the file /src/bin/cp/cp.c.

. Each delta is denoted as a “revision” in the log file.
Each revision contains the following information:
revision number, revision date and time, committer
ID, status, number of lines added and deleted, and a
textual description of the change. Lines 4-12 of Fig. 5
show this information for revision number 1.40 of
FreeBSD file /src/bin/cp/cp.c. The delta was
committed on 2002/09/05 at 21:33:47 by a committer
whose ID is “johan”. The committer added nine lines
and deleted five lines of code.

The data extraction tools retrieve the following informa-
tion from the log file:

. The number of people that contributed deltas: One
tool searches for all revisions within the log file. It
assumes that a revision begins with the keyword
“revision” (line 4 in Fig. 5), and ends with a series of
“-” characters (line 12). It extracts the ID of the
committer from each revision. The assumption is
that the ID of the committer immediately follows the
keyword “author:”. The IDs from all revisions are
placed into a bag of IDs. The tool generates the set of
unique developer IDs from this ID bag.

. The number of delta committed by each committer:
A tool simply counts the number of occurrences of
each ID in the bag of IDs.

. The total of deltas committed to the directory: This is
the number of elements in the bag of IDs.

. The total number of lines added to the directory: A
tool extracts and sums the number of lines added to
each revision.

The tools distinguish between deltas that fix bug and

deltas that add new features. Descriptions of deltas to fix
bugs contain the keyword “PR” (as in line 8 in the Fig. 5).

Deltas without this keyword represent deltas that add new

features. The tools also distinguish between deltas that
contribute to code (files with “.h” and “.c” extension), and

deltas to noncode files (such as readme files and script files).

A.2 Tool Design

Fig. 6 shows the architecture of our information retrieval
tools. This design is a variant of the Strategy Pattern.

LogFileReader is an abstract class containing common

properties that are shared by all of the tools. It has
methods to

1. read a CVS log file,
2. search for segments of changes to the desired files,
3. extract all deltas to these files,

492 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Fig. 5. A portion of the log file with information from one delta.

Fig. 6. The Architecture of the retrieval tool.

4. retrieve information from the deltas, and
5. save the information into text files.

Shaded boxes in Fig. 6 represent the concrete information

retrivial tools. These tools inherit methods 1 and 3 from

LogFileReader. They modify methods number 2, 4, and 5

to extract different information.

Each tool has two input parameters: the names of the

input and output files. The tools are written in Java and run

under Java Development Kit (JDK) version 1.4.0 or higher.

The following describes the function of each tool:

. FileMaintainerCounter examines all files in the
src directory and counts the number of contributors
who have changed each file. The output file stores
the number of contributors to each file in the
directory in a separate line with the following
format:

[File name] –> [Number of contributors]

. LineCounter also examines all files, and counts the
number of lines added (and deleted) to (from) each
file. The results are printed to the standard output.

. NameExtractor creates a bag of all occurrences
of contributors IDs and saves them into two files:
file output_new for new feature deltas and file
output_fix for bug fix deltas.

. SourceLogNameExtractor extracts information
similar to that found by NameExtractor, but it
examines only source code files (.h and .c files).

. SourceLogThreeYearNameExtractor is similar
to SourceLogNameExtractor. However, it ana-
lyzes the data in each three-year period (1994-1996,
1997-1999, 2000-2002). Results are saved into six files:
newoutput19941996, newoutput19971999,
newoutput20002002, fixoutput19941996,
fixoutput19971999, and fixoutput20002002.

. NameCounter is a tool that is not a concrete
LogFileReader. It also has two input parameters.
The first parameter is the name of the input file that
stores the bag of IDs. The second parameter is the
name of the output file that is created by Name-

Counter. Each line of the output file has the ID of a
committer and the number of deltas contributed by
the committer.

Class Revision is used to extract information from each

log file revision. It also has a method to test whether a delta

is submitted to fix bugs or to add new features. Class

NameCounter is used to analyze the name bags created by

NameExtractor, SourceLogNameExtractor, and

SourceLogThreeYearNameExtractor. NameCounter

determines the number of deltas contributed by each

contributor.
Readers who are interested in these tools are welcome to

contact the authors for further information.

ACKNOWLEDGMENTS

The authors would like to thank the many FreeBSD

project participants for help on this research. FreeBSD

Core Team members W. Peters, J. Baldwin, M. Losh, and

M. Murray provided detailed project information. Core

Team member R. Watson and FreeBSD developer J. Gibbs

helped us to mirror the FreeBSD CVS repository. GNATS

Administrator C. Davies provided information about PR

classes and the bug report process. They also thank

Audris Mockus for his encouragement and for his very

helpful comments and suggestions for revising and

extending an earlier version of this paper. Suggestions

by the reviewers helped to improve the presentation of

our results. This material is based in part on work

supported by the US National Science Foundation under

grant CCR-0098202. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the

views of the US National Science Foundation.

REFERENCES

[1] D. Cooke, J. Urban, and S. Hamilton, “Unix and Beyond: An
Interview with Ken Thompson,” Computer, vol. 32, no. 5, pp. 58-
62, May 1999.

[2] T.T. Dinh-Trong and J. Bieman, “Open Source Software Develop-
ment: A Case Study of FreeBSD,” Proc. 10th Int’l Software Metrics
Symp. (Metrics 2004), pp. 96-105, 2004.

[3] J. Feller, “Meeting Challenges And Surviving Success,” Proc. 24th
Int’l Conf. Software Eng. (ICSE-24) Second Workshop Open Source
Software Eng., pp. 669-670, 2002.

[4] J. Feller, B. Fitzgerald, and A. Hoek, “Making Sense of the Bazaar:
First Workshop Open Source Software Engineering,” ACM
SIGSOFT Software Eng. Notes, vol. 26, no. 6, pp. 51-52, 2001.

[5] N. Fenton and S.L. Pfleeger, Software Metrics—A Rigorous and
Practical Approach, second ed. London: Int’l Thompson Computer
Press, 1997.

[6] B. Fitzgerald and T. Kenny, “Developing an Information Systems
Infrastructure With Open Source Software,” IEEE Software, vol. 21,
no. 1, pp. 50-55, Jan.-Feb. 2004.

[7] K. Fogel, Open Source Development with CVS, first ed. Coriolis
Open Press, http://cvsbook.red-bean.com/, 1999.

[8] E. Gamma, R Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[9] M. Godfrey and Q. Tu, “Evolution in Open Source Software: A
Case Study,” Proc. Int’l Conf. Software Maintenance (ICSM), pp. 131-
142, 2000.

[10] F. Kerlinger, Foundations of Behavioral Research, third ed. Orlando,
Fla: Harcourt Brace Jovaonvich College Publishers, 1986.

[11] D. Krantz, R. Luce, P. Suppes, and A. Tversky, Foundations of
Measurement, volume I Additive and Polynomial Representations. New
York: Academic Press, 1971.

[12] T. Lawrie and C. Gacek, “Issues of Dependability In Open Source
Software Development,” ACM SIGSOFT Software Eng. Notes,
vol. 27, no. 3, pp. 34-37, 2002.

[13] A. Lonconsole, D. Rodriguez, J. Borstler, and R. Harrison, “Report
on Metrics 2001: The Science & Practice Of Software Metrics
Conference,” ACM SIGSOFT Software Eng. Notes, vol. 26, no. 6,
pp. 52-57, 2001.

[14] S. Lussier, “New Tricks: How Open Souce Changed the Way My
Team Works,” IEEE Software, vol. 21, no. 1, pp. 68-72, Jan.-Feb.
2004.

[15] D.G. Messerschmitt, “Back to the User,” IEEE Software, vol. 21,
no. 1, pp. 89-90, Jan.-Feb. 2004.

[16] J. Michell, An Introduction to the Logic of Psychological Measurement.
Hillsdale, N.J.: Lawrence Erlbaum Assoc., 1990.

[17] A. Mockus, T. Fielding, and D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla,” ACM
Trans. Software Eng. and Methodology, vol. 11, no. 3, pp. 309-346,
July 2002.

[18] Netcraft, “Nearly 2 Million Active Sites Running FreeBSD,”
Netcraft, July 2003, http://news.netcraft.com/archives/2003/07/
12/nearly_2_million_active_sites_running_freebsd.htm.

DINH-TRONG AND BIEMAN: THE FREEBSD PROJECT: A REPLICATION CASE STUDY OF OPEN SOURCE DEVELOPMENT 493

[19] J.S. Norris, “Mission-Critical Development with Open Sourse
Software: Lessons Learned,” IEEE Software, vol. 21, no. 1, pp. 42-
49, Jan.-Feb. 2004.

[20] J. Nunnally, Psychometric Theory, second ed. McGraw-Hill, 1978.
[21] G. Perkins, “Cultural Clash and the Road to World Domination,”

IEEE Software, vol. 16, no. 1, pp. 23-25, Jan./Feb. 1999.
[22] GNATS GNU Project, Gnats (version 4.0), http://www.gnu.org/

software/gnats/, 2003.
[23] The Free BSD Project, FreeBSD (version 5.0), [computer software],

http://www.freebsd.org/, 2003.
[24] E.S. Raymond, “Up from Alchemy,” IEEE Software, vol. 21, no. 1,

pp. 88-90, Jan.-Feb. 2004.
[25] S. Schach, B. Jin, D. Wright, G. Heller, and J. Offutt, “Maintain-

ability of the Linux Kernel,” IEE Proc.—Software, vol. 149, no. 1,
pp. 18-23, Feb. 2002.

[26] N. Serrano, S. Calzada, J.M. Sarriegui, and I. Ciordia, “From
Proprietary to Open Source Tools in Information Systems
Development,” IEEE Software, vol. 21, no. 1, pp. 56-58, Jan.-Feb.
2004.

[27] G. Wilson, “Is the Open Source Community Setting a Bad
Example?” IEEE Software, vol. 16, no. 1, pp. 23-25, Jan./Feb. 1999.

[28] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: An Introduction.
Kluwer Academic, 2000.

[29] M. Wu and Y. Lin, “Open Source Software Development: An
Overview,” Computer, vol. 46, no. 6, pp. 33-38, June 2001.

Trung T. Dinh-Trong received the BS degree in
computer science from Hanoi University of Tech-
nology, Vietnam, in 2000 and the MS degree in
computer science fromColoradoStateUniversity,
in 2003. He is currently a PhD candidate in the
DepartmentofComputerScience,ColoradoState
University. His research interests include design
evaluationand testing, codegeneration fromUML
design models, and the software development
process.

James M. Bieman is a professor of computer
science and electrical and computer engineer-
ing at Colorado State University. He is the
editor-in-chief of the Software Quality Journal,
published by Springer. His work is focused on
the evaluation and improvement of software
design quality. In particular, he is studying
whether early design decisions match demands
for change as systems evolve. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

494 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

