
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2003; 8: 201–215 (DOI: 10.1002/spip.189)

The GNOME Project: a
Case Study of Open Source,
Global Software
Development

Research Section
Daniel M. German*,†

Software Engineering Group Department of Computer Science University
of Victoria Victoria BC, Canada

Many successful free/open source software (FOSS) projects start with the premise that their
contributors are rarely colocated, and as a consequence, these projects are cases of global
software development (GSD). This article describes how the GNOME Project, a large FOSS
project, has tried to overcome the disadvantages of GSD. The main goal of GNOME is to create
a GUI desktop for Unix systems, and encompasses close to two million lines of code. More than
500 individuals (distributed across the world) have contributed to the project. This article also
describes the software development methods and practices used by the members of the project,
and its organizational structure. The article ends by proposing a list of practices that could
benefit other global software development projects, both FOSS and commercial. Copyright 
2004 John Wiley & Sons, Ltd.

KEY WORDS: software engineering; global software development; open source software; empirical study; management of software
projects

1. INTRODUCTION

The three most important factors that differentiate
Global Software Development (GSD) from tradi-
tional software development are distance, time
differences, and cultural differences (Carmel 1999).
Several reasons are credited for the growing pop-
ularity of GSD, such as the premise of cheaper
cost of production, proximity to customers, a larger
labor pool, and the natural globalization of soft-
ware companies, result of their growth, mergers
and acquisitions (Carmel and Agarwal 2001, Her-
sleb and Moitra 2001). At the same time, GSD

∗ Correspondence to: Daniel M. German, Software Engineering
Group, Department of Computer Science, University of Victoria,
Victoria BC, Canada
†E-mail: dmgerman@uvic.ca

Copyright  2004 John Wiley & Sons, Ltd.

is considered to be a difficult endeavor. As Her-
sleb and Moitra stated, ‘there is strong evidence
[. . .] that multi-site development tasks take much
longer than comparable colocated tasks’ (Hersleb
and Moitra 2001).

Free and Open Source Software (FOSS) engineer-
ing projects have been of particular interest to the
GSD research community because they start with
the premise that developers are rarely colocated.
While it is true that many of these projects are com-
posed of a handful of individuals, several large,
successful projects involve a significant number of
contributors, ranging from software architects and
engineers to software testers and documentation
authors. These contributors are often located in
different countries. These teams display the three
factors that Carmel attributed to GSD: they are sep-
arated by a large distance, work in different time
zones, and have cultural differences. For example,

Research Section D. M. German

the MAINTAINERS file in the version 2.4.22 of
the Linux kernel contains email addresses from
domains corresponding to countries in the Ameri-
cas, Europe, and Australasia.

An understanding of the FOSS development
process can potentially lead towards potential
advances in GSD. The summary of the 2nd Interna-
tional Workshop on Global Software Development
(Damian 2002) states the need to research how open
source development teams deal with issues of trust
and personal interrelationships; Elliot and Scacchi
have stated that ‘studies are needed to understand
how people in these (FOSS) projects work together
to coordinate software development at a distance
and what social worlds arise to assist in this collab-
oration’ (Scacchi 2004).

The FOSS movement has demonstrated that
it can create high-quality software. The most
distinctive characteristic of FOSS projects is its
license agreement, which gives its users certain
rights such as the ability to run the software,
inspect its source code, modify it and redistribute
it, without having to pay for that right. Successful
FOSS projects tend to be created by communities
that are globally distributed, and there is currently
no accepted framework that defines how FOSS
is or should be developed in practice (Scacchi
2004). Instead, every project tends to have its
own framework, created as a consequence of
its developers’ experience and the adoption of
practices that seem to be successful in other projects.

1.1. Research Questions

This article looks in detail into the organization
and software engineering practices followed by the
GNOME project, in an attempt to understand how
its contributors make it a success of GSD. GNOME,
the GNU Network Object Model Environment
(gnome.org), is a free (as defined by the General
Public License, and therefore an open source) desk-
top environment for Unix systems. One particular
feature of GNOME is that it is being created by hun-
dreds of contributors, making it one of the largest
FOSS projects. The objective of this research is to
answer the following questions: how do GNOME
contributors organize themselves? What are the pro-
cesses they follow to overcome their dislocation?
What type of communication do they use? How do

they interact? Are there any practices that they fol-
low that could be used by other teams developing
software, both FOSS and commercial?

1.2. Methodology

The author became a contributor to GNOME in 1999,
and was the maintainer of one of its modules (ggv, a
postscript viewer) for over one year. He contributed
patches to this module until 2001 and he has been
a member of the GNOME Foundation (described
in Section 3.2) since its conception. This article is
the result of what an anthropologist would call an
immersion study. This study was supplemented
by the analysis of the logs of its CVS (Concurrent
Versions System) repository and the archives of its
104 mailing lists (German in press, German and
Mockus 2003).

2. GNOME

GNOME was started in 1996 by Miguel de Icaza
in order to create a free collection of libraries
and applications that could make Linux a viable
alternative in the desktop. GNOME is composed of
three main components:

• An easy-to-use GUI environment.
• An ‘office suite’ of applications, which includes

a spreadsheet, a word processor, and a large set
of simpler applications.

• A collection of tools, libraries, and components
to develop this environment and its application.

The first version (0.0) was posted in August 1997
and provided only one simple application and a set
of libraries. Version 1.0 was released in March 1999,
a point at which it was integrated into Red Hat Linux
as its default desktop (and continues to be part of it).
Version 2.4 is the latest stable version, released in
September 2003, and its current official distribution
(Charles 1999, de Icaza 2002). GNOME currently
comprises almost two million lines of code.

A stable, easy-to-use desktop suite is seen as a
requirement for Unix to become a viable alternative
to Microsoft or Apple operating systems (Charles
1999, Shirky 2000). As a consequence, many Unix
companies are particularly interested in the success
of GNOME. GNOME 1.0 was the first version
included in Red Hat Linux, and this decision
acknowledged GNOME as a strategic collection of

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

202

Research Section The GNOME Project

applications for Red Hat’s goal to become a desktop
operating system. Red Hat set up Red Hat Advance
Development Labs to assist in the development of
GNOME. Since 1999, Red Hat has dedicated several
developers and documenters to the GNOME project
(de Icaza 2002).

At the end of 1999, two companies–Eazel and
Ximian–were established to continue the develop-
ment of GNOME components and to sell services
around it. Eazel concentrated on the development
of the file manager (Nautilus), while Ximian con-
centrated on the development of a groupware,
e-mail tool called Evolution, and on the release of a
version of GNOME and its corresponding commer-
cial support. Owing to lack of additional funding,
Eazel folded early in 2001, while Ximian (a pri-
vate company that was created by the founders of
the GNOME Project, including Miguel de Icaza),
continues to operate and currently has four seats
in the board of directors of the GNOME Foun-
dation. Ximian has recruited some of the most
active volunteer contributors to the project. One
of Ximian’s main products are a shrink-wrapped
version of GNOME called ‘Ximian Desktop’, and a
subscription-based service for the automatic updat-
ing of software in the client’s machine. Ximian was
bought by Novell in August 2003.

In 2000, Sun Microsystems decided to adopt
GNOME as its desktop software for Solaris (replac-
ing the Common Desktop Environment–CDE). Sun
has established the ‘Sun GNOME Accessibility
Development Lab’, and its paid employees (who
work alongside members of the GNOME commu-
nity) help define and drive accessibility support
in GNOME, as well as contribute writing code.
Sun currently supports GNOME under Solaris and
plans to include it in future releases of the operating
system (Sun Microsystems 2003).

3. ORGANIZATION

In order to handle a project of this magnitude,
the code base is divided into modules. There are
four main groups of modules: (a) required libraries
(such as the libraries for GUI, printing, XML
processing, CORBA); (b) core applications (such as
its applets, an editor, a windows manager, and
a configuration tool); (c) applications (such as a
spreadsheet, a mail client, a word processor), and
(d) others (several dozen modules and growing,

these modules represent individual applications
that are not considered part of the core of GNOME).

GNOME is not a monolithic application. Rather,
it is a large collection of libraries and applications
that work and evolve together. There is no single
GNOME maintainer who decides the present and
future of the project. Instead, each module has its
own maintainers, set of developers, development
timeline, and objectives. Some modules might have
an unofficial industrial sponsor, who employs the
core contributors and maintainers of the module to
do their work.

Each module has one or more maintainers, who
oversee the development of their corresponding
module and coordinate and integrate the contri-
butions of other developers to their module (Ger-
man 2002). These modules are interrelated between
themselves, but their relationships are kept to the
minimum, so each module can evolve as inde-
pendently as possible from the rest. The official
distribution of version 2.4 contains 76 different
modules. This distribution includes only the basic
infrastructure of GNOME (modules of type a and b
as described above).

Module maintainers serve the roles of leaders for
their module. Lerner and Triole (2000) identified the
main roles of a leader in an FOSS project as:

• Providing a vision;
• Dividing the project into parts in which individ-

uals can tackle independent tasks;
• Attracting developers to the project;
• Keeping the project together and prevent fork-

ing.

The success of an FOSS project is dependent on
the ability of its maintainers to divide the project into
small parts in which the developers can work with
minimal communication between each other and
with minimal impact to the work of others (Lerner
and Triole 2000). GNOME has been able to attract
and maintain good, trustworthy maintainers in its
most important modules, and many are employees
of companies who sponsored the project.

3.1. Management and Direction

Although not as famous as Linus Torvalds, Miguel
de Icaza has been recognized as an important indi-
vidual in the open source movement. The magazine
Technology Review selected him as one of the inno-
vators of 1999: ‘De Icaza was chosen both for

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

203

Research Section D. M. German

his accomplishments in the GNOME Project and
as a representative of the open-source software
movement, which embodies a creative new mode
of innovation: a large-scale collaboration over the
Internet. People like Miguel are the future of tech-
nology’ (Linus Torvalds was also included in this
list) (The Technology Review 1999). Before starting
GNOME, de Icaza was a well-known personality in
the open source movement, and this is exemplified
by the fact that he is known on a first name basis as
Miguel in these circles. This is one of the factors that
allowed him to start GNOME and create a critical
mass around it.

For many years, GNOME used to be run by a
‘legislature’ where each of its contributors had a
voice, and a vote and the developer’s mailing list
(developers) was the ‘floor’ where the issues were
discussed. Miguel de Icaza, its founder, served as
the ‘constitutional monarch’ and ‘supreme court’ of
the project, and had the final say on any unsolvable
disputes. This model is very similar to the one used
by Perl during its first years.

In October of 1999, Miguel de Icaza, along with
Nat Freeman, another of the core developers of the
GNOME project created Helixcode (now Ximian,
and recently bought by Novell), a commercial
venture aimed at continuing the development of
GNOME, and planning to generate income by
selling services around it.

The perception of many contributors was that
companies such as Red Hat (that already controlled
the development of several of the critical low-level
libraries of the project) and Ximian (which had
taken over the development of the mail client of
the project) could hijack the project and steer it
away from its original goals. During 2000, and after
months of debate in the mailing lists, the GNOME
community decided to create a foundation, similar
to the Apache Software Foundation (its goal is to
oversee the present and future of the Apache
project) to take over the direction of GNOME
and guarantee that it would continue with its
original goals.

3.2. The GNOME Foundation

The mandate of the Foundation is ‘to further
the goal of the GNOME Project: to create a
computing platform for use by the general public
that is completely free software’. (The Gnome
Foundation 2000).

The Foundation is composed of four entities:

1. Its members. Any contributor to the project
can apply for membership. A contributor is
defined as ‘any individual who has contributed
to a non-trivial improvement of the GNOME
Project, such as code, documentation, transla-
tions, maintenance of project-wide resources,
or other non-trivial activities which benefit the
GNOME Project. Large amounts of advocacy or
bug reporting may qualify one as a contributor,
provided that such contributions are signifi-
cantly above the level expected of an ordinary
user’ (The Gnome Foundation 2002). The term
of the membership is two years, and it is renew-
able, thus guaranteeing that the Foundation is
populated with current contributors.

2. The Board of Directors. The Board of Directors
is composed of 11 members, who are expected
to be Foundation members and who are demo-
cratically elected by the rest of the Foundation
members. Not more than four members can
belong to the same corporation or organization
and this rule has been already enforced several
times in the past. Furthermore, the members
of the Board are supposed to serve in a per-
sonal capacity and not as representatives of
their employers. The Board is responsible for
making sure that GNOME fulfills its expected
goals. As defined by the Foundation’s charter,
the Board is the primary decision-making body
of the GNOME Foundation. The Board meets
regularly (via telephone call) to discuss the cur-
rent issues and take decisions on behalf of the
entire community. The minutes of each meeting
are then published in the foundation-announce
mailing list. Board members are expected to
contribute a significant part of their time to
the Project.

3. The Advisory Board (composed of corporate
and non-profit organizations). Some of the
corporate members of the Advisory Board
are IBM, MandrakeSoft, Red Hat, and Sun.
The Debian Project and the Free Software
Foundation are its only two non-for-profit
members. Corporate members are expected
to pay $10,000 in annual dues, while there
are no membership fees for non-for-profit
organizations.

4. The executive director, who is a paid employee
of the Foundation, is responsible for ‘managing

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

204

Research Section The GNOME Project

and growing the GNOME foundation as an
organization’.

The Foundation fulfills the following four roles
(Mueth and Pennington 2002):

1. It provides a democratic process in which the
entire GNOME development community can
have a voice. The Board is an elected represen-
tative of the community and is expected to act
on its behalf and best interest.

2. It guarantees that the decisions on the future
of GNOME are done in an open and transpar-
ent way.

3. It is responsible for communicating information
to the media and corporations.

4. It is a legal entity that can accept donations and
make purchases to benefit GNOME.

3.3. Contributors

GNOME makes a strong point that coders are not
the only contributors to a project. Anybody with
a significant contribution can achieve a signifi-
cant position in the project (ultimately becoming
a member of the Board of Directors). The number of
active GNOME contributors is difficult to deter-
mine. Frequently, a developer might contribute
actively during some periods and not at all dur-
ing others. Furthermore, some contributors might
contribute bug reports or patches directly to a devel-
oper. By October 2003, the CVS repository had
recorded contributions from 569 different user Ids,
and the Foundation was composed of 320 members.

3.3.1. The Paid Employees
As we described in German (2002), several com-
panies have been subsidizing the development of
GNOME. Red Hat, Sun Microsystems, and Ximian
are some of the companies that pay full-time
employees to work on GNOME. Paid employees are
usually responsible for the following tasks: project
design and coordination, testing, documentation,
and bug fixing. These tasks are usually less attrac-
tive to volunteers. By taking care of these tasks, the
paid employees make sure that the development
of GNOME continues at a steady pace. Some paid
employees also take responsibility (as maintainers)
for some of the critical parts of the project, such as
gtk+ and ORBit (Red Hat), the file manager Nau-
tilus (Eazel, now bankrupt), Evolution (Ximian), etc.
Paid employees contribute not only in the form of

code. One of the most visible contributions of Sun
employees is the proposal of the GNOME Acces-
sibility Framework, whose goals are to guarantee
that GNOME can be used by a vast variety of users,
including persons with disabilities. In September
of 2002, Sun received the ‘Helen Keller Achieve-
ment Award’ from the American Foundation of the
Blind for its GNOME Accessibility Framework (Sun
Microsystems 2002).

3.3.2. Volunteers
Volunteers still play a very important role in the
project and their contributions are everywhere: as
maintainers and contributors to modules, as bug
hunters, as documenters, as beta testers, etc. In
particular, there is one area of GNOME that is
done mainly by volunteers – internationalization.
The translation of GNOME is done by small teams
of volunteers (volunteers who usually speak the
language in question and who are interested in see-
ing support for their language in GNOME). The
volunteers spread over a large spectrum. Some are
students, some are software professionals, and some
are academics (for example, Dr. Andreas L. Guel-
zow, Professor at the Department of Mathemati-
cal and Computing Sciences, Concordia University
College of Alberta is one of the two maintainers of
gnumeric). Most of the paid developers in GNOME
were, at some point, volunteers. Essentially for the
volunteers, their hobby became their job.

3.3.3. Nonprogrammers
As with any other open source project, GNOME
is a meritocracy, where people are valued by the
quality (and quantity) of their contributions. Several
contributors have reached a high status within
the project, even if they are not programmers.
The best-known examples are Telsa Gwynne and
Tuomas Kuosmanen (better known as TigerT).
Ms. Gwynne’s main contributions have been in
documentation; in 2001, she was elected to the
Board of Directors. TigerT has designed many of
the graphical elements of GNOME, including its
logo, and is an important contributor to the GIMP
project too.

3.3.4. Attracting New Contributors
One of the challenges of mature FOSS projects is to
attract new contributors who can help the current
developers, and in some cases, replace them when

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

205

Research Section D. M. German

they cannot continue working on it. As the project
grows, the cost of entry is increased. GNOME,
acknowledging this, has attempted several ways
to attract people.

• Bug fixing. Like industry, bug fixing is perceived
as a way for the newcomer to get acquainted
with the source code and the architecture of
the project.

• TODO lists. Every module is expected to have
a TODO file that lists activities that need to
be done.

• GNOME-love mailing list. Created in March of
2001, the description of the mailing list reads
‘In the GNOME Love mailing list you will
find a helping hand that will help you get
up to speed in contributing at any level to
this exciting project. [. . .] Consider GNOME
Love to be a place where you will learn new
technologies, where you will learn how to work
with other contributors and enjoy the passion of
software development.’ Potential contributors
are encouraged to post a message where they
state their interests, credentials and request a
‘task’. The mailing list coordinators (or other
maintainers) will then propose an activity.

3.4. Committees

Given the lack of a single company driving the
development according to its business goals, FOSS
projects tend to rely on volunteers to do most of the
administrative tasks of those projects. The Foun-
dation is responsible for organizing committees to
complete tasks the Foundation identifies as impor-
tant. These committees are headed by Board mem-
bers. Contributors then volunteer to be members of
these committees. Examples of committees are:

• The foundation membership committee is
responsible for maintaining the membership list
of the Foundation, processing requests for mem-
bership, and the annual elections for the new
Board of Directors.

• The fund-raising committee is dedicated to find
ways to promote donations from individuals
and organizations.

• The sysadmin committee is responsible for
maintaining the infrastructure of the project,
which includes making sure that the machines
and software are running as expected.

• The GUADEC committee organizes an annual
conference in an effort to get contributors
together. This committee is responsible for the
entire organization of the conference: requesting
proposals for venues, selecting a venue, organiz-
ing a program committee, organizing the actual
event, etc.

• The Release Team’s responsibility is the plan-
ning and the coordination of the overall project.
Its job is to find a proper schedule for the ‘next’
release and to make sure that the project actually
follows the schedule.

3.5. The Release Team

Because GNOME is a collection of several different
modules, each has its own set of core contributors,
who might have very different time commitments
to the project. Furthermore, each module has its
one release schedule. The organization of a release
schedule for GNOME is not easy. This task is the
main concern of the Release Team that is responsible
for the planning and coordination of the overall
project. They are responsible for developing, in
coordination with the module maintainers, release
schedules for each of the different modules, and
the schedule of the overall project. They also
keep track of the development, making sure that
everything stays within schedule. Jeff Waugh, a
GNOME Foundation member, summarized the
accomplishment of the team and the skills required
(in his message of candidacy to the Board of
Directors in 2002): ‘[The Release Team] has earned
the trust of the GNOME developer community, madly
hand-waved the GNOME 2.0 project back on track, and
brought strong co-operation and ‘the love’ back to the
project after a short hiatus. It has required an interesting
combination of skills, from cheer-leading and Maciej-style
police brutality to subtle diplomacy and ‘networking’’.
(Waugh 2002)

A release schedule is composed of the following:

• Regular test release dates, approximately every
2 weeks. The project uses a numbering system
similar to Linux. For example, versions 2.1 and
and 2.3 are test releases, while 2.0, 2.2 and 2.4 are
stable releases. Table 1 lists the main versions of
the project and the month they were released.

• Dates for:
– Feature freeze, after which no more features

will be allowed to a given module.
Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

206

Research Section The GNOME Project

– API freeze, after which no further changes
to the APIs can be made.

– User Interface (UI) freeze is the deadline
for changes in the UI, and after this date
only fixes to major UI bugs are allowed.
This allows documenters to start their work
without fear of major changes to the UI.

– UI Review and String freeze, after which
no UI, or string changes are allowed with-
out confirmation by the Release Team.
This allows the internationalization to start
(translation of the UI).

– Hard code freeze, which avoids a last minute
accident that could risk the stability of a
module or the project.

A natural question to ask is ‘is the release schedule
useful?’. Given that the web site uses CVS for its
own version control, it was possible to retrieve the
history of changes in the schedule for its 2.4 release.
The final schedule for this version was decided
on April 20, 2003, when September 10, 2003 was
decided as the release date for version 2.4. The
schedule was not modified since that date, except
for the ‘Hard Code Freeze’ date, which was delayed
by 2 days. Table 2 shows the schedules as defined
in April 20 and its final version:

As it was planned, version 2.4 was released on
Sept. 10, 2003. The Release Team scheduled that
date 5 months in advance, and delivered on time.

Table 1. Main milestones of the
GNOME project

Version 0.0 Aug. 1997
Version 1.0 March 1999
Version 1.2 May 2000
Version 1.4 April 2001
Version 2.0 June 2002
Version 2.2 Feb. 2003
Version 2.4 Sept. 2003

Table 2. Release schedule for version 2.4

Proposed Final Event

June 9 same Feature and API/ABI freeze
July 7 same UI freeze
August 4 same Strings and Hard UI freeze
August 23 August 25 Hard Code Freeze
September 1 same Release Candidate tarballs due
September 3 same Release Candidate release
September 8 same 2.4.0 final tarballs due
September 10 same 2.4.0 final release

This is a remarkable feat, especially considering
that it involved the synchronization of 72 different
modules with no central management authority
other than the GNOME Foundation.

4. INFRASTRUCTURE

One of the main requirements for GSD is agreement
on a common toolkit, such that each member of the
team will have access to it. In a private development,
this is not an issue, as it is expected that the
organization will provide the necessary software
and hardware infrastructure.

This infrastructure required by GNOME can be
divided in two main categories: (a) contributor
level, which is the hardware and software necessary
for a given individual to collaborate with the
project; and (b) community level, which is used
by all the collaborators to communicate and share
their progress.

Given the philosophy behind FOSS and because
volunteers have always been perceived as the
critical driving force in FOSS, the toolkit of choice
is usually FOSS itself (one notable exception to this
rule is the use of bitkeeper a commercial product
for configuration management used by the Linux
project, free to be used by Linux developers, with
certain restrictions).

GNOME uses, like many FOSS projects, the GNU
toolkit (gee, make, autoconf, automake, emacs, vi,
etc.), CVS for software configuration management,
Bugzilla for bug management, GNU Mailman for
its mailing lists, and of course, because its goal is
to provide a desktop for Unix, it uses Unix as its
development platform. Potential developers, by just
installing a recent version of Linux, have an envi-
ronment that allows them to start contributing to
the project. The cost of entry is therefore minimized.

During its conception, GNOME faced a boot-
strapping problem: it required a GUI toolkit, but
none was available (with a compatible license). In
an example of the second principle of the Cathe-
dral and the Bazaar, ‘Good programmers know what
to write. Great ones know what to rewrite (and reuse)’
(Raymond 1999) GNOME proceeded to reuse the
X11 widgets developed for the GNU Image Manip-
ulation Program (GIMP). This library is known as
the gtk+ GIMP Toolkit, and GNOME became its
maintainer and continues to improve it. GNOME
has continued to create libraries and infrastructure

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

207

Research Section D. M. German

that are needed to fulfill its goals, for example, a
UI generator (glade) and a printing library (gnome-
print).

At the level of community infrastructure, the
project has usually relied upon donation of band-
width and servers by third parties. Universities
have been a major source of resources in this cate-
gory (frequently without the administration being
aware of it). When he started GNOME, de Icaza was
a system administrator working for the National
Autonomous University of Mexico (UNAM). At that
time, the UNAM provided the basic communication
infrastructure for the project: a CVS repository, a ftp
server and a mail server. Currently, many different
organizations provide servers and mirrors that help
GNOME. For example, the Academic Computer
Club at the Umeå University in Sweden provides
the main ftp server for GNOME.

5. REQUIREMENTS

As described in (Scacchi 2002), most FOSS projects
do not have a traditional requirement’s engineering
phase. Specially at the beginning of GNOME, the
only stakeholders were the developers who acted
as users, investors, coders, testers, documenters,
etc., with little interest in the commercial success of
the project, but who, at the same time, wanted
to achieve respect from their peers for their
development abilities. One of the main goals of
the developers is to produce software that is used
by its associated community.

In particular, we can identify the following
sources of requirements in GNOME:

• Vision. One or several leaders provide a list of
requirements that the system should satisfy. In
GNOME, this is epitomized by the following
non-functional requirement: ‘GNOME should
be completely free software’ (free as defined by
the Free Software Foundation).

• Reference Applications. Many of its components
are created with the goal of replacing similar
applications. The GNOME components should
have most if not the same functionality as these
reference applications. For example, gnumeric
uses Microsoft Excel as its reference, ggv uses
gv and kghostview, Evolution uses Microsoft
Outlook and Lotus Notes.

• Asserted Requirements. In a few cases, the
requirements for a module or component are

born from a discussion in a mailing list. In
some cases, a requirement emerges from a
discussion whose original intention was not to
do requirement analysis. In other instances (as it
is in the case of Evolution), a person posts a clear
question instigating discussion on the potential
requirements that a tool should have. Evolution
was born when several hundred messages were
created describing the requirements (functional
and non-functional) that a good mailer should
have had before coding started.

• A prototype. Many projects start with an artifact
as a way to clearly state some of the requirements
needed in the final application. Frequently, a
developer proposes a feature, implements it,
and presents it to the rest, who then decide on
its value and choose to accept the prototype
or scrap the idea (Hissam et al. 2001). GNOME
started with a prototype (version 0.0) created as
the starting point of the project.

• Post-hoc requirements. In this case, a feature
in the final project is added to a module
because a developer wants that feature and he
or she is willing to do most of the work, from
requirements to implementation and testing.
This feature might be unknown by the rest of
the development team until the author provides
them with a patch, and a request to add the
feature to the module.

Regardless of the method used, requirements are
usually gathered and prioritized by the leaders of
the project, the maintainer or maintainers of the
module and potentially the Foundation. A main-
tainer has the power to decide which requirements
are to be implemented and in which order. The rest
of the developers could provide input and apply
pressure on the maintainers to shape their decisions
(as in post-hoc requirements). Sometimes a subset of
the developers of an FOSS project might not agree
with the maintainer’s view, and could potentially
jeopardize the project, and create what is known as
a fork. So far this has not happened within GNOME.

6. COMMUNICATION

Developers are located in many different places
all around the world. As described above, some
are volunteers and the rest work for different
organizations (and even within those organizations,
they might still be located in different parts of

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

208

Research Section The GNOME Project

the world, as is the case with some Ximian
developers). Communication relies on the following
infrastructure:

• Mailing Lists. The GNOME project has exten-
sively used mailing lists. These lists have a wide
range of purposes: some are intended for final
users, some for particular modules, some for
announcements, etc. Mailing lists provide a trail
of decision making for the project. The GNOME
web site lists a total of 104 mailing lists. Some
organizations, such as Ximian, provide mailings
lists for the modules that it is responsible for
(such as the Evolution and GtkHtml). Mailing
lists are usually divided into discussion, users,
developers, and announcement lists

• IRC: Internet Relay Chat. The ‘water-cooler
conversations’ have been mimicked by using
IRC. Developers connect to a common IRC
server/channel and wait for other users to
connect. The conversation is informal, with no
real agenda and no permanent record.

• Web sites. The web sites of the project comprise a
large amount of information, intended for every
type of contributor to the project (coders, bug
reporters, bug hunters, documenters, transla-
tors, etc.), for its users, and for any casual visitor.

• GUADEC, the GNOME Conference is a Founda-
tion’s effort to get developers together. Its goal
is to provide a venue for discussion, interaction,
and training. The Foundation attempts to sup-
port many of the developers who cannot afford
their own travelling expenses. The last GUADEC
lasted 5 days and took place in Dublin, Ireland.

• The GNOME Summaries. A summary is pub-
lished in the GNOME mailing list at regular
intervals. It usually contains the most rele-
vant events of the period, links to new or
improved documentation, news specific to dif-
ferent GNOME modules, a ‘Hacker Activity’
section, enumerating the most active modules
and the most active developers in the project,
and a bug-hunting section, listing the number of
current bugs per module including the progress
made during the period.

6.1. Conflict Resolution

Like any other social activity, from time to time con-
flicts between contributors arise. These conflicts are
usually resolved between the different conflicting

parties by finding a common point of agreement.
One of the most potentially problematic issues
in GNOME is the definition and evolution of its
libraries. During 2001, a long and tiring flamewar
erupted within the project, in which contributors
were divided in terms of which features should be
included in version 2.0. The core of the problem
was that some module maintainers and some mem-
bers of the Release Team had different ideas on
what should be and what should not be included in
the next release, and one of the changes involved a
major architectural modification. It was clear that an
official procedure to resolve these types of conflicts
did not exist.

In order to avoid future confrontations, a trans-
parent process was created to address the proposal
and acceptance of modifications to these libraries.
The procedure is detailed in the ‘GNOME Enhance-
ment Procedure’ document draft (Pennington 2001).
This document recommended the creation of the list
gep-announce, and a procedure to follow to pro-
pose changes ‘with wide impact, not to relatively
minor changes within a module’. The procedure is
as follows:

• Creation of a requirements document GEP
(GNOME Enhancement Proposal). Proposals
are classified as guidelines and requirements
proposals and should include:
– Name and email address of the owner(s).
– Date the document was posted to gep-

announce.
– Length of the discussion period, at minimum

1 week.
– Status of the GEP (Approved, Rejected,

Pending).
– A list of ‘responsible owners who will

approve/reject the GEP and evaluate the
solution proposals.

– A list of uncontroversial requirements (with
brief rationale/explanation as required).

– A list of controversial requirements (with
comments). Requirements by default are
considered uncontroversial, but if a require-
ment is contested by a contributor, it is
moved to a ‘controversial requirements’
section. This section will contain comments,
both by the creator of the GEP, and any other
contributor.

• Posting the GEP
Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

209

Research Section D. M. German

• Approving the GEP. The GEP is quickly
approved if there is no controversy. If there is
a controversy, discussion continues for 10 days,
followed by a ‘last call’ lasting 4 days. ‘After
this period, the responsible maintainers must
vote each controversial requirement in or out
of the approved requirements list. The vote to
keep each controversial requirement is simple
majority. After this vote concludes, the ‘con-
troversial requirements’ section should be split
in half, into approved/rejected requirements.
No requirements/comments should be deleted
from the document, even after they are rejected;
they should remain in the ‘rejected section’ for
archival purposes’ (Meeks 2001). Once the GEP
has been updated to reflect the approved and
rejected requirements, the responsible maintain-
ers vote. A two-third majority is needed to
approve a GEP. If there is no agreement on
who should be included in the maintainers list,
this issue is decided by the Board of Directors.
Once a GEP is approved, it cannot be modified.

Till date there have been a total of 13 GEPs,
but only 2 have been finalized (one rejected and
one approved). It is interesting to note that GEP 0,
which describes the GEP process, has not been
formally approved nor rejected. Regardless of
their status, GEPs have provided a formal and
transparent procedure in which differences can be
aired and solved.

6.2. GUADEC

The GNOME community organizes an annual
conference called ‘The GNOME User and Developer
European Conference’ (GUADEC). GUADEC has
been successful in bringing together developers,
users, and other parties interested in the project,
such as policy makers. Table 3 lists the history
of GUADEC. GUADEC hosts a technical papers
session and tutorials on its technology.

One of the goals of GUADEC is to bring together
the core developers in order that they meet face to

Table 3. GUADEC’s history

GUADEC I March 2001 Paris, France
GUADEC II April 2001 Copenhagen, Denmark
GUADEC III April 2002 Seville, Spain
GUADEC IV June 2003 Dublin, Ireland
GUADEC V 2004 Kristiansand, Norway

face, a factor that helps better communication and
potential conflict resolution. It also allows them to
plan next releases.

Part of the money raised by the Foundation
(through the program Friends of GNOME) is used
to help core developers pay their way to the
conference. GUADEC is considered an important
place in the decision-making process of GNOME,
as it is one of the few opportunities in which
contributors can be in the same location at the
same time. In fact, the original proposal for the
Foundation (the GNOME Steering Committee) was
created during GUADEC I.

7. CONTRIBUTORS AND THEIR
CONTRIBUTIONS

In order to understand the contributions to the
GNOME project, historical data from its CVS
repository was used. CVS keeps track of who
modifies which file, and the corresponding delta
associated with the modification. This change is
known as a file revision. CVS keeps information
such as who made the revision, when the actual
diff of the revision was done, number of lines
added, and number of lines removed. softChange
(German and Mockus 2003) was used to recover the
information from these logs and to enhance it. For
instance, CVS does not keep track of which files are
modified at the same time. softChange analyses the
logs, and rebuilds these groups of files, which are
then called Modification Requests (MRs). An MR
is a request by a contributor to commit a group
of files at the same time. The belief is that if two
files are part of the same MR, it is because they
are somehow interrelated. Contrary to source code
releases, CVS logs provide a very fine grained view
to the evolution of the project.

The logs of 62 of the modules (composing the 2.2
distribution of GNOME) were analyzed. In order
to provide a more accurate view of the current
group of contributors, only the year 2002 was
analyzed. It was decided to further narrow the
analysis and consider only contributors to the code
base (who will be referred as programmers) and
MRs involving C files (C is the most widely used
language in GNOME, and the number of C files
in these modules outnumber the files in the next
language – bash – by approximately 50 times).

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

210

Research Section The GNOME Project

A total of 185 programmers were identified.
Ninety-eight programmers contributed 10 or less
MRs, which account for slightly less than 3% of the
total MRs. The most active programmer (in terms
of MRs) accounted for 7% of the total. The top 10
programmers accounted for 46% of the total MRs.
Even though these numbers need to be correlated
with the actual number of LOCS or defects (bugs)
removed per MR, they point in the direction that
a small number of developers are responsible for
most of the coding of the project. When taking into
account the division of the project into modules, this
effect seemed more pronounced. Table 4 shows the
top five programmers for some of the most actively
modified modules of GNOME.

In an analysis of SourceForge projects, Krishna-
murthy found that most FOSS projects are com-
posed of a handful of developers (Krishnamurthy
2002). GNOME is one of the few projects that

Table 4. Top 5 programmers of some the most active modules
during 2002. The first column shows the name of the module, the
second shows the total number of programmers who contributed
in that year, the third shows the anonymized top 5 programmers
and the proportion of their MRs with respect to the total during
the year. Some programmers contributed actively to more than
one module (e.g. programmer 8). In this table, only MRs that
included C files are considered

Module # Progs. Programmer Prop. of MRs

glib 24 1 31%
2 18%
3 10%
4 10%
5 9%

gtk+ 48 1 37%
2 12%
5 9%
6 8%
7 4%

gnome-panel 49 8 42%
9 12%

11 6%
12 6%
13 6%

ORBit2 11 14 51%
8 28%

15 9%
17 5%
18 3%

gnumeric 19 20 34%
21 23%
22 17%
23 12%
24 9%

appears to break this rule, given that more than
500 people have ‘write access’ to its CVS repository.
Zawinsky, a Mozilla developer, provides insight
into this phenomenon: ‘If you have a project that
has five people who write 80% of the code, and a
hundred people who have contributed bug fixes or
a few hundred lines of code here and there, is that a
105-programmer project?’ (as cited in (Jones 2000)).

Evolution was further analyzed. It was composed
of approximately 470 kLOCS (Feb. 2003) and almost
50% of the times the source code has been modified,
the change can be attributed to one of 5 developers
(see Figure 1).

Only 18 contributors accounted each for more
than 1% of the total MRs. The largest contributor

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 1. This plot shows the number of CVS MRs
committed to Evolution per developer. Each contributor
was assigned a number from 1 to 201, which corresponds
to the X axis. From a total of 196 developers, 5 account for
47% of the CVS transactions, while 20 account for 81% of
the MRs, and 55 have done 95% of them

Table 5. Most active programmers, as a
proportion of total MRs

Programmer Prop. Accum.

1 0.16 0.16
2 0.10 0.26
3 0.09 0.35
4 0.06 0.42
5 0.06 0.48
6 0.05 0.53
7 0.05 0.58
8 0.03 0.61
9 0.02 0.63

10 0.02 0.65
other 0.35 1.00

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

211

Research Section D. M. German

is responsible for 16% of the MRs, while at the
other side of the spectrum, 32 contributors had one
MR only. Furthermore, a total of 48% of the MRs
were contributed by only 5 contributors, while 142
contributors contributed just 5% of the MRs (80
contributed a total of 1% of the MRs).

Table 5 shows the 10 most active develop-
ers, as a proportion of all MRs. The top 10
appear to be Ximian employees or consultants (see
http://primates.ximian.com/). This fact corrobo-
rates the hypothesis that private companies (such
as Red Hat, Ximian, and Eazel) have had a very
important effect on the development of the GNOME
project (German 2002). In that respect, it is similar
to the Mozilla project where core contributors were
employees of Netscape (see (Mockus et al. 2002)).

How regularly were contributors participating
in Evolution? The number of different contributors
by year is depicted in Table 6. After January 2000,
in any given month, there was an average of 32
contributors (8.3 stddev, minimum 15, maximum
47) per month to the project.

For a more detailed analysis of Evolution, see
(German in press).

8. OBSERVATIONS

Through its history, the GNOME project has been
trying to adapt to the needs of its members in
order to reach its most important goal (to create free
desktop environment for Unix).

The organizational structure of the project is
really a combination of two structures. Many of its
core developers are paid employees of companies
who have a special interest in the success of
GNOME. These organizations most likely have a
say on what the developer does. On the other hand,
within GNOME they belong to its organizational

Table 6. Contributors to Evolution by
year. It takes into account only those
contributors with CVS write access

Year Number of
contributors

1998 37
1999 54
2000 95
2001 98
2002 79
2003 56

structure. The GNOME organization tends to be flat:
the GNOME Foundation at the top, the maintainer
of the module in the middle, and the contributors
of the module at the bottom. The developer has to
act, presumably, taking into account the interests of
both organizations.

To supplement this flat organizational structure,
the Foundation has created ‘committees’ and ‘task
forces’ that are composed of volunteers and have
specific goals. In many ways, the organizational
structure of GNOME is reminiscent of the organiza-
tion of the faculty in a department of a university.

Mockus et al. (2002) proposed two hypotheses
related to the number of core developers of a
project. Hypothesis #1 stated that FOSS projects
will have a core of developers no larger than
10 to 15 people who control the code base, and
who are responsible for around 80% of the new
functionality. Hypothesis #2 reads: ‘a strict code
ownership policy will have to be adopted to
separate the work of additional groups, creating,
in effect, several related OSS projects’. In GNOME,
both hypotheses are supported. GNOME has been
divided into smaller projects that minimize the
number of people involved that are involved in
each of these subprojects (or modules). The analysis
made suggests that fewer than five people are
responsible for 70 to 80% of the programming effort
of a given module. When a module starts to grow
in complexity and the number of core developers
grows too, it is either split into two different projects,
or submodularized, and then one or two developers
take control of each of the given submodules.

Decisions appear to be taken in an open, demo-
cratic way. The success of the project appears to
depend, at least in part, in not losing its contributors.
It appears that for the contributors it is important
that they feel that their contributions are taken
into account and that they are part of the decision
process. The Foundation is the result of that need.

8.1. What can be Learnt from GNOME?

It is not possible to state what exactly makes
GNOME a success in GSD. One can only create
hypotheses that could be further studied, both in
open source projects and commercial ones. On the
basis of this study, the author believes that the
following practices have the potential to benefit any
GSD effort.

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

212

Research Section The GNOME Project

• Flatten the organization of the project and
allow more participation in the decision-making
process. Developers like to feel like they are at
the core of the project, not at the bottom of the
hierarchical administration.

• Use multiple types of communication. Formal
and semiformal communication should include
mailing lists, divided into different topics. If
somebody asks a question in a mailing list, and
the question is answered, then other people can
learn from it too. This is particularly important
for new comers to the project. Also, mailing
lists should be archived and searchable because
they become an important source of information.
Instant messaging is very useful for one-on-
one communication, but it does not replace the
‘water-cooler’ conversations. IRC, on the other
hand, is a gathering place, where conversations
among multiple individuals can occur and
people can join and leave without explicit
invitations. Finally, keep everybody informed
by sending regular reports on the current state
of development of the project.

• Treat developers as partners in the development
process. The license agreement of GNOME (the
General Public License) makes developers feel
that the community (and by extension, them)
owns the product. In traditional companies,
employees are issued stock and options to
make them feel part of the company and share
its potential success. Depending on the field
of endeavor of a given organization, an open
source license might be a good motivator to the
development team. A main challenge for any
organization is to find well-motivated people.
Many of the developers in GNOME are highly
motivated to work on the project because they
believe in it and its goals.

• Have a regularly scheduled colocated meeting
where the main decisions can be made. This rein-
forces collaboration and helps during conflict
resolution. This meeting should involve both
social and technical activities, including presen-
tations on what every individual does and the
type of expertise they have.

• Create task forces that work aside the different
teams, similar to those created in GNOME.
These tasks forces would help the administration
understand the current state of the project and
detect potential problems faster.

• Set clear procedures and policies for conflict
resolution and other potential problems.

• Modularize the product in order to minimize
communication, and clearly state how the APIs
and interfaces between different modules will
be defined, and when they will be frozen.

• Ask developers to document their daily contri-
butions (as part of the configuration manage-
ment system and/or ChangeLogs) in order that
everyone quickly knows what the others are
working on.

One has to understand that the requirements of
FOSS development are significantly different from
commercial software development. What might
work for one type of project might not work for
the other, and vice-versa.

9. CONCLUSIONS AND FUTURE WORK

After almost 6 years of development, GNOME has
demonstrated that it is a success. Its free software
nature has created special requirements in the
way that the project is organized and managed.
Furthermore, GNOME is a project where people
employed by different companies and volunteers
work together with a common goal. Developers
contribute in a wide range of ways (code, testing,
bug reports, documentation, artwork, bug-hunting,
and system administration) and are located across
the world, relying on the ability of its leaders
and maintainers to manage the project, on the
Internet as its communication channel and with
the use of several tools (such as mailing list,
web pages, CVS, Bugzilla) to maintain a good
enough communication that allows for the project
to proceed. Recently, the Foundation has taken the
responsibility of giving the project a coherent vision;
this is to guarantee that GNOME continues to fulfill
its main goal: ‘to create a computing platform for
use by the general public that is completely free
software.’

The proposed hypotheses on how other projects
can learn from the GNOME experience need
to be evaluated. For example, one could ask
a development team to try to use some FOSS
communication and documentation methods for
part of the year, and use their usual ones during
another; then interview the members of the team
in order to find out if there was any perceived
difference. Some hypotheses (such as flattening the

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

213

Research Section D. M. German

organizational structure) are more difficult to test
because it is difficult to, first, convince the company
involved, and second, set up a control group. It
will be also valuable to observe other FOSS and
closed source projects, and see if their successes or
failures can be correlated to these hypotheses, or to
new ones.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences
and Engineering Research Council of Canada, and
the Advanced Systems Institute of British Columbia.
The author would like to thank the GNOME
development team and especially the anonymous
reviewers whose helpful and detailed comments
made this a better paper.

REFERENCES

Carmel E. 1999. Global Software Teams. Prentice Hall:
Upper Saddle River, New Jersey.

Carmel E, Agarwal R. 2001. Tactical approaches for
alleviating distance in global software development. IEEE
Software 18(2): 22–29.

Charles J. 1999. Linux support ranges from GUI to Big
Blue. Computer 32(5): 20–22.

Damian D. 2002. Workshop on global software
development. ACM SIGSOFT Software Engineering Notes
5(7): 65–71.

de Icaza M. 2002. GNOME History. The GNOME Project,
Boston, MA, http://primates.helixcode.com/∼miguel/
gnome-history.html.

German DM. 2002. The evolution of the GNOME Project.
Proceedings of the 2nd Workshop on Open Source Software
Engineering, The GNOME Project, Boston, MA.

German DM. Using software trails to rebuild the
evolution of software. Journal of Software Maintenance and
Evolution: Research and Practice. Wiley: New York; in press.

German DM, Mockus A. 2003. Automating the
measurement of open source projects. Proceedings
of the 3rd Workshop on Open Source Software
Engineering. University College Cork: Cork Ireland,
63–68, http://opensource.ucc.ie/icse2003.

Hissam S, Weinstock C B, Plakosh D, Asundi J. 2001.
Perspectives on Open-Source Software. Technical Report
CMU/SEI-2001-TR-019, Software Engineering Institute,
Carnegie Mellon University: Pittsburg, MA.

Hersleb JD, Moitra D. 2001. Global software development.
IEEE Software 18(2): 16–20.

Jones P. 2000. Brooks’ law and open source: The more
the merrier? Does the open source development method
defy the adage about cooks in the kitchen? (IBM devel-
oper Works). IBM Corporation: White Plains, New York,
ftp://www6.software.ibm.com/software/developer/
library/merrier.pdf.

Krishnamurthy S. 2002. Cave or Community? An
empirical examination of 100 mature open source projects.
First Monday 7(6) (http: //www.firstmonday.org/issues/
issue7-6/krishnamurthy/index.html).

Lerner J, Triole J. 2000. The Simple Economics of Open
Source, Working Paper 7600. National Bureau of Economic
Research: Cambridge, MA, http://papers.nber.org/
papers/w7600.

Meeks M. 2001. ACTION GEP 0: Process for GNOME
Enhancement Proposal. The GNOME Project, Boston,
MA, http://developer.gnome.org/gep/gep-0.html.

Mockus A, Fielding RT, Herbsleb J. 2002. Two case
studies of open source software development: Apache
and Mozilla. ACM Transactions on Software Engineering
and Methodology 11(3): 1–38.

Mueth D, Pennington H. 2002. GNOME Foundation FAQ.
The GNOME Project, Boston MA, http://foundation.
gnome.org/faq.html.

Pennington H. 2001. GNOME Enhancement Procedure.
The GNOME Project, Boston, MA, http://ometer.com/
policy.html.

Raymond E. 1999. The Cathedral & the Bazaar. O’Reilly &
and Associates: Sebastopol, CA.

Scacchi W. 2002. Understanding the requirements for
developing open source software systems. IEEE Software
149(1): 24–39.

Scacchi W. 2004. Free and open source development
practices in the game community. IEEE Software 21(1):
59–66.

Shirky C. 2000. Linux for the End User–Phase 1. Linux
Journal 8(74).

Sun Microsystems 2002. Sun Microsystems is honored
with the Helen Keller Achievement Award for its
leadership in accessibility advancements. Press Release,
http://www.sun.com/smi/Press/sunflash/2002-09/
sunflash.20020924.1.html.

Sun Microsystems 2003. GNOME 2.0 FAQ. Sun Microsys-
tems, http://www.sun.com/software/star/gnome/faq
/generalfaq.html.

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

214

Research Section The GNOME Project

The GNOME Foundation 2000. GNOME Foundation
Charter Draft 0.61. The GNOME Project, Boston, MA,
http://foundation.gnome.org/charter.html.

The GNOME Foundation 2002. GNOME Foundation
Bylaws. The GNOME Project, Boston, MA, http://
foundation.gnome.org/bylaws.pdf.

The Technology Review 1999. The 1999 TR100. Technology

Review (http://www.technologyreview.com/articles/
99/11/tr1001199.asp).

Waugh J. 2002. Candidacy: Jeff Waugh. GNOME Founda-
tion Announce Mailing List. The GNOME Project, Boston,
MA, http://mail.gnome.org/archives/foundation-
announce/2002-November/msg00008.html.

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 201–215

215

