
High Quality and Open Source Software Practices

(Position Paper)

T. J. Halloran
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

thallora@cs.cmu.edu

William L. Scherlis
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

wls@cs.cmu.edu

1. INTRODUCTION
Surveys suggest that, according to various metrics, the quality and
dependability of today’s open source software is roughly on par
with commercial and government developed software. What are
the prospects for advancing to much higher levels of quality in
open source software? More specifically, what attributes must be
possessed by quality-related interventions for them to be feasibly
adoptable in open source practice? In order to identify some of
these attributes, we conducted a preliminary survey of the quality
practices of a number of successful open source projects. We fo-
cus, in particular, on attributes related to adoptability by the open
source practitioner community.

2. OBSERVED QUALITY PRACTICE
We conducted a preliminary survey of a number of open source
projects to gain a clearer understanding of the practices used by ac-
tive and successful open source projects. We examined the publicly
visible portions of these projects from November 2001 through
March 2002, with a focus on technical approaches to collabora-
tion and quality. A summary of results for eleven of the projects
surveyed is presented in Table 1. The SLOC1 counts for the pre-
dominate languages are shown in the table in order to provide a
rough gauge of code size and complexity. The projects all utilized
web portals to encapsulate collaboration tools, and these tools are
inventoried in the table. We also note unusual project-specific qual-
ity practices beyond personnel practices (i.e., limiting commit priv-
ileges) and the obvious elements of “micro-process” (particularly
the ubiquitous nightly build).

The surveyed projects focus on people as the locus of Quality As-
surance (QA). Clearly, responsibility for quality rests on those who
have code commit privileges. Any code received from a program-
mer without commit privileges (usually attached to a bug report
in patch format) must be reviewed and accepted by a programmer
with commit privileges. In addition, more elaborate processes such

�

We used the SLOCcount program by David A. Wheeler.

as Mozilla’s review and super review and NetBeans’ high resistance
ensure that lead programmers review code changes.

All projects use nightly builds. The nightly build ensures the source
code still compiles after the day’s changes. Most projects include
some regression testing in the build process, and some projects also
generate daily binary builds for public download. The Mozilla and
Perl projects use the Tinderbox tool to help assure portability by
building the code on multiple platforms after any code change; if
the build breaks on any platform, then all subsequent code changes
are limited to fixes.

A publicly visible bug and issue tracking tool is used by nearly all
the projects we examined (one of the projects allows bug submis-
sion but not public status viewing). Users post bugs and enhance-
ment requests. Each such post becomes, in effect, a tiny public
mailing list focused solely on that issue. Some of the discussions
are resolved rapidly (e.g., “invalid; not a bug”) while others can last
for weeks and include tens of messages. The bug and issue tracking
tools provide the vehicle for contributions of source code from pro-
grammers without source code commit privileges. In addition, the
issue tracking tool has a role in project management and tracking,
enabling, for example, specific issues (performance, functionality,
bug repairs) to be linked to a “stable release issue,” thus setting a
threshold for a subsequent release.

Because the developers in most of the successful projects are also
users, the distinction between “bug report” and “feature request”
in many of the issue reports is often not a sharp one. Receiving
duplicate or invalid issue reports is common and specific bug re-
sponsibility can sometimes bounce between several programmers
(or groups) before finally being accepted.

3. QUALITY INTERVENTION CRITERIA
Informed in part by this survey, we suggest below some key at-
tributes of potential quality interventions focused on open source.

3.1 Process and the Walled Project Server
There is an important distinction in open source projects between
the policies of visibility (including both access management and
intellectual property disposition of the shared software assets) and
the policies of engineering practice (including particularly archi-
tecture, tool use, process, and roles of people). The fact that open
source projects, in theory, allow anyone to view and copy the source
code (or even start a competing open source project) raises an in-
teresting question: What do the leaders of an open source project



Table 1: Open Source Project Size, Collaboration Tool Use, and Quality Practice Summary
Size & Composition Collaboration

Name kSLOC Language Tools Used Notable Quality Practices

Apache 77 Total CVS, Ezmlm, � Proposed changes are voted upon via mailing list; 3 yes votes with no
HTTPD 70 C (92%) GNATS, vetos are required to commit a change.
Server 5 sh (7%) ViewCVS � Bugs are reported via the GNATS bug tracking tool unless they expose

security problems in which case a private mailing list is encouraged.
GNOME 1,338 Total CVS, Bonsai, � Efforts to start a volunteer GNOME QA team are underway but today

1,207 C (90%) Bugzilla, GNOME testing is done by individuals who report any bugs they find
86 sh (6%) IRC, LXR, via the Bugzilla issue tracking tool.

Mailman � GNOME has documented programming guidelines.
GNU 1,182 Total CVS, DejaGnu, � Uses a very detailed test suite built around the DejaGnu testing tool.
Compiler 884 C (75%) Ezmlm, � The project requires use of the GNU coding standards plus some gcc
Collection 163 C++ (14%) GNATS, specific coding standards.
(gcc) 65 Java (6%) MHonArc � A successful conversion from Cathedral to Bazaar development.
Jakarta 59 Total CVS, Ezmlm, � The Sun Java coding conventions are required for all Java code.
Tomcat 44 Java (75%) Bugzilla, � Roles within the Jakarta project are well defined and a documented

14 C (24%) ViewCVS process is used to resolve issues within the project.
KDE 2,050 Total CVS, Code/CVS � A “KDE Core Team” uses a democratic voting procedure to resolve

1,717 C++ (84%) Web, DebBugs, important issues. They set KDE’s overall direction and release schedule.
228 C (11%) LXR, Mailman � KDE developers conform to several industry and de facto standards.

Linux 2,570 Total CVS, CVSWeb, � Roughly 50 kernel mailing lists focus kernel work.
Kernel 2,415 C (94%) LXR, Mailman, � Bugs and quality issues may be discussed on the kernel mailing lists or

146 asm (6%) Majordomo reported via a specific Linux distribution’s web portal.
Mozilla 2,170 Total CVS, Bonsai, � Developers use an evolving C++ portability guide.

1,358 C++ (62%) Bugzilla, � A review and super-review process is required for most code changes.
749 C (35%) IRC, LXR, Potential patches are submitted to Bugzilla as attachments for review.

Tinderbox � An active volunteer QA group helps check WC3 and IETF conformance.
� Strong portability testing monitored by Tinderbox.

NetBeans 758 Total CVS, Bugzilla, � A strong QA group exists (supported by Sun). High resistance process
753 Java (99%) ViewCVS (bug justification/approval & code review) used before stable releases.

� NetBeans uses SourceCast web portal by CollabNet (strong integration).
Perl 313 Total CVS, MHonArc, � Strong portability testing monitored by Tinderbox.

161 Perl (51%) Perlbug, � Perlbug being used for user Perl5 bugs, Request Tracker is being used
123 C (39%) Request Tracker, for Perl6/Parrot issues.

Tinderbox � CPAN Internet module installation includes module testing.
Python 384 Total CVS, � Python uses SourceForge.net web portal by OSDN (strong integration).

192 Python (50%) CVSWeb, � SourceForge patch manager nicely organizes community contributions
185 C (48%) Mailman to core developers (40 core Python developers).

XFree86 1,943 Total CVS, Mailman, � No public bug tracking system utilized, a simple HTML bug form only.
1,833 C (94%) ViewCVS � To become an XFree86 developer you must submit an accepted patch

36 C++ (2%) and ask to join—you are then allowed to join developer mailing lists.

actually control? In a nutshell, they control the composition, con-
figuration, and information flow in and out of their project’s server.
And in this way they can exercise tight control over the engineering
practices of the project—not by limiting the behavior of individual
developers in their own personal space, but by limiting the kinds of
transactions developers can make with the persistent project state
on the server.

Metaphorically, the project server is surrounded by a wall. This
wall, embodied by the web portal and open source collaboration
tools, is designed to maximize outgoing information flow and si-
multaneously to strictly limit and control incoming information
flow. The critical processes of the project are enacted behind the
server wall. These processes include code commits, documentation
management, configuration management, builds, regression tests,
and the like.

The walled project server thus physically embodies critical aspects

of software best practice (principally process, build management,
design record, and architecture) as defined by the project lead-
ers. This enables effective engineering management despite the fact
that the engineers are self-selected and largely self-managed. This
enables combining managed rigor in project-level practice with a
complete lack of restraint on the client-side developer space. Any
quality-related intervention must respect this overall approach.

3.2 Communication
A ubiquitous, almost defining, trait of open source practice is that
tool mediation is the norm. This enables leaders to shift the burden
of policy enforcement from people to tools. Tools support authenti-
cation, regulation of commit privileges, audit and notification, and
other policy-related functions.

One of the reasons why tool mediation is possible to this (relatively)
unusual extent is that developers are rarely co-located. A conse-
quence is that developer communication is almost always mediated



through the project server, creating an ad libitum organizational
memory. Indeed, projects with significant co-located groups, such
as Mozilla and NetBeans, must take explicit measures to reinforce
the social norm of computer-mediated developer communication.
The textual organizational memory is semi-structured, in the sense
that the discussions are situated in topic- or issue-specific mailing
lists. While the conversation is focused on issue resolution, it also
(at negligible marginal cost) records rationale for later use. Indeed,
transforming this “collective stream of consciousness” into more
structured design documents is a social engineering challenge for
most open source projects.

3.3 Boot-Strapping
Table 2 categorizes the collaboration tools reported in Table 1. With
the notable exception of the SourceCast web portal, all the tools
listed are open source. It is often observed that many open-source
projects engage in boot-strapping—the use of open source tools on
open source projects. Indeed, we find boot-strapping common for
collaboration tools.

While boot-strapping is often rationalized on the basis of ideology,
in fact it has two significant effects. First, it lowers the barrier
to entry for new participants in an open source project, enabling
participants to create their personal (client-side) developer sites at
low cost and without reliance on particular products. Second, it
enables developers to fluidly shift their attention from tool use to
tool development and repair. This movement up and down the tool
food chain reinforces the developers-as-users principle.

A seeming exception to the principle of “tool openness” is the use
of CollabNet’s proprietary SourceCast web portal by projects such
as NetBeans. This web portal does not raise an entry barrier, how-
ever, because it is built around familar open source tools. In ad-
dition, the proprietary portion of SourceCast exists only on the
project server—the tools used by project participants on their indi-
vidual computers remain open source or at least cost-free. This may
be a significant distinction. It also raises the question of whether
ideology is the driver or perhaps just a post hoc explanation for
many successful open source practices. Nonetheless, it is clear that
ideology within many open source projects today means that only
open source tools will be adopted.

3.4 Incrementality and Gentle Slope
Most project portals offer resources to help potential new partic-
ipants quickly reach the point of becoming visible and acknowl-
edged contributors to the project. We can hypothesize that this
desire to create a “gentle slope” learning curve [this term due to
Michael Dertouzos] has yielded a de facto consensus on infrastruc-
tural tools such as Apache, CVS, and others. It also increases the
payoff for developers down-shifting in the food chain from tool
user to tool developers.

In addition to tool selection, “gentle slope” is reinforced by the
communication practices noted above, in which increments of con-
tribution can be made by participants, enabling other participants to
build on the results and providing an explicit and objective record
of the personal role of the contributor.

To the extent that it can be achieved, the incremental “gentle slope”
model has significant effects for a project and its participants. It
enables certain categories of participants to gracefully engage and
disengage in a project without adverse consequences to the project.
The entry model for many projects reinforces this—with new par-

Table 2: Open Source Collaboration Tools
Tool Category Name (Table 1 occurrence frequency)

Web Portal Custom(9), SourceForge.net(1),
SourceCast(1)

Source Code Control CVS(11)
Code Viewers ViewCVS(4), LXR(4), CVSWeb(3),

Bonsai(2), CodeWeb(1)
Mailing List Mailman(5), Ezmlm(3), MHonArc(2),
Management/Archive Majordomo(1)
Bug/Issue Tracking Bugzilla(4), GNATS(2), DebBugs(1),
Tools Perlbug(1), RequestTracker(1)
Test Support Tools Tinderbox(2), DejaGnu(1)
Instant Messaging IRC(2)

ticipants encouraged to review, debug, and document existing code,
contributing changes in the form of mailing list posts for the atten-
tion of those with commit privileges. The de facto tool consen-
sus reduces the barrier for developer-side tooling and for acquiring
skills to interact effectively with the project server. As the new par-
ticipant begins to do more work with the source code, such as pri-
vate builds, additional increments of tool investment are required.
The point is that new participants do not incur significant risk with
respect to their time and resources in order to engage, perhaps ex-
perimentally, in collaborating on a project.

3.5 Evolutionary Focus
The projects listed in Table 1 all work within what would conven-
tionally be regarded as software maintenance and evolution phases
of the software lifecycle. Rarely, if ever, would any of these projects
create a new version of the software without reuse of an existing
code base. Indeed, it can be hypothesized that there is great sen-
sitivity in open source practice to architecture design. The long-
standing success of gcc and Linux, for example, derives in many
ways from architectural prescience in the initial designs—enabling
both successful division of effort on the part of develop teams and
long-term incremental growth in capability without excessive qual-
ity compromise.

4. QUALITY PROSPECTS
What characteristics must a quality-related technology or practice
possess in order to be feasibly adoptable in projects following open
source practices? Based on the observations above, we suggest
some likely criteria: (1) an incremental model for quality invest-
ment and payoff (e.g., incrementally adding analysis support, test
cases, measurement, or other kinds of evidence collection), (2) in-
cremental adoptability of methods and tools both within the server
wall and in the baseline client-side tool set, (3) a trusted server-side
implementation that can accept untrusted client-side input, and (4)
a tool interaction style that is adoptable by practicing open source
programmers (i.e., that does not require mastery of a large number
of unfamiliar concepts).

With the exception of testing technology and some code analy-
sis technology, these requirements suggest that some adaptation
will be required before adoption is possible for tools that embody,
say, lightweight formal methods approaches or advanced program
analysis approaches. Clearly, any technique or tool is not feasibly
adoptable if it requires a major (client-visible) overhaul of a project
web portal, collaboration tools, development tools, or source code
base. Discernible increments of benefit from increments of partici-
pant effort is key to adoptability.


