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ABSTRACT 
Motivated by evidence that coordination and dependencies among 
engineering decisions in a software project are key to better 
understanding and better methods of software creation, we set out 
to create empirically testable theory to characterize and make 
predictions about coordination of engineering decisions.  We 
demonstrate that our theory is capable of expressing some of the 
main ideas about coordination in software engineering, such as 
Conway’s law and the effects of information hiding in modular 
design.  We then used software project data to create measures 
and test two hypotheses derived from our theory.  Our results 
provide preliminary support for our formulations.  

Categories and Subject Descriptors 
D.2 [Software Engineering]: Management – productivity, 
programming teams, software process models. 

General Terms 
Management, Measurement, Performance, Design, Economics, 
Experimentation, Theory. 

Keywords 
Empirical theory, coordination, engineering decisions, Conway’s 
Law, empirical studies. 

1. INTRODUCTION 
Coordination of the engineering work of individual software 
engineers is a central concern of the discipline of software 
engineering.  Just as the work performed by a program can be 
partitioned into computation and coordination [10], the 
engineering work of a software project can be partitioned into the 
decision-making of individual engineers and the coordination of 
those decisions so as to produce software with the required 
characteristics.   
There are several kinds of evidence one can adduce in support of 
the proposition that coordination of engineering work is central to 

software engineering.  Empirical studies of large-scale software 
development, for example, show that coordination of engineering 
work is one of the most difficult and pervasive of the problems 
(see, e.g., [7, 26]).  Moreover, many of the foundational ideas of 
software engineering primarily address coordination problems.  
For example, the notion of modularity [20], clearly one of the 
foundational ideas in software engineering, concerns primarily the 
coordination of software engineering work.  Modules, or “work 
items” as Parnas defined them to be, address how work may be 
split among teams in a way that does not impose unreasonable 
requirements for coordination and communication among teams.  
Modularity is important only because it influences the ability of 
humans to understand and coordinate their work. 
While there is probably little doubt among researchers or 
practitioners that coordination of engineering work is key for 
successful software engineering, the idea of coordination is often 
frustratingly elusive.  While it seems clear that coordination often 
involves good communication, and that coordination concerns 
constraints among engineering decisions, it is not so clear what it 
means to enhance coordination, how to tell if good coordination is 
present in a project, and what precisely are the implications of 
effective and ineffective coordination.   
In this paper, we try to build upon the research literature and upon 
various common intuitions about what coordination in software 
engineering is, in order to formulate a reasonably rigorous, clear, 
and testable “empirical” theory of coordination in software 
engineering.  In the remainder of this section, we distinguish the 
idea of an “empirical theory” from the usual conception of 
“theory” in computer science in order to clarify our objective.  We 
then briefly discuss prior work on coordination from which our 
approach draws.  In section 2, we present our theory of 
coordination in software engineering.  In section 3, we present the 
empirical methods and results from a field study in which we 
performed a preliminary test of hypotheses derived from our 
theory.  We present our discussion in section 4, and conclude the 
paper in section 5. 

1.1 “Empirical” Theory 
 “Theory,” in the generally accepted use of the term in 
mathematics and computer science, is quite distinct from “theory” 
as the term is used in the physical and social sciences.  For present 
purposes, let it suffice to say that in computer science, theory is a 
rigorous means of reasoning mathematically from axioms, in order 
to prove theorems that ascribe interesting properties to software 
systems or models of software systems.  In general, there is no 
sense in which such theories require empirical evidence in order 
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to be believed.  Given the axioms and correct proofs, the 
conclusions follow logically, not contingently. 
“Theory,” as the term is used in science, differs in several 
important respects.  Scientific theories, for example, may or may 
not be formulated mathematically.  Theories are generally 
expressed mathematically in physics, as they sometimes are in 
other branches of science, such as certain areas of biology and 
psychology.  Despite the many advantages of mathematical 
formulations, there are many key scientific theories that are simply 
not susceptible of mathematical expression.  In either case, 
whether the theory is or is not expressed mathematically, a theory 
does not stand on its axioms and the validity of its arguments 
alone.  One must be concerned always to ask if the phenomena of 
interest actually are accurately described by the theory.  The most 
brilliant and rigorous of theories runs the risk that it may simply 
be wrong, i.e., an inaccurate description of how the world works.   
We will call theories of the sort found in science “empirical,” 
drawing attention to the fact that they stand or fall not only on 
their internal consistency, but on the weight of evidence. For the 
remainder of this paper, when we use the term “theory” we mean 
“empirical theory,” unless otherwise indicated. 
Empirical theories are ordinarily tested by drawing out the 
implications of the theory for observable phenomena, i.e., 
generating hypotheses, then observing or constructing situations 
in which these hypotheses can be tested.  Hypothesis testing 
requires both that such hypotheses can be formulated, and that the 
relevant observations can be made.  Evaluation of empirical 
theories is almost never achieved with one or even a few tests of 
hypotheses, since disconfirmation can usually be accommodated 
with adjustments in the theory, and confirmation can generally be 
explained by more than one theory.  Theories evolve or are 
replaced on the basis of sustained research programs. 
It is important to note that testing hypotheses derived from 
empirical theories is not the only basis for doing important and 
valid empirical research in software engineering.  The vast 
majority of empirical work is what we would call empirical 
“validation” research that has as its main purpose validating 
claims made in support of the advantage of some new innovation, 
be it a tool, a process, or a methodology.  There has been a trend 
in recent years toward more emphasis on careful validation, which 
we wholeheartedly applaud.  We see this as distinct from theory-
based empirical research.  This is a distinction we develop 
throughout the paper, and which we hope will become much 
clearer after we provide an example of an empirical theory. 
In light of this discussion of empirical theory, we can restate our 
goals:  

• to formulate an empirical theory of coordination in software 
engineering,  

• to identify testable hypotheses that follow from this theory, 
and  

• to show examples of precisely how one can go about 
empirically testing such hypotheses.   

The theory we propose has roots in several lines of research, each 
of which we will briefly and selectively review in the remainder of 
this section.   

1.1.1 Interdisciplinary Theory of Coordination 
Coordination problems in many fields have similar properties 
[17].  For example, the problems of humans competing for floor 
space and programs competing for memory have similar 
characteristics, since both are instances of a resource conflict.  
Independent of discipline, one could theoretically catalog all types 
of dependency patterns, and identify mechanisms (e.g., 
scheduling) that can resolve each type of conflict [6, 8].   
While such a broad, general approach has considerable appeal, we 
do not believe that software engineering is sufficiently mature, 
except in a few fairly isolated cases, for an approach that requires 
exhaustive cataloging of dependency patterns among engineering 
decisions.  Design work, in particular, is extraordinarily complex, 
and is structured by very complicated patterns of constraints 
among engineering decisions (see, e.g., [23]).  While we may now 
be able to identify general patterns underlying some of them (e.g., 
resource conflicts), and we may eventually identify many more, 
the current state of engineering is such that dependencies among 
engineering decisions appear to have enormous variety, and seem 
unlikely to be susceptible, in general, of such “cookbook” 
solutions.  Our approach, in contrast, does not identify and 
consider particular coordination problems, but rather just the sets 
of decisions as they constrain decision-makers. 

1.1.2 Distributed Cognition 
Many complex tasks are best understood as cognitive or problem-
solving process that are distributed over individuals and artifacts 
(e.g., [13, 14]), distributed over time, and partially embedded in 
the habits, practices, and routines of the people who carry out the 
cognitive activities (e.g., [3]).  While we are not aware of any 
attempts to formally and explicitly describe the coordination 
aspects of distributed cognition, the view of coordinated activity 
as many interdependent tasks, where coordination occurs by 
means of communication and sharing of artifacts, and is 
embedded in a social and organizational context has much in 
common with our view.  In fact, our work could be considered a 
formalization of one key aspect of distributed cognition, i.e., the 
impact of mutual constraints among decisions. 
A related line of work in artificial intelligence, called distributed 
artificial intelligence, has specified frameworks for coordinating 
activities among distributed agents for tasks such as regulating 
traffic signals or factory floor robots (see, e.g, [9]).  Distributed 
artificial intelligence of necessity incorporates an explicit model 
of coordination policies.  The tasks, however, are much smaller 
and simpler than typical industrial software engineering tasks. 

1.1.3 Geographically Distributed Software 
Engineering 
Coordination issues become more apparent when the usual modes 
of coordinating activity are interrupted.  In geographically 
distributed software engineering, projects are split across sites, 
with a resultant nearly total absence of informal communication 
among developers [11].  As one would expect, the reduction in 
communication appears to lead to longer cycle times [12].  The 
effect appears to be caused by the involvement of more people in 
distributed work items that for comparable work items where all 
work is performed at a single site.  In fact, a statistical model of 
interval for work items shows that the number of people involved 
in a work item (which is presumably a reasonable indicator of 
coordination issues) is the most significant predictor of interval, in 
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a model that includes other important variables such as size and 
complexity of the change, and other factors [12].  As will become 
evident, the delays associated with geographically distributed 
software engineering can be seen as a special case of the 
coordination phenomena described by our theory. 

1.1.4 Toward Empirical Theory for Software 
Engineering 
We conclude this section by discussing very briefly the 
requirements and motivation for empirical theory specifically in 
the field of software engineering.  First, we note that there is 
considerable overlap between the subject matter of software 
engineering and several fields of social science, such as 
psychology, anthropology, sociology, and organizational science.  
We have much to learn from these fields, both in empirical 
methods and substance.  Yet we suspect that software engineers 
and researchers in software engineering, who are generally trained 
in computer science or an engineering discipline, will never be 
comfortable with the theories of social science.  Such theories are 
seldom formulated in a way that software engineers would 
consider sufficiently rigorous and precise.  Just as the various 
social sciences have evolved their own theoretical traditions 
which differ markedly from each other, and for good reason, we 
believe software engineering must evolve its own tradition of 
empirical theorizing and hypothesis testing.  We offer our theory, 
in part, as a modest step in this direction. 
Second, while empirical investigation has, over time, assumed 
increasing importance in software engineering, due to the 
pioneering efforts of numerous investigators, (e.g., [1, 2, 21, 24, 
25]) we believe that an increased emphasis on theory can have a 
major impact on empirical investigations by providing a 
mechanism whereby results become more cumulative.  Empirical 
investigations in software engineering often have a one-off flavor, 
i.e., are aimed at validating a particular method or technique, or 
discovering the circumstances under which it is effective.  We 
have no quarrel with such studies – validation of claims about 
specific software engineering innovations is a vital facet of 
software engineering research, and will continue to be so.   
What is relatively rare in software engineering, however, is the 
sort of theory-driven investigation that dominates the sciences.  
Theories provide perspectives for viewing large classes of 
phenomena, understanding the fundamental principles by which 
they operate, and making predictions about what should happen in 
specific cases.  Much empirical research is typically focused on 
testing hypotheses derived from the theories.  These tests of 
hypotheses may or may not have immediate practical 
consequences (in contrast to empirical validations, which one 
hopes would always have results of immediate practical interest).  
Results accumulate over time into a more comprehensive, well-
established, and nuanced view of the field as theories are 
supported, falsified, and modified on the basis of empirical 
results. 
This is slightly different from the usual view taken in empirical 
studies in software engineering.   Generality, or external validity, 
of a study is most often analyzed as a function of 
“representativeness,” e.g., of the task, the subjects, and other 
characteristics of the study (see, e.g., [27] pp. 72-73; [16] p. 732).  
The “representativeness” strategy uses essentially the logic of 
sampling (i.e., the subjects should ideally be a random sample of 
the population to which one would like to generalize, the task 

should be a random sample of the population of tasks, etc. [4] to 
establish legitimate generalizations.   
While this view is well established and perfectly sound, it is not 
the only legitimate basis for generalization in science (see, e.g., 
[19]).  For example, one might create in the laboratory a 
phenomena (e.g., by using a particle accelerator) that seldom if 
ever occurs in nature, but that permits one to test a hypothesis 
derived from a theory that purports to explain many phenomena, 
whether those phenomena occur naturally or are artificially 
generated.  The experiment should be judged by how clearly it 
tests hypotheses associated with the theory, and perhaps by how 
important, clear, and general the theory appears to be.  We believe 
that research in software engineering would benefit from more 
theory-based research, and the cumulative results that such 
research provides. 
In this section, we have discussed the need for empirical theories, 
some of the antecedents of our empirical theory of coordination, 
and specific reasons for theory development and testing in 
software engineering.  In the next section, we present our theory. 

2.  EMPIRICAL THEORY OF 
COORDINATION (ETC) 
Our focus is to propose a simple and well-defined model that 
would describe coordination in software engineering, so we can 
qualitatively express a number of principles, laws, and practices in 
the field of software engineering.  More specifically, we want to 
represent coordination of engineering decisions in a precise way 
so that meaningful theoretical statements can be formulated and 
testable hypotheses generated. We use the word "engineering" in a 
broad sense, meaning essentially, designing and constructing an 
artifact with required characteristics.   
Before developing the theory itself, let us say a word about the 
intuitions behind it.  We assume that there is a single (very large, 
but finite) set of engineering decisions that characterize software 
projects in general.  One can then think of any particular software 
project as defined by the combinations of choices for those 
decisions that satisfy the requirements for that project.   (Not 
every possible decision will apply to every possible project – we 
can handle this case simply by assuming that one possible choice 
for each decision is “does not apply.”)   We simplify by not 
considering that different combinations of choices will satisfy the 
requirements more completely or less completely.  We consider 
that each combination of choices is associated with a binary value, 
i.e., it does or does not satisfy the requirements. 
Software engineering work proceeds by making choices for all of 
the decisions.  As each is made, fewer decisions remain, until all 
of the decisions are made, resulting in a final product that may or 
may not satisfy the requirements.  There is some degree of 
concurrency in making the choices and the choices are potentially 
made by many different people.  Information about the choices 
that have been made at any given time is imperfect.  Decisions can 
be made more than once, i.e., one choice can be retracted and a 
new choice made. 
We make no attempt to enumerate, or even create a taxonomy of 
engineering decisions.  Rather, the theory is concerned with the 
patterns of dependency among them.  A metaphor that has driven 
some of our thinking about theory development is the kinetic 
theory of gasses (see, e.g., [22]).  By making a few assumptions, 
e.g., about elasticity and velocity of highly idealized molecules, 
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some important large scale behaviors of gasses (e.g., the relation 
among pressure, temperature, and volume) can be understood and 
predicted.  Our theoretical view of engineering decisions is also 
highly idealized, but we believe that it is useful for understanding 
and making predictions about certain phenomena, i.e., those 
associated with coordination in software projects.  Explanations of 
other types of phenomena will no doubt require somewhat 
different views of engineering decisions. 
Engineering decisions are often mutually constraining.  Making 
one decision generally limits the alternatives from which one may 
choose when making some other decisions.  If constraints are 
violated, then one or more decisions must be reconsidered or it 
will not be possible to meet the requirements.  Reconsidering one 
decision may require reconsideration of additional decisions, 
again, because of mutual constraints. 
The essential problem of coordination that concerns us in this 
paper1 is given by this property of mutual constraint among 
engineering decisions, and by the necessity, in all projects of 
significant size, of assigning responsibility for decisions to 
different people.  The problem of coordination, then, is the 
problem of ensuring that these mutual constraints are recognized 
and correctly acted upon as the engineering work proceeds.   

2.1 Key definitions 
Denote each engineering decision as a variable Xi that can take 
values xij(i), where j(i) indicates that the range of possible values 
varies with i.  Selecting a choice for decision Xi is equivalent to 
assigning a value to this variable.  A design space is the set of all 
possible assignments of the set of variables representing the 
engineering decisions that have to be made.  The goal space is the 
subset of the design space, each member of which satisfies the 
requirements. Each element of the goal space is a solution. 
The engineering project has a set of constraints that operate over 
the variables that represent the engineering decisions.  Given an 
assignment of a value for some variable, the constraints serve to 
limit further assignments to other variables.  The constraints are 
defined implicitly by the feasibility function.   
Define a feasibility function  

),...,( )()1(1 nnjj xxf ={1 iff product satisfies requirements,  

 0 otherwise} 
Such function implicitly defines a set of feasible choices for each 
decision.2  Feasible choices for decision iX denoted as 

)( iXFC  are defined as a set 

)(,:* kjikxij ∃≠∀ such that 1),...,,...,( )(*)1(1 =nnjijj xxxf  

Obviously, a particular choice in each decision has effects on 
feasible choices in other decisions.  

                                                                 
1  There may, of course, be additional coordination problems, such 

as competition for resources, and so on, that do not concern us 
in this paper. 

2 Realistic decision functions will include many other 
considerations besides feasibility, e.g., option value [24]. 

Effects of a decision )(:)( kkjk xXkj =  on a decision l , 

denoted lXE( | ))(kkjk xX = , is the set difference  

ll XFCXFC ()( − | ))(kkjk xX =  

where lXFC( | ))(kkjk xX = denotes the set of feasible 

choices given that the set of possible choices in decision kX  has 

been narrowed to )(kkjx .   

In other words, the effect of decision k on decision l is the 
difference between feasible choices in the design space of variable 
Xl before a variable Xk is assigned a value and the design space 
after Xk is assigned a value.  This definition obviously generalizes 
to effects of a group of decisions on a single decision.  
We can also define maximal effects where  

lXME( | lXFCxk XEX
kkkj

() )()( ∈∪= | ))(kkjk xX =  

defines a set of choices for lX that can be made infeasible by at 

least one feasible value of kX . 

The state of a project can be defined as the set of decisions that 
have been taken, which implicitly defines a set of remaining 
decisions and their feasible choices. 

2.2 Common “Laws” of Software Engineering 
In this section, we provide two examples of “laws” or generally 
accepted beliefs about coordination in software engineering in 
terms of our theory, i.e., by considering various strategies of 
taking decisions and their effects.  
First consider a partition of decisions into non-overlapping 
module-induced clumps Mp. The clump Mp provides information 
hiding if decisions made outside the clump do not have effects on 
the decisions made within the clump.3 
More specifically: 

ipkpi XMEMXMXkip (,,:,, ∉∈∀ | {}) =kX  

We call this the principle of modularity because it expresses the 
ideas of modularity suggested by Parnas [20].  The clumps of 
decisions Mp can be induced by pieces of architecture, i.e., when 
decisions are grouped if they pertain to a part of software 
architecture.   
We define the "Parnas" effect for a given decision Xi as the 
number of decisions in other modules that have nonempty effects 
on Xi.  The Parnas effect for a system is the sum of the Parnas 
effects for all of the Xi. 
Alternatively, the clumps of decisions Tc can be induced by an 
organizational unit (e.g., teams or individuals) involved in the 
software project, i.e., when decisions are grouped if they are made 
by an organizational unit, such as a development team.  Conway’s 

                                                                 
3 For simplicity, we ignore decisions concerning module 

interfaces. 
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Law [5] states that the structure of a system resembles the 
structure of the organization that designed it.   
Conway's law can be formulated as follows:  

,: cp TMcp ⊂∃∀  

i.e., no modules are implemented by several organizations.  In 
other words there exists a homomorphic function with the domain 
of all modules and the range of teams.  As Conway [5] and others 
[11] have noted, even if this function exists for an initial design, 
the evolution of the design will generally outpace organizational 
change, and lead to “violations” of Conway’s Law.  The number 
of variables that do not fit in this homomorphic relationship could 
be said to be the “Conway” number of the system.  
Finally, we wish to suggest that many more of the basic 
conceptual tools of software engineering can be expressed in 
comparable ways.  For example, design methods can be seen as 
ordering and clustering engineering decisions with respect to time, 
as well as providing various notations that help to make the 
current state of the design more visible.  We will say a bit more 
about such possible applications in our discussion.  
In this section, we have laid out the basic definitions of our 
theory, and shown how some interesting “wisdom” about 
coordination in software engineering can be expressed.  We have 
not yet said anything about deriving testable hypotheses, which 
we address in the next section. 

2.3 Additional Assumptions 
Ultimately, it must be possible to bring observation to bear in 
order to test hypotheses derived from any theory.  If this is not 
possible, the theory is either vacuous or tautological, and 
therefore uninteresting.   
In the previous section, we have hinted at some additional 
assumptions that are necessary in order to render concrete 
predictions from the theory we propose.  In this section, we will 
develop these assumptions more explicitly.  The first set of 
assumptions concern the effects of making infeasible choices (i.e., 
assignments for which the feasibility function evaluates to 0).  
The possible effects of infeasible choices are as follows: 
A1. defects, faults, errors, failure to complete project (if the 

infeasible choice is never reconsidered) 
A2. rework (infeasible choice is identified and changed, and 

perhaps other decisions dependent on it must also be 
changed) 

A3. longer cycle time (introducing then changing infeasible 
choices will cause the project to take longer, since rework 
consumes time) 

A4. lower productivity (introducing and changing infeasible 
choices will lower productivity, since rework consumes 
resources) 

A second set of assumptions is somewhat more speculative, and 
has to do with factors that make infeasible choices more likely or 
less likely.  The fundamental underlying ideas are 1) that when the 
person who has responsibility for a decision is aware of the 
constraints that relate that decision to other decisions, it is more 
likely that the decision maker will make a feasible choice, and 2) 
more frequent communication among decisions makers who are 

making mutually constraining decisions increases the likelihood 
of making a feasible choice.  Each of the assumptions listed below 
should be read to implicitly include a “ceteris paribus” clause, i.e., 
in each case, we assume that all other relevant factors are held 
equal.   
Feasible choices for mutually constraining decisions are more 
likely to be made when: 
A5. the decisions are made by a single person, or fewer people 

(rather than more people); 
A6. they are made by people in frequent (rather than infrequent) 

communication with each other; and 
A7. the constraints that bear on a decision are highly visible to 

the decision maker. 
While we treat these assertions as assumptions for our present 
purposes, it would be desirable to test many of them in future 
research.  Such a dual role of an assertion as both assumption and 
testable hypotheses is not uncommon in scientific contexts.  For 
the purposes of one experiment, for example, one might simply 
assume the validity of the readings of a particular measuring 
instrument or procedure.  If any doubt arises as to these 
assumptions, however, it is reasonable to perform additional 
experiments for the purpose of testing these assumptions.  It is 
seldom possible to test the entire interrelated complex of 
assumptions and hypotheses involved in a line of experiments at 
once. 
One way to test our formulation, e.g., of Conway’s Law, would be 
to show that higher Conway numbers are associated with more 
rework, longer cycle time, or other indicators of the presence of 
infeasible decisions.  Yet it is very difficult to actually determine 
the Conway number of a development, since it is generally not 
possible to completely specify the set of engineering decisions and 
the constraints among them for any project of significant size.  
Given our definition of a development’s Conway number, 
however, this would be required in order to directly measure a 
Conway number.  
While such a complete enumeration of decisions and constraints is 
generally not feasible, it may often be feasible to establish that 
one system, or one set of changes to a system, has a higher 
Conway number than another system or set of changes.  If it is 
possible to eliminate or account for other possible sources of 
variation, it may be possible to make relevant measurements, e.g., 
of rework, cycle time, or productivity, and test hypotheses about 
such things as Conway numbers on this indirect basis.  Supporting 
such indirect tests was, of course, a primary motivation in 
introducing the assumptions in this section. 
In this section, we have considered various assumptions that we 
find necessary in order to derive testable hypotheses from the 
theory, and to perform observations relevant to those hypotheses.  
In the next section, we describe the methods we employed in a 
preliminary test of the Conway and Parnas hypotheses. 

3. EMPIRICAL METHODS AND RESULTS 
We have two aims in designing empirical procedures to test 
hypotheses derived from our theory.   First, and most importantly, 
we intend this to be a proof of concept, in the sense that we 
illustrate that such hypotheses are testable.  Second, we generate 
evidence that is relevant to the substance of the theory itself, 
although we do not claim that our results are final or definitive. 
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In broad strokes, our method is as follows.  We use data from a 
modification request (MR) system from a development project at 
Avaya Technologies.  Using this MR data, we construct two 
graphs, one that shows the flow of work among individuals, and 
one that shows the organization of files in terms of which files 
tend to get changed together.  We extract scalars from these 
graphs to represent theoretically relevant properties, and use these 
scalars in regression analyses to predict important quantities such 
as productivity and cycle time.  We use assumptions from section 
2 and the results of these regression models to test two ETC 
hypotheses.  We spell out the details of this method in the 
remainder of this section.  

3.1 Project and Site 
We study embedded software for a communications device with a 
user interface, running on a popular embedded operating system.  
The product had significant changes in hardware and substantial 
increase in functionality leading to extensive software 
development over the range of two years. At the time of the 
writing the product is approaching its fourth major release. 
More than 30 active developers participated over more than two 
and a half years modifying approximately 5,000 files.  In all, the 
changes included more than 10,000 delta adding more than 3 
million lines of code for this system.  Most of the developers were 
located in one site in the eastern United States and a very small 
group of developers were located in Australia. 
Most of the code was written in C language, some also in Java and 
C++, and assembly language. One release, for example, contains 

approximately 1 million lines of code (LOC) of C and C++ and 
200,000 LOC of assembly language, and 100,000 LOC of Java. 

3.2 Modification Requests 
Modification request (MR) and version control systems (VCS) are 
used by virtually all software projects to coordinate the work of 
the project participants and to allow parallel work on several 
releases and patches. This dataset is a typical example of the data 
that is usually available from VSC and MR systems. 
A slightly simplified version of an MR process follows.  The 
developers are assigned (or, more often, assign themselves) a new 
feature or a defect to work on. In case of defects, they investigate 
the problem, make necessary changes and submit an MR for 
integration. In case of new features, additional tasks such as low 
level design and design review are performed prior to coding. 
After coding is complete the MR is submitted for integration by 
the developer. If the MR prevents system build, it may be rejected 
by the integrator and then the developer makes needed 
modifications and resubmits it. The code inspection may be done 
afterward and any issues are resolved with additional MRs. The 
MRs may originate from customers, testers, or developers 
themselves. Often developers will find an issue to work on in the 
regular course of their activities. In some cases developers 
reassign MRs to other developers if they can not resolve the 
problem on their own. More than half MRs do not lead to 
changes. They include such things as duplicate reports, and 
problems that are not reproducible or that are not high enough on 
the priority list. 

gray: tester->developer
black: developer originator -> developer implementor

dashed: assignement of MR to another person
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Figure 1.  Graph of work flow constructed from modification request 
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The product in the analysis used Sablime configuration 
management system that uses SCCS version control system to 
manage code changes. We extracted workflow relationships by 
processing Sablime MR history file for each change. This file 
contains the history of all transactions on an MR, including 
information about by whom, when, and what fields were changed. 
We extract MR creation, all MR assignments, and all MR 
submission/rejections. 

3.3 Graph Construction and Hypotheses 
We used the MR data to construct two types of graphs that would 
allow us to generate measures of the properties of interest.  Our 
theory of engineering decisions focuses on how the conditions 
under which engineering work is done influences important 
outcomes.  The outcomes (e.g., cycle time, productivity, quality, 
rework) can often be measured for individual MRs.   
On the other hand, the factors that influence these variables 
operate at the larger scale of how work relates to coordination 
among individuals and is distributed across software modules.  In 
order to generate measures of these independent variables, we 
constructed two types of graphs that allow us to capture the 
important conditions under which the MR work was done.  

3.3.1 Empirical Workflow Graph 
From a theoretical point of view, one would expect, from 
assumption A5, that the more people with whom one must 
coordinate one’s mutually-constraining engineering decisions, the 
more infeasible decisions one is likely to make, hence by 
assumption A4, the less productive one is likely to be.   
In order to investigate this prediction, we constructed an empirical 
workflow graph.  In this directed graph, each person involved in 
the project is represented as a node.  Arcs represent instances of 
workflow, i.e., when some type of work on the MR (e.g., MR is 
created, assigned, or some code is committed in order to resolve 
the MR) by one person is followed by work on the same MR by 
another person.   
So, for example, if person A creates an MR, and the next recorded 
activity is that person A assigns the MR to person B, and person B 
subsequently contributes code to the MR, we record an arc from A 
to B.  If person B assigns the MR to person C, we record an arc 
from B to C.  The workflow graph is shown in Figure 1. Each 
person is shown as a node: square nodes represent testers, oval 
nodes represent developers, and diamond nodes represent 
developers who reassign significant portion of their MRs to other 
developers, i.e., have worked as change coordinators deciding 
whom to assign unassigned MRs. The gray links indicate a 
connection from a tester who raises an MR to a developer who 
works on it. The dashed links indicate MR reassignments among 
developers, and the black links indicate MRs created by 
developers and assigned to another (or the same) developer.  The 
thickness of links is proportional to the square root of the number 
of MRs, and direction of the link is in the direction of workflow.  
While the appearance of the graph is cluttered, one can see, for 
example, that testers typically assign MRs to a particular group of 
developers.  Most MRs are raised and solved by the same 
developer.  Some, but not all, developers work on assignments. 
From this empirical workflow graph, we derive several relevant 
measures.  For each node (i.e., person) in the graph, we count the 
number of MRs the person assigned to him/herself (self), the 

number of MRs assigned to a person by others (in), the number of 
MRs assigned by a person to others (out), the total number of 
individuals who assigned at least one MR to a person (inDegree), 
and the total number of others to whom a person assigned at least 
one MR (outDegree).   
The inDegree variable is the best indicator of the number of 
people whose work constrains a given developer’s decisions.  If I 
receive work handoffs from many different people, I will increase 
the likelihood that I will make infeasible decisions.  (Handing 
work to additional people should not have a similar effect on my 
productivity, although my involvement will presumably generate 
more constraints on the decisions of those to whom I make the 
handoff).   
We are able to estimate productivity from our data (details below), 
which gives us hypothesis 1: 
H1:  Developers with higher inDegree (more people assigning 
work to them) will have lower productivity. 

3.3.2 Work Modularity Graph 
If engineering decisions concerning one module have no effects 
on engineering decisions in other modules, then all relevant 
constraints are revealed by looking only at a portion of the system 
(the module) rather than the whole system.  The constraints 
should therefore be much more visible to the developers, which 
(by assumption A7) will lead to fewer infeasible decisions.  By 
assumption A3, fewer infeasible decisions should lead to shorter 
cycle times.   
In order to investigate this prediction, we constructed a work 
modularity graph which partitions the code into empirically-
derived modules (see [18]) to investigate the properties of MRs 
where all of the work occurs within a single module and those that 
require work in more than one module.  In this graph, files are the 
nodes, and edges are drawn between nodes whenever those files 
are both modified in order to perform the work for a single MR. 
Files are clustered into two modules (one is shown with a gray 
background) based on an algorithm that minimizes the number of 
edges between files in different modules. 
Thickness of the link represents the square root of the number of 
MRs. Figure 2 shows only links and files that these links touch 
where links contain more than 8 MRs within a module and more 
than 3 MRs for links that cross module boundaries.  These 
constraints are needed to produce a small figure that could be 
read. The file names are converted to random three letter 
combinations. 
We construct modules on this empirical basis rather than some 
other basis, such as directory structure, in order to perform a more 
meaningful test of modularity in the Parnas sense [20], i.e., 
modules where changes or work-items are contained within a 
module.  Modules defined around directory structure often do not 
have this property, therefore using the modules defined by 
directory structure would not bear in any clear way on the theory.   
The reason for this difference, of course, is the information-hiding 
property of modules.   
Given that we can measure the cycle time, or interval, for MRs 
(see below), we have hypothesis 2: 
H2: Modification requests that require work in different modules 
will have longer cycle times than modification requests that 
require work in only a single module. 
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Figure 2.  Graph of file and module structure. 

3.4 Statistical Models 
3.4.1 Productivity and Coordination 
The predictors in the model are shown in Table 1 below. We have 
transformed variables by square root transformation to obtain 
more Gaussian distributions of the variables. 
In the regression model below, the response is productivity, which 
we measured as the number of MRs divided by the total time 
participating in the project.  Other measures of productivity are 
possible (e.g., lines of code added, number of commits or deltas).  
However, many MRs that do not result in changes to the code 
involve considerable investigative work, e.g., to try to reproduce 
an error, or to understand how the code works or is supposed to 
work).  For this reason, we decided that measures based solely on 
changes to the code could not adequately reflect these sorts of 
productive work.   
Table 1.  Variables used in regression model for productivity. 
self Square root of the number of MRs initiated and 

assigned by a person to him/herself 

in Square root of the number of MRs assigned to the 
person 

out Square root of the number of MRs assigned by the 
person 

inDegree Square root of the number of individuals who 
assigned MRs to the person 

outDegree Square root of the number of individuals who were 
assigned MRs by the person 

The first factor is MRs a developer creates and completes and 
second is the number of MRs assigned to a developer. These 

factors represent aspects of individual productivity. The number 
of MRs that the developer assigns to other people is the next 
factor. This covariate might decrease productivity, since developer 
has to spend time to assign these MRs but they are not counted in 
the individual productivity number.  The last two factors are the 
number of individuals assigning the MR to a person (i.e., the 
variable our hypothesis is concerned with) and the number of 
individuals that the person assigns MRs to. The results are in the 
Table 2 below.   
The results indicate that productivity of an individual developer 
significantly increases (unsurprisingly) with the number of MRs 
they resolve (selfMr and inMR), and significantly decreases, as 
our hypothesis H1 predicts, with the number of people who assign 
MRs to them (inPeople). This appears to indicate that the more 
people whose work has an effect on a given developer’s work, the 
lower the productivity of the given developer.  (The inspection of 
multicolinearity, normality, and residuals showed nothing 
unusual.  The multiple R-squared of .69 indicates a good fit of the 
model to the data.) 

Table 2. Regression performed on productivity, using 
variables from the empirical workflow graph. 

Variable Coefficient Std. Error t value Pr>|t| 

Intercept 6.4 0.96 6.7 <0.001 

self 0.47 0.18 2.7 0.01 

in 1.16 0.32 3.6 0.001 

out 0.42 0.82 0.5 0.6 

inDegree -2.1 0.68 -3.0 0.006 

outDegree -1.1 1.4 -0.8 0.41 

3.4.2 Cycle Time and Modularity 
Here we are looking at the interval for the MRs that involve 
changes to code.  We have selected a large module using 
globalization techniques [18].  The module contains 257 files out 
of total 872 files in the system and about four percent of MRs 
touching the files in the module also modify files outside the 
module. 

Table 3.  Predictors used in regression model for cycle time. 
Other indicator if the MR was created not by 

developer 

Nreleases number of releases the MR is included 

Nfiles Logarithm of the number of files MR touches 

Developer developer resolving MR 

Multi-mod indicator  of MR crossing boundary of a 
module 

The interval is modeled by first including factors that are likely to 
affect the interval and then adding the factor that we would like to 
test. The first covariate identifies if another person has created the 
MR (this factor is likely to increase the interval because of the 
need to communicate the issue to another person and has been 
observed previously [12]), how many releases MR was included 
in (indicating a problem serious enough to be fixed in older or 
newer releases and the dependency issues associated with 
changing code in multiple releases), number of files touched that 
indicates the complexity of the issue, the identity of developer that 
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may affect the time it takes to solve the problem, and, finally, an 
indication if the MR crossed the module boundary. In general, one 
would expect changes that cross module boundaries (in 
comparison to those that do not) to require understanding of the 
module internal structure as well as its surroundings. 

Table 4.  Regression performed on variables from the work 
modularity graph. 

Variable Estimate Std. 
Error 

t value Pr(>|t|) 

(Intercept) 11.3 0.24 46.7 < 0.001 

Other 2.46 0.098 24.9 < 0.001 

nReleases 1.04 0.11 9.3 < 0.001 

NFiles 0.18 0.05 3.3 0.001 

Multi-
mod 

0.41 0.19 2.2 0.027 

(The inspection of multicolinearity, normality, and residuals 
showed nothing unusual, and the multiple R-squared of .631 
indicates a good fit.  The 27 regression coefficients, one for each 
developer, are excluded because of space considerations.  They 
ranged from -1.2 to 1, with mean 0 and median -0.1.) 
This result supports H2. 

4. DISCUSSION 
Our empirical results illustrate initial steps toward validating our 
theory.  Before we have a high degree of confidence that our 
formulation of the Parnas and Conway effects is really supported, 
we will need to conduct additional studies, both replications and 
extensions.  We regard this as a promising start that merits further 
consideration of how other ways of clustering, sequencing, 
visualizing, and partitioning engineering decisions influence 
outcomes.   
As we mentioned in the introduction, we suspect that the bare 
bones ETC theory presented here can be extended in various ways 
to represent other important coordination issues.  For example, 
one could represent coordination effects of different ways of 
ordering design decisions by examining the cardinality of the 
effects of the decisions.  Under some circumstances, for example 
when engineers fear that the effects of early decisions are difficult 
to discern, one might want to make choices early on that have 
minimal effects. This represents a strategic choice not to foreclose 
choices for future decisions more than necessary.  In other 
circumstances, one might want to make early choices with 
maximal effects in order to reduce the design space as much as 
possible and simplify future decisions.  Different design methods 
can be seen as prescribing standard orderings of engineering 
decisions that embody these sorts of tradeoffs.   
For purposes of illustration, consider Michael Jackson’s “problem 
frames” [15].  By adopting, say, a high level decomposition 
consisting of “simple workpieces” and “display” problem frames, 
there are several effects relevant to coordination among decisions.    
First, such “high level” decisions (i.e., decomposition into these 
two known frames) can be seen as making many individual 
decisions at once, and doing so in a way that (one hopes) 
introduces no infeasible choices.  Second, the state of the 
engineering design space after the “high level” decision, i.e., the 
set of all decisions not yet made and the constraints on those 

decisions, is partitioned such that decisions concerning one 
problem frame have few effects (all of which should be explicit 
and highly visible -- see below) on decisions concerning the other 
problem frame.  With appropriate assignment to teams, it permits 
one to take advantage of Conway’s Law.   
Another area we believe is ripe for future research is the 
“visibility” of the project’s current state, where current state is the 
set of decisions not yet made and their remaining feasible choices.  
If one considers a graph where the decisions are nodes and 
constraints are edges, one might speculate that visibility for any 
given engineer is a function of a) the number of nodes reachable 
from the nodes representing the decisions assigned to a developer 
(larger number of reachable nodes means more one needs to be 
aware of), b) the predictability of the choices for decisions that are 
reachable but not assigned to the given engineer (high 
predictability means guesses or assumptions about what other 
engineers will decide are likely to be correct), and c) the form, 
content, and clarity of information about current project state. 
While we regard ETC as promising, these results are clearly in 
need of further test.  Since many projects use modification 
requests in a similar way, the techniques we employ can be 
applied to data from many settings.  We would also like to see 
tests of many more hypotheses derived from our theory, in order 
to determine if in fact it provides a useful, empirically valid view 
of coordination in software engineering.  We also note that while 
we consider our assumptions to be very plausible, they require 
independent empirical tests in order for the theory to be validated.  
The assumptions provide a critical bridge between theory and 
observation, and they should be subjected to rigorous tests.  As 
we said in the introduction, empirical tests of theories, as opposed 
to individual hypotheses, require a program of research, on which 
we have now just embarked.  

5. CONCLUSION 
This paper makes three contributions.  First, we formulate an 
empirical theory of coordination that is precisely specified, and 
which can account for many important phenomena in software 
engineering.  Second, we show how this theory, when used in 
conjunction with several explicit and plausible assumptions about 
the possible effects of infeasible choices and the circumstances 
likely to lead to infeasible choices, generates testable hypotheses.  
Finally, we performed empirical investigation of two hypotheses 
derived from the theory. 
We believe that coordination is an enormously important aspect of 
software engineering, where development and testing of empirical 
theory is vitally important in order for research to progress.  We 
are convinced that many areas of software engineering would 
benefit from development and testing of empirical theory.  We 
offer our theory as an example that we hope will stimulate 
discussion, and lead to further development and testing of 
empirical theory in coordination and other areas where we need to 
achieve a better understanding of the contingent properties of 
important phenomena in software engineering.   

6. ACKNOWLEDGEMENT 
The authors wish to acknowledge support through the High 
Dependability Computing Program from NASA Ames 
cooperative agreement NCC-2-1298. 

146



    

7. REFERENCES 
1. Basili, V.R., The Role of Experimentation in Software 

Engineering: Past, Current, and Future. in 18th International 
Conference on Software Engineering (ICSE 18), (Berlin, 
Germany, 1996), IEEE Computer Society Press, 442-449. 

2. Basili, V.R., McGarry, F.E., Pajerski, R. and Zelkowitz, M.V., 
Lessons learned from 25 years of process improvement: The 
Rise and Fall of the NASA Software Engineering Laboratory. 
in International Conference on Software Engineering, 
(Orlando, FL, 2002), ACM Press, 69-79. 

3. Brown, J.S. and Duguid, P. Knowledge and organization: A 
social-practice perspective. Organization Science, 12 (2). 198-
213. 

4. Campbell, D.T. and Stanley, J.C. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin, 
Boston, MA, 1963. 

5. Conway, M.E. How Do Committees Invent? Datamation, 14 
(4). 28-31. 

6. Crowston, K. A taxonomy of organizational dependencies and 
coordination mechanisms. in Malone, T.W., Crowston, K. and 
Herman, G. eds. Tools for Organizing Business Knowledge: 
The MIT Process Handbook, MIT Press, Cambridge, MA, in 
press. 

7. Curtis, B., Krasner, H. and Iscoe, N. A Field Study of the 
Software Design Process for Large Systems. Communications 
of the ACM, 31 (11). 1268-1287. 

8. Dellarocas, C. A Coordination Perspective on Software 
Architecture: Towards a Design Handbook for Integrating 
Software Components Center for Coordination Science, 
Massachusetts Institute of Technology, Cambridge, MA, 
1996. 

9. Durfee, E.H. Organisations, Plans, and Schedules: An 
Interdisciplinary Perspective on Coordinating AI Systems. 
Journal of Intelligent Systems, 3 (2-4). 157-187. 

10. Gelernter, D. and Carriero, N. Coordination languages and 
their significance. Communications of the ACM, 35 (2). 97-
107. 

11. Herbsleb, J.D. and Grinter, R.E., Splitting the Organization 
and Integrating the Code: Conway’s Law Revisited. in 21st 
International Conference on Software Engineering (ICSE 99), 
(Los Angeles, CA, 1999), ACM Press, 85-95. 

12. Herbsleb, J.D. and Mockus, A. An Empirical Study of Speed 
and Communication in Globally-Distributed Software 

Development. IEEE Transactions on Software Engineering, 
To appear. 

13. Hollan, J., Hutchins, E. and Kirsh, D. Distributed Cognition: 
Toward a New Foundation for Human-Computer Interaction 
Research. ACM Transactions on Computer-Human 
Interaction, 7 (2). 174-196. 

14. Hutchins, E. The Technology of Team Navigation. in 
Galegher, J., Kraut, R.E. and Egido, C. eds. Intellectual 
Teamwork, Lawrence Erlbaum, Hillsdale, NJ, 1990, 191-220. 

15. Jackson, M. Problem Frames. Addison-Wesley, Boston, MA, 
2001. 

16. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., 
Hoaglin, D.C., Emam, K.E. and Rosenberg, J. Preliminary 
Guidelines for Empirical Research in Software Engineering. 
IEEE Transactions on Software Engineering, 28 (8). 721-734. 

17. Malone, T.W. and Crowston, K. The interdisciplinary theory 
of coordination. ACM Computing Surveys, 26 (1). 87-119. 

18. Mockus, A. and Weiss, D.M. Globalization by Chunking: A 
Quantitative Approach. IEEE Software, January - March. 

19. Mook, D.G. In Defense of External Invalidity. American 
Psychologist, April. 379-387. 

20. Parnas, D.L. On the Criteria to be Used in Decomposing 
Systems into Modules. Communications of the ACM, 15 (12). 
1053-1058. 

21. Perry, D.E., Staudenmayer, N.A. and Votta, L.G. People, 
Organizations, and Process Improvement. IEEE Software, 11 
(4). 36-45. 

22. Reif, F. Fundamentals of Statistical and Thermal Physics. 
McGraw-Hill, New York, 1965. 

23. Simon, H.A. The structure of ill structured problems. 
Artificial intelligence, 4. 145-180. 

24. Tichy, W.F. Should Computer Scientists Experiment More? 
IEEE Computer, 31 (5). 32-40. 

25. Votta, L.G. and Porter, A., Experimental Software 
Engineering: A Report on the State of the Art. in 17th 
International Conference on Software Engineering (ICSE 17), 
(Seattle, Washington, 1995), ACM Press, 277-279. 

26. Walz, D.B., Elam, J.J. and Curtis, B. Inside a Software Design 
Team: Knowledge Acquisition, Sharing, and Integration. 
Communications of the ACM, 36 (10). 62-77. 

27. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, 
B. and Wesslen, A. Experimentation in Software Engineering: 
An Introduction. Kluwer Academic Publishers, Boston, 2000. 

 
 

147


