
Splitting the Organization and Integrating the Code:
Conway’s Law Revisited

James D. Herbsleb and Rebecca E. Grinter
Bell Laboratories, Lucent Technologies

263 Shuman Blvd
Naperville, Illinois 60566. USA

+l 630.713.1869
{herbsleb, beki}@research.bell-labs.com

ABSTRACT
It is widely acknowledged that coordination of large scale
software development is an extremely difficult and
persistent problem. Since the structure of the code mirrors
the structure of the organization, one might expect that
splitting the organization across time zones, cultures, and
(natural) languages would make it difficult to assemble the
components. This paper presents a case study of what
indeed turned out to be the most difficult part of a
geographically distributed software project, i.e., integration.
Coordination problems were greatly exaggerated across
sites, largely because of the breakdown of informal
communication channels. The results imply that multi-site
development can benefit to some extent ti-om stable plans,
processes, and specifications. The inherently unpredictable
aspects of projects, however, require communication
channels that can be invoked spontaneously, by developers,
as needed. These results shed light on the problems and
mechanisms underlying the coordination needs of
development projects generally, be they co-located or
distributed.

Keywords
Coordination, collaboration,
qualitative research.

systems integration,

1 INTRODUCTION
Geographically distributed software development has
become a business necessity for many global corporations.
This imperative is being driven by the need to locate
resources in a country for marketing purposes, the
acquisition of foreign divisions in mergers and buy-outs,
and the promise of global round the clock development.
Despite the necessity, and perhaps even desirability cf
geographically distributed development, it is extremely
difficult to do successfully (see, e.g., [IO]). Unanticipated
coordination breakdowns appear fi-equently to lead to delay,
inefficiency, and frustration.

Permission to make digital or hard copies of all or part ofthis work thr
personal or classroom USC is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
ICSE ‘99 Los Angeles CA
Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

In this paper we report research that begins building a better
understanding of why geographically distributed,
development is so difficult to coordinate. Specifically, we
present a case study of the integration phase of a
geographically distributed development effort. By
“integration” we mean all the work that is necessary to
assemble the product from its components. We were
pointed towards integration as a topic by an initial series of
interviews that focused on occasions where the multi-site
character of the project was most disruptive.

The next section reviews the literature on coordination in
software development and the various kinds of mechanisms
that serve to maintain coordination. Section 3 describes
the sites involved and our empirical research methods. Our
results are presented in section 4, and our conclusions in
section 5.

2 COORDINATION, PREDICTION, AND
COMMUNICATION

The coordination of soflsvare development work has been a
focus of attention within research for a long time. One of
the frst people to suggest its significance was Melvin
Conway [3]. Specifically, what Conway said was that the
structure of the system mirrors the structure of the
organization that designed it. Conway’s Law - as it has
become known - was the first explicit recognition that the
communications patterns of an organization left an indelible
mark upon the product built.

Pamas went on to clarify how the relationship between
organization and product occurs within s0thm-e
development. His definition of a module as “a
responsibility assignment rather than a subprogram” clearly
shows that dividing a software system is simultaneously a
division of labor [121. It is the division of labor, among
different individuals, that creates the need for them to
coordinate, to align their efforts, in the production of
software.

Both Pamas and Conway focused on the structure of the
product, which provides an important foundation for the
coordination of work. Product structure addresses the
question of what is to be developed by individuals or small
groups. This, however, is only one of several dimensions
on which development projects must be coordinated. A
project must also, for example, determine how the product

85

is to be developed (i.e., the development process).
Processes can also determine work assignments, as when an
intermediate product is handed off between two groups,
e.g., for different stages of design, coding, or testing.
Again, well-defined boundaries, in this case between
process steps, are critical in breaking up work so that it can
be assigned to different groups. In addition to what is
developed, and how the work is done, when various project
milestones are to be achieved (usually laid out in a plan),
and who will do the work (often contained in a stafling
profile) are also critical to project coordination. Projects can
struggle badly or fail altogether if these other critical
dimensions of project coordination are not attended to.

Around the same time that Parnas and Conway were
describing how coordination was fundamentally part of
software development work, Brooks was already noticing
how difficult it was in practice. Brooks’ Law says that if a
project is late then adding more people to the development
will slow the work down further [2]. Brooks argues that
one of the reasons this law holds is that the addition of
more people creates communications overhead, because af
the project coordination required. A few years later, Curtis
[4] documented the fact that communication and
coordination was one of the most difficult and pervasive
problems in large-scale software engineering.

The challenge of coordinating development projects has not
gone unnoticed by the software development researchers and
practitioners who have primarily worked on solutions that
provide explicit and visible mechanisms for coordination.
These solutions include activities such as planning,
defining and following a process, carefully managing
requirements and design specifications, measuring process
characteristics, regular status meetings to track progress,
implementing a workflow system, and so on. They are
generally imposed by management, although they require
cooperation from everyone to succeed. The software
industry has increasingly recognized the importance of these
sorts of practices, as evidenced by such things as the
increasing adoption of the Capability Maturity Model for
Software [6, 131 and increasing attention to software
processes [1, Ill.

These kinds of solutions facilitate the coordination of
development by providing a shared understanding of what
the purpose, process and desired outcomes are. They give
all the members of the team a common direction.
However, plans and processes are most useful only to the
limits of one’s ability to anticipate. One can certainly plan
for various risks and contingencies, and can have diEerent
flavors of the process for different circumstances. But there
will always remain many decisions that cannot be made
ahead of time, unanticipated problems, details to be filled
in, mistakes to be corrected and recovered from [18, 193.

The ability to predict will nearly always be much better
developing the nth version of a product than developing the
first version, but predictability will always have its limits,
and various coordination-preserving adjustments will

always be needed. For this reason, a number of vital
elements of software development work such as the exercise
of individual skill, habitual but unrecorded patterns of
human activity, creative handling of unanticipated
conditions and events, and the use of informal personal
networks, are hard to represent explicitly in plans and
processes [9, 161.

Work that is unpredictable to some degree, and hard to
represent explicitly in plans and processes, is impossible to
avoid in software development. The usual and perhaps
most effective approach to dealing with the limits of
predictability is to avoid “over-engineering” a process
description or a plan. Beyond a certain level of detail,
those doing the work must be trusted to have the skills to
do it appropriately, handling exceptions and coordination
issues as needed. Interference from plans and processes that
anticipate incorrectly is thereby largely avoided.

Yet these essential “outside-the-plan” actions are a serious
potential threat to project coordination for lwo reasons.
First, they often need to take account of others’ ,actions, so
as not to interfere with them. Second, they need to be
communicated to everyone potentially tiected, in order to
curtail ripple effects. Previous, empirical studies of the
coordination of software development suggest that
developers use informal communication channels [4, 5, 7,
14, 151 to address this threat. Informal communications
channels are outside the official reporting slmcture’ of a
project. They are simply developers’ access to other
developers, managers, testers, and anyone else they need to
interact with during the development process. Unlike the
explicit mechanisms described above, they are usually
invoked by those doing the work; without requiring
management authorization, and perhaps without
management’s knowledge. These channels help developers
fill in the details of work, handle exceptions, correct
mistakes and bad predictions, and over time mange the
ripple effects of previous decisions and actions. Using
informal communications channels, or even unofficial roles
such as boundary-spanner [4] is a critical complement to
explicit coordination mechanisms.

These communications channels have not received the same
kind of attention in software engineering as the more visible
coordination mechanisms have. Nevertheless, previous
research in other areas has shown their critical importance
(e.g., [20]). Changes in the way work is done that disrupt
these informal communications channels often have
disastrous effects (e.g., [17]). What appear to be merely
“casual conversations around the water cooler” often serve
to informally exchange the kinds of information and
experience that are critical to project coordination.

Since communication between distant sites is rnore difficult
than communication within a single site, this analysis
suggests that multisite development will disrupt informal
communication channels to a greater or lesser extent. We
would expect lapses in coordination to become visible at
the point where the products of ongoing work am finally

86

brought together, or recomposed [5]. In order to better
understand the loss of coordination in multi-site
development, we conducted a qualitative study of the
integration process during the development of a large,
software-intensive telecommunications product. The site
and the empirical methods used are described in the next
sections.

3 SITES AND METHODS
In this section we describe the sites of study, including
some background on the products built. We also discuss
how the work is divided among sites. We conclude with a
description of the methods used to analyze and collect the
data.

Site
Geographically distributed software development is
pervasive among most large companies, including Lucent
Technologies. We chose one division of the company for
this study, which is part of a larger project to examine all
aspects of coordinating multi- site development work. We
are studying this department for three reasons.

First, the department was willing to host researchers and
provide us with access to developers, documents and other
resources. Second, they work in an area of telephony that
is both technically complex and growing rapidly in market
demand. The product that they build is a real-time system,
and the software controls embedded hardware elements,
making the design and development work challenging. In
addition this product competes in an aggressive market
which brings its own pressures to development work. We
feel that if we can better support this kind of work, we will
find insights into other complex domains. Finally, the
department engages a number of cross-site collaborations,
both within the development of their product as well with
other divisions of the corporation, and other companies.
We were interested in exploring the varieties of
coordination required in the development process.

In this study we focus on two of those locations, one in the
UK and one in Germany, where the department does a large
share of its development work. These two sites exchange
information frequently and make decisions that require
cross-site synchronization. The German site had existed for
a number of years, and the people there had considerable
experience working together on similar systems. However,
it had not previously participated in cross-site development
where the architecture is split. The UK site was new, with
no existing relationships to any other Lucent site.

The department also has interactions with other divisions
of the company because the product must interact with
other technologies. Many of these technologies are built in
the United States so the developers coordinate work with
these other sites. These US sites had not previously
worked together, nor had they worked before with the UK
or German sites. In all cases, the collaborations span
different languages, cultures, and many time zones, making
them more difficult.

Methods
The study began with an initial set of 10 interviews with
managers and technical leads. The purpose of these
interviews was to gather information about what people in
the department felt the challenges of multiple site
development are. They identified integration as one area
where they had experienced difftculties, so we conducted a
second round of 8 interviews where we focused on those
problems explicitly.

Data analysis followed qualitative protocols [8]. We
transcribed all the interviews and then reviewed the
materials for specific events within the integration
activities. We then looked for causes, and outcomes, as
part of building up a rigorous explanation of what happened
during integration.

In addition to the primary interview material we had a
number of secondary sources available to us, that helped us
to learn about the problems and verify some of the
information we gathered. Specifically, we reviewed
documents related to the development process. We were
also given access to a retrospective of the development
process that the sites carried out at the end of their fmt
release. These documents and other archival sources helped
us to learn about the development context in which the
developers found themselves working on cross-site
integration.

4 RESULTS
4.1 Limits of explicit coordination mechanisms
The means of coordination that figured most prominently
in the integration phase of this project were
l the integration plan,
0 component interface specifications,

l software processes, and
l documentation.
In this section, we explore how these were used to
coordinate work, and how the limitations of these
mechanisms were exposed in this project.

4. I. I The Integration Plan
As with any development effort, a plan for integrating the
system was devised. In this case it consisted of 40 steps,
that would bring elements of the overall product together.
The initial plan was not closely followed because it was
based on several assumptions and predictions that turned
out to be in error.

Dependence on the overall development plan. For the
integration plan to succeed, the components to be
integrated had to be available at the right time. The project
suffered from many of the usual difftculties of planning
software development, such as changing requirements, staff
turnover, and extreme schedule pressure. Add to this the
virtual impossibility of predicting the effort and timing of a
new product being developed in a new organization, and it
is no surprise that the components were not ready for
integration on the schedule described in the plan. The

87

original plan turned out, in retrospect, to be very
optimistic.

As the developers strove to adjust to the realities of the
project, they took an approach one developer described in
this way, “We chopped and changed as things became
ready.” Developers reported that the plan changed weekly.
As the project progressed, the developers augmented the
documentation to help them deal with the unpredictability,
keeping very detailed records, for example, of exactly what
steps they had taken, and exactly what files went into each
build so that they could quickly back them out if
something went wrong.

Substrate environment. Some developers concluded, in
retrospect, that the plan missed a critical pre-step, i.e.,
building the substrate environment on which the product
sits. This product relies on a number of substrate software
and hardware technologies, built within other divisions of
the corporation, and by other companies. Making the
product work involved ensuring that it ran on top of these
substrate technologies, and so prior to testing the software,
the environment had to be assembled. As it turned out, the
plan did not adequately take account of the difficulty of this.
In addition to slowing down the testing while some
developers constructed the environment, it further
compromised the integration effort because none of the
developers were sufftciently familiar with these substrate
technologies and had not given sufficient attention to
aligning their efforts with them during development.

Perhaps the biggest uncounted for challenge of assembling
the substrate environment was the new relationships that
the development team had to forge. In their own work the
development group spans two primary sites. The
development of the substrate involved working with all the
usual partners but also required the developers to get parts
from the United States. These substrate technologies took
time and energy to assemble, and often problems were very
subtle and difficult to spot remotely. This added further
time onto the integration process.

4.1.2 Interface Specifications
Specification of interfaces is a critical part of any
development effort, especially when it is split among a
number of development teams. This project used a
contemporary solution to support the specification of their
interfaces, OR131Xm (based on CORBA). Interfaces were
specified primarily by event tracing, or “fence diagrams”
that showed sequences of messages among processes.

lacked many essential details, such as message type, return
types, and assumptions about performance. In many cases,
the incomplete specifications allowed the developers to
proceed with different assumptions about what the other
components were doing, and it was not until the initial
attempts to make the pieces work together that these
alternate assumptions were exposed. 13y letting
development groups write simulators to represent others’
code the discrepancies among assumptions had remained
hidden during unit testing.

Not all conflicts were hidden until integration. In many
other cases, developers realized that conflicts among
assumptions were likely to occur, and they contacted
developers responsible for components with which they
shared an interface, and worked out informal re:fmements to
the specification. It is not at all clear that this sort of
incremental refmement could be eliminated, since the
refmements were often based on knowledge and
understanding that came from the design work itself.

The informal refinements were sometimes, but not usually,
recorded in the documentation. Only be examining the
code could one infer the information. This caused
difficulties on a number of occasions, particularly when the
original developer left and a new developer, unaware of the
informal specification refinement, took over. It was also
very problematic in the test phase, when many bug reports
were generated by tests that violated thke informal
agreement. One developer, for example, reported that there
was an informal agreement that, for performance reasons,
another component would verify all data it sent to his
component. The testers, however, not knowing about this
agreement submitted a series of bug reports based on tests
which sent the component bad data. Much time was
wasted with this and similar problems with undocumented
interface refinements.

The developers also had to manage interfaces among the
product and its substrate technologies. Differences in
assumptions about what the product wanted and what the
substrate could provide persisted in part beciause no-one
was using the real substrate in their development work.
When integration surfaced these differences the developers
faced additional challenges of finding the right people to
contact who were organizationally and physically remote.
In many cases problems were solved by hosting a substrate
developer on-site for a period of time. This not only
resolved problems during their stay, but gave the product
developers vital contacts into these other divisions.

The use of ORBlX/OMT allowed each development group
to develop their own part of the product, reassured that the
agreements among the different interfaces held. In the
process of building their pieces the developers also built
simulators to represent the other components that their code
would need to interact with. Even before integration got
under way, it became clear that the interface specifications

Ty ORl3IX is a trademark of IONA Technologies.

4.1.3 Process
The developers used a number of processes in their work to
help organize and structure the development environment.
These processes evolved as the project did. However,
during integration a number of weaknesses with the
processes were uncovered.

One response to the multiple site problem wabs to isolate
each site from another in certain ways. For example, the
architecture of the product was divided so that the

88

components did not cross sites, each group worked on
separate pieces of the product. This separation allowed two
change management processes to evolve independently, one
for each site. The advantages of working this way were
obvious initially, changes got into local builds quickly,
and during these initial phases developers at both sites got
timely information about their code. Given the conditions
that the project faced, for some time this was a sensible
operating strategy to allow the rapid development of the
product. It did not come without costs though.

When it came time to finally integrate both sites’ work, the
processes in place created additional effort for those
responsible. For example, changes could be found at either
sites and logged into both change management systems,
fixed, and with a sequence where the code was merged
together in between that would mean the same problem was
futed twice usually creating new bugs. To prevent this,
changes needed to be logged at both sites, and then the
responsibility assigned to one person. However, the
numbers for the same change varied between the sites, so it
became incumbent on the integration team to know both
numbers for the same change. Finally, over time the
processes for building the product also became different, so
a build that worked at one of the sites, couldn’t be made to
compile at the other. The extent of these complications
certainly was not foreseen, nor perhaps could have been
foreseen, when the parallel databases were set up.

The obvious solution to this problem was to consolidate
the process at one site, which happened. However, this in
turn led to a series of challenges. Especially difficult was
getting timely feedback about the results of the build at the
other site. This was resolved in part by sending developers
from the remote site to the integration site. However,
whenever developers from the remote site came to the
integration site, they lost their ability to work in their own
development environment, which remained back at the old
site. So the remote developers faced a choice, go to the
central site and find problems, or stay remote and fix them.
This slowed down the development effort quite seriously.

Change Control Board. A change control board (CCB) is
another mechanism for controlling the changes made to
software. Their role is to examine each change request that
comes in and decide whether it should be futed, review the
problem to ensure its validity and sometimes to assign a
person to work on the revision. The organization under
study had a “local” CCB at each site which coordinated
with a project-level CCB. The discussion in this
subsection concerns only the project-level board.

Initially, the CCB was almost exclusively managed at one
of the two sites. This meant that the members of the CCB
were familiar with their code, but collectively knew much
less about the work at the other site. In fact, it was hard to
know anything about the remote sites’ software in advance.
The members knew about their software because it had
existed as a product before this particular development
effort. The software at the other site was completely new.

So at first, the CCB did not need to span the sites, and
their lack of knowledge was not an issue because there was
nothing to know.

Over time as the site began to build their software and the
product evolved from a one-site legacy system to a multiple
site revision, the lack of knowledge became a problem.
When change requests were made for the new code, no one
on the board had enough familiarity to make decisions
about how best to proceed with the change. Furthermore
they could not predict how changes in the code that they
did know would impact the software they did not
understand. So the developers of the new code found that
they got hit with problems stemming ti-om changes made
to other pieces of software that probably would not have
been implemented in that way if anyone had understood
their code better. Since the problem had a gradual onset,
the CCB was for a considerable time unaware of the extent
of the problems their decisions were causing.

The solution to the problem was straightforward. An
architect from the other site was added to the CCB. He
was able to bring a broad and deep knowledge of the design
of code developed at the other site to bear on CCB
decisions, and the problems were largely alleviated.

Sharing and evolving processes. Another process challenge
involved evolving practices that both groups of developers
shared collectively. One case was a system that one site
devised for debugging their code. They used a series of
numbers that represented different kinds of problems in the
code, so that when the system broke the developers
understood why. However, to the other site of developers
this system of numbers was as incomprehensible as the
bugs in the code. The process was not understood at all,
and it took considerable time to become familiar with how
the numbers worked and what they were telling the
developers about the state of the code.

4. I. 4 Documentation
Documenting the software process is something that a
number of researchers continue to argue for. The rationale
in this case is that reliable and accurate documentation can
help the process by supporting access to accurate and
reliable information. This project experienced a number of
challenges in documenting their process and decisions
rationally though.

First, the technologies that were supposedly there to help
with documentation did not meet expectations.
Specifically, the technologies to support the development of
code from design documents could not handle the
complexities of the application domain. Eventually this
problem was solved by abandoning the tools, and thus the
first break between the designs and the code was taken.
From this point on developers would have to manually
update the design documentation as well as their code to
reflect their changes.

Under time pressure to build the system, the developers
proceeded with coding, and slowly the code diverged fi-om

89

design. However other people were still relying on that
documentation to design their own components and test
suites. Over time, and especially in integration, all these
inconsistencies came to light. Testers pointed to
documentation as demonstration of why code was failing
certain tests, other developers pointed to documents that
described behavior that they had assumed was still
exhibited by the code. All of these inconsistencies had to
be resolved as part of building a working product.

This was further compounded by a shift in the role of
documentation. In the beginning documents had been
focused on recording the design of the system. In later
phases of the product documentation became oriented
around the change management process. So instead of
having descriptions of the components and their behavior,
the documentation was organized around the changes and
updates to the system. This kind of documentation does
not reveal the overall architecture and behavior of a
component let alone the product easily. The developers
were letI with one accurate source of documentation -- the
code itself. And as the original designers of the system left,
the soIlware itself became increasingly the source of their
system understanding.

Yet, omissions in documentation, which can simply arise
from a careless mistake, or because it is almost impossible
to completely describe a system, can create serious
problems in development. This project faced one such
problem with some documentation from the one of the
substrate technologies’ provider. In this case the omission
involved ensuring that header files contained certain non-
obvious details. As this information was not included in
the documentation, the headers were not correct, and it took
weeks to figure out that this was the problem, simply
because it was something that would never have occurred to
anyone to think of in absence of the documentation.

4.1.5 Summary
In hindsight it seems easy to see that any of these things
might have been problems that could have been resolved
with better plans. This is not however the case. The
essence of the difficulties with these plans, specifications,
processes, and documentation, is the fundamental challenge
of predicting the highly variable process of sotlware
development. Requirements change, other related
development efforts proceed and impact the work that you
do, systems seem to provide support but present subtle
challenges to work with, and so forth. All projects manage
these variabilities as part of day to day software
development work by ad hoc communication, informal
agreements, testing assumptions, and so on. As we argued
in section 2, none of these coordination mechanisms can
work without allowing for the filling in of details, handling
exceptions, coping with unforeseen events, and recovering
from errors. This section has presented a number of
examples of how plans, specifications, and processes were
modified or augmented in order to allow the work to
proceed. What perhaps makes this project more
challenging than others is the fact that multiple sites have

to notential to disrunt the conditions necessarv for these
“adjustment” techniques. This is the topic of the next
section.

4.2 Barriers to informal communication
It was clear from the interviews that splitting the
organization across sites presented barriers to informal
communication during the project, causing serious
problems. The primary barriers which led to coordination
breakdowns were
l Lack of unplanned contact,

l Knowing who to contact about what,

l Cost of initiating contact,

l Ability to communicate effectively, and

l Lack of trust, or willingness to communicate openly.
Our findings in each of these areas are discussed in the
following sections.

4.2. I Lack of unplanned contact
In a typical co-located development effort, project members
run into each other in the hallway, at the coffee machine, in
the cafeteria, and elsewhere, on a frequent basis. They
discuss many things, including many that have nothing to
do with project work. But they also bring up the project as
a topic of discussion, especially things that are currently on
their minds, or are causing them some concern. This is
not necessarily explicitly to get help, or to formally notify
others of specific events, but rather just the usual sort of
friendly exchange, common in the workplace.

These sorts of unplanned contacts seem to be surprisingly
important in keeping projects coordinated. For example,
one interviewee told us of an incident in which, during the
course of such an unplanned discussion, it came to light
that he and a co-worker were making contradictory
assumptions about what board would have a particular
digital signal processing chip. They were able to resolve
the issue in a matter of a few minutes. But had they not
discovered this difference in assumptions as early as they
did, this minor problem could have become extremely
costly.

What makes this and similar incidents significant is that
the participants were not aware of any need to
communicate. There was absolutely no reason either one
knew of, even if communication could be initiated very
easily, to contact the other person to discuss the project.
Many conflicts in assumptions follow this pattern, because
project members are oflen unaware of the assumptions they
are making, or that others might be making conflicting
assumptions. This form of coordination is predicated on
relatively frequent unplanned communication: during the
course of which relevant information and important issues
may come to light.

In our interviews, there were a number of problems that
seem to be the result of a general lack of information.
Developers at one site, for example, had devel.oped a very
handy step tracing tool that providing intorrnation on

90

memory usage, CPU usage, and so on. While developers
at the same site used the tool extensively, those at the other
site did not know of the tool’s existence for months. It
often took weeks to deal with problems that could have
been solved very quickly with the tool. The fact that
developers at one site were aware of the tool and those at
the other site were not, makes it seem quite likely that
unplanned contacts played a significant role in
disseminating awareness of the tool.

Overall, several consequences seemed to flow t?om the
relative lack of unplanned contact. One was to make it
much less likely for conflicts and issues to be recognized.
If a developer is aware that an issue exists, it is possible to
take action to correct it. But since unplanned contact
seems to be one of the primary mechanisms for bringing
issues to light, many more conflicts went unrecognized
until later in the development. Another consequence was
just the general lack of background information across sites,
i.e., how they work, what issues are most pressing to
them, how they typically communicate with each other,
site-specific vocabulary, and the responsibilities, expertise,
and relationships among those at the other site.

4.2.2 Knowing who to contact about what
Developers often reported great difficulty in determining the
appropriate person to contact at the other site. If there was
a need to coordinate on an interface specification, fm
example, there was no straightforward way to find out who
was responsible for the component on the other site.

Developers found several workarounds for this problem,
although none was entirely satisfactory. One was to look
for clues buried in the documentation, such as names at the
bottom of web pages containing specifications. Often those
whose names were listed as authors were the correct person,
or could point to the correct person. Another frequently
used workaround was to contact a system architect at the
other site. Architects were known to have a very broad
knowledge of the system and who was doing what.

Once some of the developers had spent a significant amount
of time at the other site, these individuals became “contact
people” or “liaisons.” A visitor from the UK, for example,
would often be used by those at Germany to help them to
figure out who they should get hold of. When these people
returned to their own sites, they also often acted as the first
point of contact to people at the other site. In addition,
people at their own site regarded them as something of an
expert on the other location, and would often come to them
with questions about who was doing what, and about how
things worked at the other site. This, of course, imposed a
significant cost on the liaisons, particularly in the earlier
days when there were very few people with cross-site
experience.

4.2.3 Cost of initiating contact.
When developers are co-located, contact can generally be
initiated quite easily. There are many cues about who is
around, how available they are (e.g., is the door open?),
and so on. If someone’s office is only a few feet away, one

need expend little effort to stroll down the hall for a chat.
Perhaps more significantly, it is socially comfortable to do
so, since you know them well, know how to approach
them, and have a good sense of how important your
question is relative to what they seem to be doing at the
moment. For developers at d&rent locations, the cost of
initiating contact was often much higher.

Who is available. One difftculty is simply determining if
someone is available. If they do not, e.g., answer the
phone, they could be momentarily tied up, or in the midst
of a crisis, or it could be a holiday, or they could be on a
vacation (of many weeks). Unlike the same-site case, it is
not easy to determine if the person being called is likely to
be available. Our interviewees reported it often took many
attempts, over many days and often involving several
people, to contact someone at the remote site. In the mean
time, progress was often held up.

Time dfirence. There is only one hour time d&ence
between the two sites, so one would not think that would
make much difference. But this can be very deceptive.
There is an hour lost at the beginning (or end) of each day,
but since typical lunch time was displaced by an hour, that
meant that another hour for each site was unavailable. Add
to that the fact that developers at the German site tended to
start earlier and finish earlier in the day, and an additional
hour or two of potential time overlap was lost. These time
differences meant that something that could be handled in a
matter of minutes for a same-site development would often
have to wait at least until the next business day.

Reduced responsiveness. People who know each other
relatively well, and know that they will be dealing with
each other frequently in the future tend to be more
responsive to each other’s needs and requests. Individuals
at different sites often seemed relatively unresponsive, e.g.,
not answering e-mail or voice mail promptly. This again
makes it much more costly to initiate contact, since a
single message is less likely to be effective.

Several of our interviewees believed that it was difftcult to
accurately gage the importance of a message from another
site. Often, they did not understand the context well
enough to determine why the question was being asked, or
to see why it was an important request and not merely
arbitrary or irrelevant.

Consequences: Three consequences of the high cost of
initiating contact were mentioned. First, developers did
not try to communicate as frequently as they would have
had they been co-located. They were more inclined to take
the risk that significant coordination issues would not arise
if they did not check assumptions, etc. People also
reported that they were not consulted on decisions made at
the other site that a&cud them. Second, cycle time was
increased. Even when messages were answered promptly,
developers believed that resolution was fin more likely to
stretch into the next day. Worse, it often took several
days, rather than minutes or hours, to make the right

91

contact. Finally, issues had to be escalated more oflen, if
an adequate and timely response was not forthcoming.

4.2.4 Ability to communicate eflectively
Once the right person has been identified and
communication is initiated, information must be conveyed
in a relatively complete and undistorted way for
communication to effectively support coordination.

What can’t be seen. The most obvious obstacle to
communication is simply not being able to see the same
things, have access to everything in the environment. This
problem took a variety of forms. For example, one lengthy
problem involved a hardware and software component f?om
an internal contractor. It was not behaving properly, and
the supplier could not duplicate the problem, even though
they had identical hardware and could access the software
remotely to ensure it was correct. However, they could not
“see” a faulty firmware chip, and the problem was very
difficult to solve.

Another example illustrates a very di&rent form of this
problem, in a developer at one site could not see what a
tester at another site was doing. As the developer
explained it, the documentation essentially said, “leave
blank if you want to get all the faults on the system and
this tester was typing in ‘b-l-a-n-k,’ the actual word
‘blank’ into the system and that’s it, a lot of problems
occurred on that end.” The developer could not duplicate
error, naturally, and finally, after several weeks of trying to
straighten it out, went to the other site, where the problem
was spotted immediately.

Communication technologies. Face-to-face meetings,
planned and unplanned, are the most common form of
communication among co-located developers. When this
communication channel is removed or greatly attenuated by
geographically distributed developments, developers a~
forced to fall back on other communication media which
they used with varying degrees of success.

Most of the native English speaking developers found the
phone to be a usell medium for one-to-one
communication. It often required considerable patience, but
they generally found that issues could be resolved. It was
particularly effective for asking very specific questions, less
so for reasoning about hypotheticals. The non-native
English speakers, on the other hand, seemed to regard these
same telephone conversations as much less effective. As
one described it, “it’s hard to explain something to
someone you don’t know in your second language.” They
also found that conversations tiequently became very
emotional, and took a great deal of time and energy.

Some developers reported that it was very difficult to get
everyone together who was needed in order to solve a
problem. If everyone was at the same site, the people
involved could gather in an office or conference room and
reach a conclusion quickly. But when they were
distributed, someone generally had to contact people one at
a time, and get “bounced around” from one to another.

Problems such as determining which component generated
an error that propagated through a number of other
components were very hard to resolve this way.

Conference calls, on the other hand, i.e., calls involving
more than two people, and often 6-10 or even more, tended
to be less than satisfactory. They were adequate fbr
relatively simple discussions, and for status meetings, but
were thought to be inadequate for contentious issues or for
substantial technical discussions. As one developer said,
“every conference call I walked out of, if I ask somebody
what do you understand from it, and they say, ‘I don’t
know’ .”

E-mail was the preferred means of communication for many,
especially the non-native English speakers. The advantage
of e-mail was that one could take time to think, to be very
carell in the language one used, and could do research if
necessary before responding. It seemed to take :much of the
pressure off non-native speakers communicating in a less-
familiar language. They were able to overcome some of the
limitations of this text-only medium by constnlcting “text
diagrams,” or simple diagrams built from text characters.
They also attached other text documents, such as log files,
to messages.

There were a number of difficulties surrounding the
distribution and use of various kinds of documents.
Distribution was made particularly difficult by ,the fact that
there were both UNIX and PC platforms in use, and a
variety of applications used for editing documents. Even
when developers used the same platform and applications,
there was often a version mismatch so that, as one
developer reported, they usually ended up in a secretary’s
office faxing a document to someone at evegl multi-site
meeting.

Using documents, or collaboratively viewing files,
presented many problems. Developers generally found it
very difficult to look at code together with someone on the
telephone. They could not point to places in fine code, or
scroll the other person’s screen to a point of interest.

DifJerent cultures and languages. The sites represented
different cultures in at least two senses, and both of these
influenced how they interacted. Most obviou&y, the sites
are in di%rent countries with distinct national cultures.
These cultures differ in many subtle ways. One that was
mentioned very frequently was the more direct
communication style of the Germans a$ compared to the
British. A German interviewee mentioned that Germans
are accustomed to calling someone up and irnmediately
saying, e.g., there is a problem with your qode. The
British, on the other hand, tend to expect more in the way
of a greeting, and more of an indirect “polite form” for
suggesting there might be an error in their code. Such
diffinces made it difficult for the Germans and British to
work together without confusing or irritating each other.

There are also differences in how Germans and British
customarily regard hierarchy and process. While this is

92

clearly an oversimplification, one might say that the
Germans are more comfortable with a detailed process that
specifies the steps in a development fairly completely and
precisely. The British, on the other hand, are more
comfortable with processes specified only at a relatively
high level. Similarly, the Germans have a greater tendency
to take hierarchical relationships a bit more seriously,
expecting and receiving a greater degree of direction from
managers and supervisors. These di&ences often led to
misunderstandings about, for example, whether a developer
could simply take the initiative to change something, or
whether a change required a managerial decision or a
process exception. Discussions around such issues oflen
led to feelings that the person on the other end was either
being obstinate and rule-bound, on the one hand, or a bit of
an anarchist and disrupter on the other. This did not help
to foster cooperation.

The sites also represented two distinct engineering cultures.
The German technical staff was experienced in real-time
systems and telecommunications, while the British staff, in
addition to being generally younger and less experienced,
tended to be more UNIX-oriented. These differences otten
made it difficult to communicate, since they thought about
problems differently and used different vocabularies.

Consequences. One developer estimated that any. necessary
discussions for a small change involving only one site
could generally be resolved within an hour. The same
change, if trivial or nearly so, would probably take a day if
two sites were involved, and several days or more if the
change was non-trivial. Although the primary consequence
seemed to be cycle time, some developers mentioned that
the difficulty of communication also influenced the way in
which they went about modifjling the code. They strove to
make absolutely minimal changes, regardless of what the
“best” way to make the change would be. This was
because they were so worried about how hard it would be
to repair the problem if they “broke the system.”

4.2.5 Willingness to communicate openly: Trust
As the two primary sites began to work together, there was
initially little trust between people at different locations.
There was concern about holding onto work, worries that
one site might be closed down and everything moved to
the other. There was also little sense that they were
partners, cooperating toward the same ends. This
manifested itself in “uncharitable” interpretations of
behavior, as when, for example, someone would say, “we
can’t make that change,” it was otlen interpreted as “we
don’t want to make that change,” whether it would benefit
the overall project or not.

The situation improved considerably over time, and visits
across sites seem to have been pivotal. As one developer
noted, they just did not seem to be able to make progress
until they had worked together face to face. Primarily
because of difficulties encountered during integration, about
a half-dozen developers traveled li-om the UK to Germany
(where the central test site was located and where the build

was done) for significant periods of time, oflen months.
After working together, the relationships between the sites
began to change. As one developer said, “things eased a
lot when we met these people face to face instead of over
telephones and e-mail. We worked much closer, and
resolved things much quicker as well.”

The change seems to have arisen from several sources. For
one thing, the differences in communication style, e.g., the
relative directness of the Germans, was seen in context.
The British developers saw that they spoke to each other
this way, and it was not intended to be, nor interpreted as,
rude or insulting. In a similar fashion, they became
accustomed to other cultural differences, and were less
mystified or offended by behavior that had seemed strange
or out of place.

Other factors leading to these changes seemed to be the
perception that “Now there’s less of a wall between the UK
and Germany, and we can see that they’re in basically the
same boat as us.” By working together, face to face on a
daily basis, a sense of common goals and purpose was
eventually established. People began to give more
charitable interpretations of ambiguous behavior. Rather
than assuming that disagreements were arbitrary, each side
was more likely to assume that the other side was acting
out of a genuine concern about the welfare of the project.
Disagreements still arose, but the context of the discussion
was achievement of a common goal. As one developer
said, “I learned to have a lot of patience, and we got
through it quite well.”

Time spent at the other site familiarized each party with the
terminology and problem-solving style of the other. They
learned to communicate much more effectively, and
understood the context underlying the concerns expressed
by people at the other site.

As mentioned above, the visits also created a number of de
facto “liaisons” who understood the other site very well,
and could act as points of contact for interactions between
sites. They could provide information about who was
responsible for what, how to get things done, could
interpret information that seemed cryptic, and so on. This
continues to be a very important role, but it was especially
so when only a few people had spent appreciable time
working face to face with people at the other site.

Consequences. The lack of trust led to a reluctance to share
information, for fear that if work was able ‘to move between
sites, one site might be closed down. It also caused very
uncharitable attributions to be made whenever
disagreements arose. This initially caused hard feelings,
and probably introduced considerable delay in resolving
problems that spanned sites, since each side tended to
assume the other was just being difficult, rather than trying
to understand the concerns behind their position.

5 CONCLUSIONS
In this paper we have shown that multiple site development
works against informal communication channels by creating

93

geographic boundaries among developers who need to work.
together. Simple things like meeting in hallways and
knowing who to ask about a problem, are more than simple
pleasantries of development, they are a vital part of the
coordination of this kind of work. Since designs never
exhibit perfect modularity and are never error-tie, process
execution is rarely flawless, and the world is never
completely predictable, informal communication will be
essential to maintain project coordination.

There are, however, some sound ideas on how to keep the
need for cross-site communication to a minimum. It was
pointed out many years ago [12]that a good design is one
in which design decisions about each component can be
made in isolation from decisions about other components.
As we noted in the introduction, it follows that good
organizational design should mirror product structure [3,
121 in order to minimize the need for communication and
coordination among groups. Geographic distribution of
those groups is just an extreme case where it is even more
important to reduce the need for communication, and
correspondingly more important to have a good design.

As fundamentally sound as this analysis is, we believe
there is ample evidence indicating it is necessary to extend
it in two major ways in order to account for the
complexities of communication and coordination of real-
world development projects. First, product structure is
only one of several domains in which dependencies arise,
and hence is only one of the domains in which coordination
is required. When, for example, intermediate work
products are handed off between groups, it is necessary fa
both to have a clear idea of what steps have and have not
been carried out at that point. This generally requires a
common understanding of a defined development process.
Large projects are also replete with temporal dependencies
that have major implications for resource planning and on-
time delivery. Good design is a powerful coordination
mechanism, but it is by itself insufficient. In addition to
coordination on the basis of what is being developed, it is
also essential to coordinate when, how, who, and where.
Things like project plans, defined processes, sta%ng
profiles, and so on, serve as coordination mechanisms in
these domains.

The second extension was anticipated by Conway
(although it seems to have received very little attention in
the last 30 years). Even though communication needs am
the primary consideration in organizing a design project,
Conway adds “this criterion creates problems because the
need to communicate at any time depends on the system
concept in effect at that time” [3] (p.3 1, emphasis added).
In other words, the “volatility” of the design over the
course of the project limits the degree to which it is
possible to optimize the project organization. This astute
observation applies to all of the coordination mechanisms,
not just product design. To the extent the original design,
plan, development processes, and so on are unstable,
substantial communication between teams and across
organizational boundaries will be required. This is

precisely what geographically distributed orgrmizations do
least well, since, as we have seen, communication is
greatly attenuated across sites.

Several lessons for multi-site development fallow. First,
reduce the need for cross-site communication as much as
possible:

l Attend to Conway’s Law: To the extent possible,
assign work to different sites according to the greatest
possible architectural separation in a design that is as
modular as possible.

l To the extent possible, only split the development d
well-understood products (or parts of products), where
plans, processes, and interfaces are established and
likely to be very stable. Instability will greatly
increase the need for communication.

Second, take all possible steps to overcome thie barriers to
informal communication.

l Front load travel, i.e., don’t postpone using the travel
budget, bring people who need to communicate
together early on. All other means of communication
will work better once developers, testers, and managers
have some face-to-face time together.

l Plan this travel in order to create a pool of liaisons.
Give the early travelers the explicit assignment of
meeting people in a variety of groups at the other site,
and learning the overall organizational structure. Try
to send gregarious people who will enjo:y this role.
When they return, make it known they can help with
cross-site issues, and free up some of their time to do
so.

l Invest in tools to make it easier to find organizational
information, check availability of people, imd to have
more effective cross-site meetings, both planned and
spontaneous.

ACKNOWLEDGMENTS
We would like to thank all the developers who gave their
time willingly to answer our questions about integration.
We would also like to thank Dorene Brummel for the
timeliness of her help with this study.

REFERENCES
[l] B. Boehm, “Anchoring the Software process,” IEEE
Softiare, Vol. 13, No. 4, 1996, pp. 73.

[2] F.P. Brooks Jr., “The Mythical Man-Month,”
Datamation, Vol. 20, No. 12, 1974, pp. 44-52.

[3] M.E. Conway, “How Do Committees Invent?”
Datamation, Vol. 14, No. 4, 1968, pp. 28-31.

[4] B. Curtis, H. Krasner and N. Iscoe, “A Field Study cf
the Software Design Process for Large Systems,”
Communications of the ACM, Vol. 3 1, NO. 11, 1988, pp.
1268-1287.

[5] R.E. Grinter, “Recomposition: Putting It All Back
Together Again,” Proc. ACM Conference on Computer

94

Supported Cooperative Work (CSCW 98), ACM Press,
1998, pp.

[6] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes and
M. Paulk, “Software Quality and the Capability Maturity
Model,” Communications of the ACM, Vol. 40, No. 6,
1997, pp. 30-40.

[20] L.A. Suchman, “Office Procedure as Practical Action:
Models of Work and System Design,” ACM Transactions
on Ofice Information Systems, Vol. 1, No. 4, 1983, pp.
320-328.

[7] R.E. Kraut and L.A. Streeter, “Coordination in
Software Development,” Communications of the ACM,
Vol. 38, No. 3, 1995, pp. 69-81.

[8] M.B. Miles and A.M. Huberman, Qualitative Data
Analysis: An Expanded Sourcebook, Sage Publications,
Inc., Thousand Oaks, California, 1994.

[9] R.R. Nelson and S.G. Winter, Evolutionary Theory of
Economic Change, Harvard University Press, Cambridge,
MA, 1985.

[lo] M. O’Hara-Devereaux and R. Johansen, Globalwork:
Bridging Distance, Culture, and Time, Jossey-Bass, San
Francisco, CA, 1994.

[l l] L. Osterweil, “Software Processes are Processes Too,”
Proc. 9th Conference on Softiare Engineering, 1986, pp.

[12] D.L. Pamas, “On the Criteria to be Used in
Decomposing Systems into Modules,” Communications of
the ACM Vol. 15, No. 12, 1972, pp. 1053-1058.

[13] M. Paulk, B. Curtis, M. Chrissis and C. Weber,
Capability Maturity Model for Sofmare (Version I. I),
Technical Report, CMU/SEI-93-TR-024, Pittsburgh,
Software Engineering Institute, Carnegie Mellon
University, February, 1993.

[14] D.E. Perry, N.A. Staudenmayer and L.G. Volta,
“People, Organizations, and Process Improvement,” IEEE
Softiare, Vol. 11, No. 4, 1994, pp. 36-45.

[15] J.M. Pickering and R.E. Grinter, “Software
Engineering and CSCW: A Common Research Ground,”
Softiare Engineering and Human-Computer Interaction:
ICSE’94 Workshop on SE-HCI Joint Research Issues, R.N.
Taylor and J. Coutaz ed., Springer-Verlag, Heidelberg,
1995, pp. 241-250.

[16] M. Polanyi, Tacit Dimension, Peter Smith
Publications, 1983.

[17] P. Sachs, “Transforming Work: Collaboration,
Learning, and Design,” Communications of the ACM, Vol.
38, No. 9, 1995, pp. 36-44.

[181 K. Schmidt, “Of Maps and Scripts: The Status of
Formal Constructs in Cooperative Work,” Proc.
International ACM SIGGROUP Conference on Supporting
Group Work GROUP ‘97, ACM Press, 1997, pp. 138-147.

[19] L. Suchman, Plans and Situated Actjons: The
Problem of Human-Machine Communication, Cambridge
University Press, Cambridge, UK, 1987.

95

