
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2003; 8: 217–231 (DOI: 10.1002/spip.184)

Tool Support for
Geographically Dispersed
Inspection Teams

Research Section
Filippo Lanubile*,†, Teresa Mallardo and Fabio Calefato
Dipartimento di Informatica, University of Bari, Italy

Software inspection is one of software engineering’s best practices for detecting and removing
defects early in the development process. However, the prevalence of manual activities and
face-to-face meetings within software inspections hinder their applicability in the context of
global software development, where software engineering activities are spread across multiple
sites and even multiple countries.

In this article, we describe a web-based tool, called the Internet-Based Inspection System (IBIS),
that aims to support geographically dispersed inspection teams. On the basis of findings from
empirical studies of software inspections, the IBIS tool adopts a reengineered inspection process
to minimize synchronous activities and coordination problems. We present the underlying
process model, how the tool is used within the inspection stages, and experiences using the IBIS
tool as the enabling infrastructure for distributed software inspections. Copyright 2004 John
Wiley & Sons, Ltd.

KEY WORDS: software inspection; distributed teams; tool support; empirical study

1. INTRODUCTION

Over the last few years, enterprise organiza-
tions have embraced global software development,
where software projects are distributed over mul-
tiple geographical sites, separated by a national
boundary (Carmel 1999, Herbsleb and Moitra 2001).
Searching for low-cost but well-trained develop-
ers in emerging countries, and integrating groups
from mergers and acquisitions are two of the main
forces behind global software development. How-
ever, distance causes overheads for management
and affects teamwork cooperation, thus result-
ing in longer development time (Herbsleb et al.
2001).

∗ Correspondence to: Filippo Lanubile, Dipartimento di Infor-
matica, University of Bari, via Orabona 4, 70126, Bari, Italy
†E-mail: lanubile@di.uniba.it

Copyright 2004 John Wiley & Sons, Ltd.

The focus of our research is on software inspec-
tion, an industry-proven type of peer review for
detecting and removing defects as early as possible
in the software development cycle, then reducing
avoidable rework (Ebenau and Strauss 1994, Freed-
man and Weinberg 1990, Gilb and Graham 1993,
Wiegers 2001). Even if software inspection is con-
sidered as the ‘best practice’ for improving software
quality, the prevalence of paper-based activities and
face-to-face meetings hinders its applicability in the
context of global software development (Johnson
1998). A case study at Alcatel’s Switching and Rout-
ing Division shows that collocated inspection teams
were more efficient and effective than distributed
teams, where code inspections were conducted
remotely (Ebert et al. 2001).

Software inspection is an excellent example
of a traditional software process that might be
globally deployed, on condition that it is reorga-
nized to reduce synchronization and coordination,

Research Section F. Lanubile, T. Mallardo, F. Calefato

and then supported by some Internet-mediated
environment.

In this article, we describe a web-based tool,
called the Internet-Based Inspection System (IBIS),
that supports geographically dispersed inspection
teams. Analogously to Perry et al. (2002), we used
findings from empirical studies to determine how
to restructure the inspection process in the context
of geographical separation of reviewers.

Section 2 of the article summarizes and discusses
software inspection, including the process variant
we have adopted for our tool. Section 3 presents the
IBIS tool and shows its use according to the under-
lying inspection process. Section 4 describes experi-
ences where the IBIS tool was used as the enabling
infrastructure for distributed software inspections.
In Section 5, we review related work. In Section 6,
we discuss the impact of synchronous and asyn-
chronous activities on the software inspection pro-
cess. Finally, in Section 7, we provide conclusions.

2. SOFTWARE INSPECTION

Software inspection is an industry’s best practice for
delivering high-quality software. The main benefit
of software inspections derives from detecting
defects early during software development and then
reducing avoidable rework. Software inspections
are distinguished from other types of peer reviews
in that they rigorously define:

• a phased process to follow;
• roles performed by peers during review;
• a reading toolset to guide individual defect

detection activity;
• forms and report templates to collect product

and process data.

From the seminal work of Fagan (1976) to its
many variants (Laitenberger and DeBaud 2000), the
software inspection process is essentially made up
of six consecutive steps, as shown in Figure 1.

During Planning, the moderator selects the
inspection team, arranges the inspection mate-
rial and sends it to the rest of the team, and
makes a schedule for the next steps. During
Overview, the moderator can optionally present
process and product-related information for new-
comers, if any. During Preparation, each inspector
analyzes the document to become familiar with it
and individually find potential defects. During the

Planning

Overview

Inspection Meeting

Rework

Follow-up

Preparation

Figure 1. Conventional inspection process

Inspection Meeting, all the inspectors meet to collect
and discuss the defects from the individual reviews,
and further review the document to find further
defects. During Rework, the author revises the doc-
ument to fix the defects. Finally, during Follow-up,
the moderator verifies author’s fixes, gives a final
recommendation, and collects process and product
data for quality improvement.

The main changes from the original Fagan’s
inspection have been a shift of primary goals for
the Preparation and Inspection Meeting stages.
The main goal for Preparation has changed from
pure understanding to defect detection, and so
inspectors have to individually take notes of defects.
Consequently, the main goal of the Inspection
Meeting has been reduced from defect discovery
to defect collection and discrimination, including
the discussion of defects individually found during
Preparation.

In the attempt to shorten the overall cost and total
time of the inspection process, the need for a meet-
ing of the whole inspection team has been debated
among researchers and practitioners. Parnas and
Weiss (1987) first dropped the team meeting in
their Active Design Reviews. Then Votta (1993)
showed how defect collection meetings lengthened
the elapsed time of software inspections at Lucent
Technologies by almost one-third, with defects dis-
covered at the meeting (meeting gains), matched
by defects not recorded at the meeting although
found during Preparation (meeting losses). Further
studies (Bianchi et al. 2001, Ciolkowksi et al. 1997,

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

218

Research Section Tool Support

Fusaro et al. 1997, Land et al. 1997, Miller et al. 1998,
Porter et al. 1995, Porter and Votta 1998) have also
observed that the net meetings improvement (differ-
ence between meeting gains and meeting losses)
was not positive, and then nominal teams (teams
that do not interact in a face-to-face meeting) are
at least equivalent to real teams, at a lower cost
and time. However, meetings have been found
useful for filtering out false positives (defects erro-
neously reported as such by inspectors), training
novices, and increasing self-confidence (Johnson
and Tjahjono 1998, Land et al. 1997).

On the basis of the above empirical studies that
argue the need for traditional meetings and on
the behavioral theory of group performance, Sauer
et al. (2000) have proposed a reorganization of the
inspection process to shorten the overall cost and
total time of the inspection process. The alternative
design for software inspections mainly consists of
replacing the Preparation and Inspection Meeting
phases of the classical inspection process with three
new sequential phases: Discovery, Collection, and
Discrimination (see Figure 2).

The Discovery phase reflects the shift of goal for
the Preparation phase that has changed from pure
understanding to defect detection, and so inspectors
are asked to individually take note of defects.

The other two inspection phases are the result of
separating the activities of defect collection (i.e.

Planning

Overview

Collection

Discrimination

Rework

Discovery

Follow-up

Figure 2. Reengineered inspection process

putting together defects reported by individual
reviewers) from defect discrimination (i.e. removing
false positives), having removed the goal for
team activities of finding further defects. The
Collection phase is an individual task and requires
either the moderator or the author himself. The
Discrimination phase is the only phase in which
inspectors interact in a meeting. Sauer et al. (2000)
suggest that the participation of the entire inspection
team is not required; the number of discussants can
be reduced to a minimal set, even a single expert
reviewer paired with the author.

Another change for saving time and diminishing
coordination overhead is introduced by skipping
the Discrimination phase either entirely, passing
all the collated defects directly to the author for
rework, or partially, excluding from the discussion
any potential defects (found by inspectors during
the Discovery phase and merged in the Collection
phase) that are considered to have high chances
to be true defects. Sauer et al. (2000) suggest select-
ing for the Discrimination phase only unique defects,
that is, defects that were found by only one inspec-
tor during the Discovery phase, while excluding
duplicates, that is, defects that were discovered by
multiple inspectors and were merged during the
Collection phase.

By reducing the need for synchronous commu-
nication between reviewers and the overload of
coordination on the moderator’s shoulders, the
reengineered inspection process provides the model
upon which to build an automated support for run-
ning distributed inspections.

3. IBIS

In order to provide an Internet-based infrastructure
for geographically distributed inspection teams, we
developed the Internet-Based Inspection System.

IBIS is mainly a web-based application to achieve
the maximum of simplicity of use and deployment.
All structured and persistent data are stored as
XML documents (Bray et al. 2000), programmati-
cally accessed via the DOM API (Wood et al. 1998),
and automatically manipulated by XSL transfor-
mations (Adler et al. 2001, Clark 1999). Most of
the required groupware features are developed
from dynamic web pages on the basis of scripts
and server-side components. Event notification is
achieved through automatic generation of e-mails.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

219

Research Section F. Lanubile, T. Mallardo, F. Calefato

In the following sections, we describe the use of
the tool according to the seven stages that comprise
the reengineered inspection process.

3.1. Planning

A new inspection starts when an author has sent a
product to be reviewed and a moderator (who also
acts as the coordinator of the inspection team) has
determined that the product meets the entry criteria
for inspection. The moderator selects a template for
the inspection process, which may vary according
to the inspection goal (e.g. analyze software require-
ments documents for the purpose of defect detec-
tion) and the reading technique, which inspectors
will use for individual analysis (e.g. a checklist for
software requirements documents). Then review-
ers are invited to be part of the inspection team,
and a specific reading technique is assigned to each
inspector (see Figure 3).

Finally, the moderator can optionally schedule
an overview meeting when the inspection team is
unfamiliar with either the inspection process or the
product.

3.2. Overview

The Overview meeting is optionally held as a virtual
meeting to provide background information on the
inspection process or the product being inspected.

The meeting is run using a helper application,
called P2PConference (2004), which is launched
from the browser. P2PConference is a peer-to-
peer remote-conferencing tool, based on the JXTA

Figure 3. Team selection during Planning

framework (Wilson 2002). During a meeting, the
speaker delivers his/her own text-based speech
and the other participants can ask questions, after
having ‘raised their hands’ (the moderator manages
a queue of the pending questions). The moderator
can also forbid participants to type and send
statements. Figure 4 shows a screenshot of the
conferencing tool.

3.3. Discovery

In the Discovery stage, members of the team
perform individually the review task and record
potential defects on a discovery log (Figure 5).

In order to support defect detection, inspectors
can answer to checklist questions or, if they
need more guidance, they can follow a reading
scenario (Basili et al. 1996, Porter et al. 1995), which

Figure 4. Remote conferencing during Overview

Figure 5. Defect logging during Discovery

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

220

Research Section Tool Support

gives a step-by-step description of the activities an
inspector should perform while reading a document
for the purpose of defect detection.

Defect logging can be performed in multiple
sessions. When the Discovery task is finished, a
notification message is sent to the moderator. The
moderator can also browse discovery logs to check
whether inspectors have adequately performed
their task, and send invitations to complete the
assignment.

3.4. Collection

In the Collection stage, all the Discovery logs
are collapsed into a unique defect inspection list.
Then either the moderator or the author looks for
duplicate defects within the merged collection of
discovery logs.

This is an iterative task that can be performed
over multiple sessions too. For each iteration,
the merged defect list is sorted with respect to
location fields (e.g. document page number or
requirement number) or questions related to the
assigned reading technique (i.e. which question
in a checklist or a reading scenario was helpful
for defect discovery). When two or more defects
are recognized as identical or almost identical
(Figure 6), they are collapsed into a single defect
entry and set as a duplicate (Figure 7). Duplicates
can be excluded from the Discrimination stage and
be routed directly to the Rework stage.

Looking at the merged defect list the moderator
may plan the Discrimination stage by selecting

Figure 6. Duplicate search during Collection

Figure 7. Duplicate setting during Collection

Figure 8. Discrimination planning during Collection

which defects are worth being discussed and which
inspectors need to participate in the discussion
(Figure 8). This decision can be supported by the
display of inspectors’ performance statistics, such
as total number of reported defects and number of
unique defects.

3.5. Discrimination

In the Discrimination stage, discussion takes place
asynchronously, as in a discussion forum, where

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

221

Research Section F. Lanubile, T. Mallardo, F. Calefato

Figure 9. Defects as discussion threads during Discrimi-
nation

each defect is mapped to a threaded discussion
(Figure 9).

Discussants can add comments within a thread
and express votes by rating any potential defect as
a true defect or a false positive. When a consensus
has been reached, the moderator can mark potential
defects as false positives. False positives appear
as strikethrough in the discussion forum and are
excluded from rework.

3.6. Rework

In the Rework stage, the author is invited to correct
the defects found. He fills in defect resolution entries
including information on how the defect has been
fixed or, if not, the explanation (Figure 10). At the
end, the author can upload the revised document
and a notification message is sent to the moderator.

3.7. Follow-up

In the Follow-up stage, the moderator determines
if the defects that have been found have been cor-
rected by the author and that no additional defects
have been introduced. In order to decide whether
exit criteria have been met or another rework cycle
is needed, the moderator may invite additional
reviewers among inspection team members.

Once the inspection is closed with a final recom-
mendation, the system sends a notification mail to
the entire team, including a summary and a detailed
report, as a feedback for participants (Figure 11).
The detailed report mainly consists of the final

Figure 10. Defect correction during Rework

Figure 11. Final report sent to the inspection team

defect list, together with the author’s comments,
and the list of defects that have been reported by
each inspector. Both the summary and detailed
reports include process and product data that have
been collected during the inspection (the list of
measures is shown in Table 1). Collected measures
can be backed up to a project repository and ana-
lyzed for the purpose of process assessment and
improvement.

4. EXPERIENCES WITH IBIS

We have conducted various distributed inspections
as part of three consecutive editions of a web

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

222

Research Section Tool Support

Table 1. Product and process data measured in IBIS

Measure Description

Document size Number of pages (for requirements or design documents) or LOC (for source code).
Discovery effort Person/hours spent during the Discovery stage.
Reported defects Number of defects from the Discovery stage.
Unique defects Number of defects that were reported by only one inspector during the Discovery stage.
Duplicate defects Number of defects that were reported by multiple inspectors during the Discovery stage.
Collated defects Number of defects resulting from merging unique and duplicate defects during the Collection stage.
True defects Number of defects for which a general consensus is achieved during the inspection process.
Defect density True defects/document size.
True unique defects Number of true defects that were reported by only one inspector during the Discovery stage.
True duplicate defects Number of true defects that were reported by multiple inspectors during the Discovery stage.
Removed false positives Number of defects that are removed by the moderator at the end of the Discrimination stage because

they are not considered as defects.
Slipped false positives Number of defects from the Discrimination stage that are not acknowledged as true defects by the

author during the Rework stage.
Fixed defects Number of true defects for which the author provides a fix during the Rework stage.
Unfixed defects Number of true defects for which the author does not provide a fix during the Rework stage.

engineering course at the University of Bari. Par-
ticipants were graduate students interacting with
the IBIS tool from university laboratories or home,
thus simulating the conditions of geographically
dispersed inspection teams.

4.1. First Experience

In the first experience with IBIS, we conducted
two distributed inspections with the goal of testing
the tool, gathering a first feedback from users,
and observing the behavior of unusually large
inspection teams (Lanubile and Mallardo 2002).
In the first inspection, ten reviewers had to find
defects in the IBIS requirements document (19 pages
long). In the second inspection, eight reviewers
had to detect programming style violations in
a dynamic web document (694 lines of markup
elements mixed to scripting code), which was part
of the IBIS configuration. Using the IBIS tool itself,
we measured inspection performance both at the
individual and team level.

Figure 12 shows the box plots of individual
reviewers’ performance. Individual findings var-
ied a lot between reviewers, particularly for the
first inspection. In the requirements inspection,
there were a couple of outstanding reviewers who
reported 24 defects each, with very few duplicates
(respectively one and four). On the other hand,
there were also poor reviewers who contributed
with only three reported defects or no unique
defects. In the second inspection (checking for style
conformance), there were more defects reported by

Reported
Unique
Duplicates

Insp1: Reqmts Insp2: ProgStyle
–2

4

10

16

22

28

Figure 12. Individual reviewers’ performance in the first
experience

each reviewer but most defects overlapped rather
than being unique contributions. Then, there were
many more reviewers discovering independently
the same programming style violation than detect-
ing individually the same requirements defect.

Table 2 summarizes the measures for both the
inspections at the team level. Looking at the results
we highlight the following differences between the
two inspections:

• Defects worth discussing, and then selected
for the Discrimination stage, were much more
for the requirements document (discussion
filtering = 0.47) than for the dynamic web doc-
ument (discussion filtering = 0.13).

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

223

Research Section F. Lanubile, T. Mallardo, F. Calefato

Table 2. Inspection team performance in the first experience

Inspection 1
(requirements

document)

Inspection 2
(programming

style)

Collated defects 72 68
Defects selected for
discrimination

34 9

Discussion filtering (selected
defs/collated)

0.47 0.13

Messages 78 16
Discussion intensity
(messages/selected defs)

2.3 1.8

Removed false positives 21 6
Slipped false positives 7 8
Discrimination efficacy
(Removed FP/all FP)

0.75 0.43

True defects 44 54

• Discussants were more active when raising com-
ments about requirements defects (discussion
intensity = 2.3) than programming style devia-
tions (discussion intensity = 1.8).

• Discriminating true defects from false positives
was much more effective for requirements
defects (discrimination efficacy = 0.75) than for
style violations (discrimination efficacy = 0.43).

We also collected qualitative data from a ques-
tionnaire submitted to the participants at the end
of the two inspections. Apart from reporting some
problems with the tool, students stated that the IBIS
tool was straightforward to use and convenient for
the purpose because they could work at a time and
a place of their favor.

All students who had been invited into the Dis-
crimination stage found the discussion with respect
to learning purposes useful, but most of them
acknowledged that discussing about programming
style deviations was not so worthwhile because
the style was explicitly specified in a supple-
mentary document (available to all the inspectors
through IBIS).

When asked if they would have preferred to
discuss in a face-to-face meeting or in a chat, the
answers were of two types. Some answered that
they would prefer a chat or a face-to-face meeting,
because they would feel less alone and more active
in the discussion. Others answered that they liked to
be part of an asynchronous discussion because, not
being in a hurry, they had time to think about each
other’s messages and could write better comments.

4.2. Second Experience

In the second experience, IBIS was used as an
instrument for an empirical study on software
inspections (Lanubile and Mallardo 2003). The goal
of the study was to find out how to reduce meeting
effort by restricting the scope of discussions and the
number of discussants. For this purpose, we aimed
to identify: (1) which collated defects are worth a
discussion, and (2) which discussants actively con-
tribute to the decision of removing false positives.
The former factor allows the moderator to shorten
the discussion agenda while the latter makes it pos-
sible to shorten the size of the discussion group.
Both factors have an effect on the meeting effort.

The second edition of the web engineering course
required, as a student project work, to develop
a web application, including documentation. The
requirements documents of nine student projects
(ranging from 7 to 23 pages) were submitted for
inspection and a member of the development team
was selected to act as the author in the inspection of
his/her requirement document. In order to have a
trained moderator, one of the researchers played the
role of moderator for all the nine inspections. The
rest of the inspection team was formed by two or
three expert reviewers, external to the class, plus a
student who was randomly selected from the class.

The Discrimination stage was planned to include
all the collated defects (both unique and duplicate
defects) and to invite the entire inspection team to
the discussion.

We specifically tested the hypothesis that defects
individually found by multiple inspectors (dupli-
cates) are accepted as true defects in a group
discussion, and can then skip the Discrimination
stage, as suggested by Sauer et al. (2000).

We found that unique defects had higher chances
than duplicates of being identified as false positives
to be removed (conversely, duplicates had higher
chances to be accepted as true defects). Figure 13
shows multiple bar plots for the two variables as
measured in the nine inspections. We also found
that decisions about false positives were actually
supported by group consensus, because negative
acknowledgments (votes as false positives) were
proportionally higher for duplicates than for unique
defects (as shown in Figure 14). These findings
are consistent with the hypothesis of considering
duplicates unworthy of a group discussion for the
purpose of discrimination.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

224

Research Section Tool Support

%
 d

up
lic

at
es

 r
em

ov
ed

 a
s

F
P

%
 u

ni
qu

e
de

fs
 r

em
ov

ed
 a

s
F

P

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0

5

10

15

20

25

30

35

40

45

50

(%
)

Figure 13. Duplicates and unique defects removed as
false positives

vo
te

s
as

 F
P

 p
er

 d
up

lic
at

e
vo

te
s

as
 F

P
 p

er
 u

ni
qu

e
de

f

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 14. Votes as false positive per duplicate and
unique defect

We also tested another hypothesis in the work
of Sauer et al. (2000), stating that an expert pair
performs the Discrimination task as well as any
larger group. Figure 15 shows multiple bar plots for
three variables, messages from moderator, author,
and the most active reviewer respectively.

We found that most of the group discussions
consisted of messages sent by either the moderator
or the document’s author. The other inspectors
were less active in the discussion and mainly
expressed their judgments by means of electronic
votes without complementary messages. Then,
these findings confirm the indication of limiting
discrimination meetings to a couple of discussants
(in this case, the moderator and the author).

At the end of each inspection, we collected
qualitative data from interviews to the participants.
Students, when acting in the role of author of a
requirements document, declared to have found
the discussion useful, because they had a chance to

m
es

sa
ge

s
fr

om
 m

od
er

at
or

m
es

sa
ge

s
fr

om
 a

ut
ho

r
m

es
sa

ge
s

fr
om

 th
e

m
os

t a
ct

iv
e

re
vi

ew
er

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0

5

10

15

20

25

30

35

40

45

Figure 15. Posted messages per sender

learn from experts how to write a good requirement
document.

When asked how to improve discussions in the
Discrimination stage, most participants complained
about late answers to their messages. However,
they did not ask for a synchronous discussion or
a face-to-face meeting but they pointed out the
lack of features such as subscription to discussion
threads or presentation of the most recent/active
discussions.

4.3. Third Experience

In the third experience with IBIS, we ran a controlled
experiment with the goal to find out if remote
asynchronous discussions can replace face-to-face
(F2F) meetings in the Discrimination stage without
losses in effectiveness.

As in the second edition, students were required
to develop a web application as the final course
assignment. Again, the requirements documents of
twelve student projects were peer reviewed with
the help of the IBIS tool. However, this time six
inspection teams performed the Discrimination task
by discussing from a distance in an asynchronous
mode, while a control group of other six inspection
teams met in a university lab for the same purpose.

Participants were randomly assigned as review-
ers to inspection teams. The Discrimination stage
was planned to include the whole inspection team
(three reviewers plus the author) and all the poten-
tial defects, which had been individually reported
during the Discovery stage and merged by the
author in the Collection stage. One of the inspec-
tors was randomly selected for playing the role of

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

225

Research Section F. Lanubile, T. Mallardo, F. Calefato

moderator. The moderator was assigned the respon-
sibility of managing the discussion and marking
defects as false positives, provided that there was
the consensus of the other inspectors.

We invited participants to F2F meetings two days
in advance. In order to guarantee similar conditions
between the two types of inspections, two days
were made available for asynchronous discussions.

At the team level, we collected the same measures
as in the first experience, with the exception of
the number of posted messages and discussion
intensity, which could not be measured for F2F
meetings.

The results are summarized in Table 3. Asyn-
chronous discussions were slightly more effective
(average discrimination efficacy = 0.895) than F2F
meetings (average discrimination efficacy = 0.888).
Only in two cases (Insp8 and Insp10) is the effec-
tiveness of the asynchronous discussion lower than
the minimum effectiveness of F2F meetings (Insp4).
These low values seem to depend on poor discus-
sion intensity.

Although the sample size is too small to run
a test for differences, we can at least say that
asynchronous discussions were as effective as F2F
meetings to discriminate between false positives
and true defects.

5. RELATED WORK

Conventional software inspection activities are
paper-based and require face-to-face meetings but

none of these two characteristics can live through
geographical separation of inspectors.

There have been various research prototypes that
provide an infrastructure technology for distributed
software inspections. In a survey of computer
support systems for software inspections, Mac-
Donald and Miller (1999) reviewed 14 tools that
had moved the entire inspection process online,
then eliminating the need for paper. However,
the first generation of tools did not provide sup-
port for distributed inspection teams. For example,
ICICLE (Brothers et al. 1990) was designed to com-
pletely support the inspection of C and C++ code.
The inspection meeting was intended to be collo-
cated in the same room, with synchronized inspec-
tors’ screens. Another example is InspeQ (Knight
and Myers 1993), which was developed to support
only individual analysis with no support for group
activities.

Conversely, CSI (Mashayekhi et al. 1993), Scrutiny
(Gintell et al. 1993) and ASSIST (MacDonald and
Miller 1997) focus on supporting a distributed
environment by emulating face-to-face inspection
meetings. CSI supports synchronous activities by
means of shared displays and audio-conferencing,
while Scrutiny uses teleconferencing facilities or
simple text-based messages between participants.
ASSIST is a flexible inspection tool supporting
different inspection processes. It adds a shared
whiteboard to text/audio/videoconferencing and
threads of discussions.

CSI, Scrutiny, and ASSIST can be considered the
precursors of inspection tools based on group sup-
port systems (GSS), which is a form of groupware. A

Table 3. Inspection team performance in the third experience

F2F meeting Asynchronous discussion

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9 Insp10 Insp11 Insp12

Collated defects 19 25 43 27 35 17 31 28 45 60 17 35
Defects selected for
discrimination

19 25 43 27 35 17 31 28 45 60 17 35

Discussion filtering (selected
defs/collated)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Messages – – – – – – 72 48 124 151 38 85
Discussion intensity
(messages/selected defs)

– – – – – – 2.32 1.71 2.76 2.52 2.24 2.43

Removed false positives 12 8 21 5 13 5 22 13 31 14 10 6
Slipped false positives 3 1 0 1 3 0 0 7 2 4 0 0
Discrimination efficacy (Removed
FP/all FP)

0.80 0.89 1.00 0.83 0.81 1.00 1.00 0.65 0.94 0.78 1.00 1.00

True defects 4 16 21 21 19 12 9 8 12 42 7 29

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

226

Research Section Tool Support

GSS tool supports synchronous meetings by means
of a shared list of tools, including categorizer, group
outliner, topic commenter, vote, and so on. Modern
GSS tools are Internet-based and then they can also
support group tasks in distributed organizational
contexts.

The GRIP tool (Halling et al. 2001) has been
developed for inspecting requirements documents
by tailoring a COTS GSS. GRIP exploits the GSS
built-in tools to run collaborative synchronous
inspection meetings. Experiments performed in
an academic environment have shown that GRIP-
based inspections outperform traditional manual
inspections. Inspectors were interacting at the
same time and the same place, through laboratory
computers (Grunbacher et al. 2003, Halling et al.
2003).

Another GSS tool has been successfully applied
in an industrial environment to support code
inspections (van Genuchten et al. 2001). Inspectors
worked from their office desks but they were located
at the same organizational site.

GSS-based tools attempt to preserve the meeting-
based characteristic of the classical inspection
process. IBIS also supports synchronous remote
meetings, through the P2PConference tool, but
only in the Overview stage, where novices learn
from the author about the artifact to inspect
and from the moderator about the process to
follow.

Another approach is to restructure the inspec-
tion process to eliminate the need for the inspec-
tion meeting or to replace it with asynchronous
discussion forums. The goal is to remove the
main bottleneck of the inspection process, with-
out reducing inspection effectiveness. Furthermore,
overlapping time windows for synchronous com-
munication can dramatically increase the time to
complete an inspection, when the inspection team
works from multiple time zones.

CSRS, combined with the FTArm inspection
method (Johnson 1994), and CAIS (Mashayekhi
et al. 1994) are the first tools that depart from con-
ventional meeting-based inspections by focusing
on message-based asynchronous communication.
AISA (Stein et al. 1997) evolved from CAIS to pro-
vide inspectors with a web browser as a front-end
for performing inspection. The University of Oulu
has developed a number of web-based inspection
tools, starting from WiP (Harjumaa and Tervonen
1998), then WiT (Harjumaa and Tervonen 2000)

and finally XATI (Hedberg and Harjumaa 2002).
These tools support asynchronous inspections while
improving user interaction and interoperability,
thanks to the evolution of web technologies (from
Java applets to XML).

HyperCode (Perry et al. 2002) is a web-based
tool, which eliminates the inspection meeting and
reduces the number of stages in the inspection
process. Findings from individual defect discovery
are shared among the inspection team as soon
as they are detected. The Discovery stage and
the Collection stage are performed concurrently,
thus dramatically reducing synchronizing tasks.
HyperCode has been used at Lucent Technologies to
support geographically distributed reviewers and
has resulted in a reduction of about 25% of the time
needed to complete code inspections. However, it
is still unknown how shared knowledge of defects
affects effectiveness of inspections, also considering
that HyperCode does not provide any guidance to
inspectors while reading.

As shown in Table 4, IBIS has many similar fea-
tures to those proposed in asynchronous software
inspection tools, which organize defects to form
threaded discussions.

However, discussions in IBIS are an option (as in
WiT) and are limited to discriminating true defects
from false positives, according to the redefined
process beneath the tool. When discussions for
discrimination purposes are conducted, IBIS makes
it possible to reduce the number of participants
(even a pair of discussants) and the number of
defects that are worth a discussion (e.g. only
unique defects). The selection is performed by
the moderator before entering the Discrimination
stage.

Also, GRIP makes it possible to reduce the
number of reported defects, which are worth a
discussion (Grunbacher et al. 2003). However, the
selection criterion adopted by GRIP is based on
votes expressed by inspectors at the beginning of
the Discrimination stage. Only reported defects with
diverging votes are discussed but, unlike IBIS, in a
synchronous mode.

Furthermore, IBIS improves support for indi-
vidual analysis by providing procedural reading
scenarios other than checklists, and allowing the
moderator to assign a specific reading support on
an individual basis. These features are in common
only with GRIP.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

227

Research Section F. Lanubile, T. Mallardo, F. Calefato

T
ab

le
4.

C
om

pa
ri

so
n

of
th

e
fe

at
ur

es
in

to
ol

su
pp

or
tf

or
so

ft
w

ar
e

in
sp

ec
ti

on

Fe
at

ur
es

T
oo

ls
D

oc
um

en
tt

yp
es

M
ee

ti
ng

V
ot

in
g

R
ea

d
in

g
su

pp
or

t
D

et
ec

ti
on

re
sp

on
si

bi
lit

y
D

at
a

co
lle

ct
io

n
an

d
m

ea
su

re
m

en
t

D
ef

ec
t

cl
as

si
fic

at
io

n
E

na
bl

in
g

in
fr

as
tr

uc
tu

re

IC
IC

L
E

(B
ro

th
er

s
et

al
.1

99
0)

So
ur

ce
co

d
e

F2
F

N
o

A
d

ho
c

Id
en

ti
ca

l
Y

es
Y

es
C

lie
nt

-s
er

ve
r

In
sp

eQ
(K

ni
gh

ta
nd

M
ye

rs
19

93
)

A
ny

te
xt

d
oc

um
en

t
F2

F
N

o
C

he
ck

lis
ts

Id
en

ti
ca

l
N

o
N

o
C

lie
nt

-s
er

ve
r

C
SI

(M
as

ha
ye

kh
ie

ta
l.

19
93

)
A

ny
d

oc
um

en
t

Sy
nc

.
N

o
C

he
ck

lis
ts

Id
en

ti
ca

l
Y

es
Y

es
C

lie
nt

-s
er

ve
r

Sc
ru

ti
ny

(G
in

te
ll

et
al

.1
99

3)
A

ny
te

xt
d

oc
um

en
t

Sy
nc

.
Y

es
A

d
ho

c
Id

en
ti

ca
l

Y
es

Y
es

C
lie

nt
-s

er
ve

r
A

SS
IS

T
(M

ac
D

on
al

d
an

d
M

ill
er

19
97

)
A

ny
d

oc
um

en
t

A
sy

nc
./

sy
nc

.
Y

es
C

he
ck

lis
ts

Id
en

ti
ca

l
Y

es
Y

es
C

lie
nt

-s
er

ve
r

G
R

IP
(H

al
lin

g
et

al
.2

00
1)

A
ny

d
oc

um
en

t
Sy

nc
.

Y
es

C
he

ck
lis

ts
/s

ce
na

ri
os

Id
en

ti
ca

l/
d

is
ti

nc
t

Y
es

Y
es

G
SS

-b
as

ed
G

SS
at

B
aa

n
(v

an
G

en
uc

ht
en

et
al

.
20

01
)

A
ny

d
oc

um
en

t
Sy

nc
.

Y
es

A
d

ho
c

Id
en

ti
ca

l
N

o
N

o
G

SS
-b

as
ed

C
SR

S
(J

oh
ns

on
19

94
)

A
ny

te
xt

d
oc

um
en

t
N

o
Y

es
C

he
ck

lis
ts

Id
en

ti
ca

l
Y

es
Y

es
C

lie
nt

-s
er

ve
r

C
A

IS
(M

as
ha

ye
kh

ie
ta

l.
19

94
)

A
ny

te
xt

d
oc

um
en

t
Sy

nc
.

Y
es

C
he

ck
lis

ts
Id

en
ti

ca
l

N
o

Y
es

C
lie

nt
-s

er
ve

r
A

IS
A

(S
te

in
et

al
.1

99
7)

A
ny

d
oc

um
en

t
A

sy
nc

.
ye

s
A

d
ho

c
Id

en
ti

ca
l

N
o

Y
es

W
eb

-b
as

ed
W

iP
(H

ar
ju

m
aa

an
d

T
er

vo
ne

n
19

98
)

A
ny

te
xt

d
oc

um
en

t
N

o
N

o
C

he
ck

lis
ts

Id
en

ti
ca

l
N

o
Y

es
W

eb
-b

as
ed

W
iT

(H
ar

ju
m

aa
an

d
T

er
vo

ne
n

20
00

)
A

ny
te

xt
d

oc
um

en
t

A
sy

nc
.

(o
pt

io
na

l)
N

o
C

he
ck

lis
ts

Id
en

ti
ca

l
N

o
Y

es
W

eb
-b

as
ed

X
A

T
I(

H
ed

be
rg

H
.a

nd
H

ar
ju

m
aa

20
02

)
A

ny
ht

m
ld

oc
um

en
t

N
o

N
o

C
he

ck
lis

ts
Id

en
ti

ca
l

Y
es

Y
es

W
eb

-b
as

ed

H
yp

er
C

od
e

(P
er

ry
et

al
.2

00
2)

So
ur

ce
co

d
e

N
o

N
o

A
d

ho
c

Id
en

ti
ca

l
N

o
N

o
W

eb
-b

as
ed

IB
IS

(L
an

ub
ile

an
d

M
al

la
rd

o
20

03
)

A
ny

d
oc

um
en

t
A

sy
nc

.
(o

pt
io

na
l)

Y
es

C
he

ck
lis

ts
/

sc
en

ar
io

s
Id

en
ti

ca
l/

d
is

ti
nc

t
Y

es
Y

es
W

eb
-b

as
ed

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

228

Research Section Tool Support

6. DISCUSSION

Software inspections have been adopted from many
years by large industrial organizations because
of their impact on product quality and cost of
nonquality. First generation of computer support
for software inspection involved computers being
used as replacements of clerical and labor-intensive
tasks to increase inspection effectiveness and reduce
cost of inspection. The ever-growing phenomenon
of global software development has posed a new
challenge to computer support software inspection:
how to bridge the gap in physical distance among
inspection team members.

In the previous section, we have presented var-
ious attempts, which have exploited Internet tech-
nology to let inspections be conducted online.
One major approach has been to provide soft-
ware inspection tools that incorporate synchronous
meeting support systems as an alternative to face-
to-face meetings. This approach (different-place,
same-time) still preserves the classical inspec-
tion process, which is built around a structured
encounter of technical people. However, the block-
ing effects inherent in synchronous meetings, due
to the divergent schedules of participants, aug-
ments the idle time and introduces delays that
negatively affect the inspection interval time (Perry
et al. 2002), and then the interval time of the over-
all software development process. For this reason,
asynchronous mechanisms are recommended for
the software inspection process while meetings are
considered as ‘the phase of last resort’ (Johnson
1998).

Idle premeeting time can still be longer for
global software inspections when time zones dif-
fer between team members. Time zone disparity
between distant sites can provide few or no over-
lapping work hours for synchronous activities such
as meetings. Even a time difference of a few hours
can be a challenge in coordinating personal sched-
ules because of dissimilar time slots for lunch and
different national holidays.

Another problem that hinders synchronous com-
munication in global software development is lan-
guage differences. English is the common cross-
border language for software business. However,
nonnative English-speaking people can find it dif-
ficult to understand, write or speak at the pace
imposed by real-time communication with English-
native partners.

7. CONCLUSIONS

In this paper, we have presented IBIS, a web-based
support tool for geographically distributed inspec-
tion. On the basis of lessons learned from empir-
ical studies of software inspections, IBIS follows
a different-place, different-time approach, with a
prevalence of asynchronous communication among
inspectors. IBIS adopts a reengineered inspection
process to minimize coordination problems, with-
out loosing the advantages of inspections (phased
process, reading techniques, roles, measurement)
over less formal review processes. The conformance
to a specific but flexible redesigned inspection
process, and the support for different reading tech-
niques in the individual defect discovery activity,
make the IBIS different from other asynchronous
web-mediated inspection tools.

We can identify three lessons that we have
drawn from our experiences in running distributed
inspections through the IBIS tool. First we have
learnt that, having removed the need for the
inspection team to meet in the same place and
in the same time, the usual team size limit of five to
seven members can be exceeded without incurring
an unbearable overhead. Second, we have learnt
how to optimize the redesigned inspection process
by focusing the discussion on those defects that
have been reported by only one reviewer, and
restricting the number of discussants to a subset of
the whole inspection team. Finally, we have learnt
that asynchronous discussions can be as effective
as F2F meetings when discriminating between true
defects and false positives.

Further work will be to empirically assess the
effects of synchronous and asynchronous-based
approaches on inspection effectiveness, cost and
interval time. To pursue these investigations further
will require both controlled experiments and field
studies, and the availability of a global software
development context, with differences in distance,
time zone, and national culture.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful
improvement suggestions. We are also grateful
to the students at the University of Bari who
performed distributed inspections and provided
valuable feedback to enhance the tool.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

229

Research Section F. Lanubile, T. Mallardo, F. Calefato

REFERENCES

Adler S, Berglund A, Caruso J, Deach S, Graham T,
Grosso P, Gutentag E, Milowski A, Parnell S, Richman J,
Zilles S. 2001. Extensible Stylesheet Language (XSL) 1.0,
W3C Recommendation, World Wide Web Consortium.
http://www.w3.org/TR/xsl/.

Basili VR, Green S, Laitenberger O, Lanubile F, Shull F,
Sorumgard S, Zelkowitz M. 1996. The empirical
investigation of perspective-based reading. Empirical
Software Engineering 1(2): 133–164.

Bianchi A, Lanubile F, Visaggio G. 2001. A controlled
experiment to assess the effectiveness of inspection
meetings. Proceedings of 7th METRICS (London, England,
April, 2001). IEEE Computer Society Press: Los Alamitos,
CA, 42–50.

Bray T, Paoli J, Sperberg-McQueen CM, Maler E. 2000.
Extensible Markup Language (XML) 2.0, W3C
Recommendation, World Wide Web Consortium.
http://www.w3.org/TR/REC-xml.

Brothers L, Sembugamoorthy V, Muller M. 1990. ICICLE:
groupware for code inspection. Proceedings of
Conference on Computer Supported Cooperative Work,
Los Angeles, CA, October 1990, 169–181.

Carmel E. 1999.. Global Software Teams: Collaborating Across
Borders and Time Zones. Prentice Hall PTR: San Francisco,
CA.

Ciolkowksi M, Differding C, Laitenberger O, Munch J.
1997. Empirical Investigation of Perspective-based
Reading: A Replicated Experiment. ISERN Report 97-13.

Clark J. 1999. Extensible Stylesheet Language Transfor-
mations (XSLT) 1.0, W3C Recommendation, World Wide
Web Consortium. http://www.w3.org/TR/xslt.

Ebenau RG, Strauss SH. 1994. Software Inspection Process.
McGraw Hill, NewYork, USA.

Ebert C, Parro CH, Suttels R, Kolarczyk H. 2001.
Improving validation activities in a global software
development. Proceedings of ICSE (Toronto, Canada, May
2001). IEEE Computer Society Press: Los Alamitos, CA,
545–554.

Fagan ME. 1976. Design and code inspections to reduce
errors in program development. IBM Systems Journal
15(3): 182–211.

Freedman DP, Weinberg GM. 1990. Handbook of
Walkthroughs, Inspections, and Technical Reviews, Dorset
House Publishing, NewYork, USA.

Fusaro P, Lanubile F, Visaggio G. 1997. A replicated
experiment to assess requirements inspection techniques.
Empirical Software Engineering 2: 39–57.

Gilb T, Graham D. 1993. Software Inspection. Addison-
Wesley, Reading, Massachusetts, USA.

Gintell J, Arnold J, Houde M, Kruszelnicki J, McKen-
ney R, Memmi G. 1993. Scrutiny: a collaborative inspec-
tion and review system. Proceedings of 4th European Soft-
ware Engineering Conference, Garmisch-Partenkirchen,
Germany, September 1993.

Grunbacher P, Halling M, Biffl S. 2003. An empirical
study on groupware support for software inspection
meetings. Proceedings of 18th Int. Conference on Automated
Software Engineering (Montreal, Canada, October 2003).
IEEE Computer Society Press: Los Alamitos, CA, 4–11.

Halling M, Biffl S, Grunbacher P. 2003. An experiment
family to investigate the defect detection effect of
tool-support for requirements inspection. Proceedings of
9th Int. Software Metrics Symposium (Sydney, Australia,
September 2003). IEEE Computer Society Press: Los
Alamitos, CA, 278–285.

Halling M, Grunbacher P, Biffl S. 2001. Tailoring a
COTS group support system for software requirements
inspection. Proceedings of 16th Int. Conference on Automated
Software Engineering (San Diego, CA, November 2001).
IEEE Computer Society Press: Los Alamitos, CA, 201–210.

Harjumaa L, Tervonen I. 1998. A WWW-based tool for
software inspection. Proceedings of 31st HICSS Conference
(Hawaii, HI, January 1998), Vol. III. IEEE Computer
Society Press: Los Alamitos, CA, 379–388.

Harjumaa L, Tervonen I. 2000. Virtual software
inspections over the internet. Proceedings of 3rd ICSE
Workshop on Software Engineering over the Internet,
Limerick, Ireland, June 2000.

Hedberg H, Harjumaa L. 2002. Virtual software inspec-
tions for distributed software engineering projects. Pro-
ceedings of ICSE International Workshop on Global
Software Development, Orlando, FL, May 2002.

Herbsleb JD, Mockus A, Finholt TA, Grinter RE. 2001. An
empirical study of global software development: Dis-
tance and speed. Proceedings of ICSE (Toronto, Ontario,
May 2001). IEEE Computer Society Press: Los Alamitos,
CA, 81–90.

Herbsleb JD, Moitra D. 2001. Global software develop-
ment. IEEE Software 18(2): 16–20.

Johnson PM. 1994. An instrumented approach to
improving software quality through formal technical
review. Proceedings of 16th International Conference on
Software Engineering (Sorrento, Italy, May 1994). IEEE
Computer Society Press: Los Alamitos, CA, 113–122.

Johnson PM. 1998. Reengineering inspection. Communi-
cation of the ACM 41(2): 49–52.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

230

Research Section Tool Support

Johnson PM, Tjahjono D. 1998. Does every inspection
really need a meeting? Empirical Software Engineering 3:
9–35.

Knight JC, Myers EA. 1993. An improved inspection
technique. Communications of the ACM 36(11): 51–61.

Laitenberger O, DeBaud JM. 2000. An encompassing life
cycle centric survey of software inspection. The Journal of
Systems and Software. 50(5-31).

Land LPW, Jeffery R, Sauer C. 1997. Validating the defect
detection performance advantage of group designs for
software reviews: report of a replicated experiment.
Caesar Technical Report 97/2, University of New South
Wales, Sydney, Australia.

Lanubile F, Mallardo T. 2002. Preliminary evaluation
of tool-based support for distributed inspection.
Proceedings of ICSE International Workshop on Global
Software Development, Orlando, FL, May 2002.

Lanubile F, Mallardo T. 2003. An empirical study of web-
based inspection meetings. Proceedings of 2nd International
Symposium on Empirical Software Engineering (Roma,
Italy, October 2003). IEEE Computer Society Press: Los
Alamitos, CA, 244–251.

MacDonald F, Miller J. 1997. A Software inspection
process definition language and prototype support tool.
Software Testing, Verification, and Reliability 7(2): 99–128.

MacDonald F, Miller J. 1999. A comparison of computer
support systems for software inspection. Automated
Software Engineering 6: 291–313.

Mashayekhi V, Drake JM, Tsai W-T, Riedl J. 1993.
Distributed, collaborative software inspection. IEEE
Software 10(5): 66–75.

Mashayekhi V, Feulner C, Reidl J. 1994. CAIS:
collaborative asynchronous inspection of software.
Proceedings of 2nd ACM SIGSOFT Symposium on the
Foundations of Software Engineering, New Orleans, LA,
December 1994.

Miller J, Wood M, Roper M. 1998. Further experiences
with scenarios and checklists. Empirical Software
Engineering 3: 37–64.

Parnas DL, Weiss DM. 1987. Active design reviews:
principles and practice. Journal of Systems and Software
7: 259–265.

Perry DE, Porter A, Wade MW, Votta LG, Perpich J. 2002.
Reducing inspection interval in large-scale software
development. IEEE Transaction on Software Engineering
28(7): 695–705.

Porter A, Votta LG. 1998. Comparing detection methods
for software requirements specification: a replication
using professional subjects. Empirical Software Engineering
3: 355–379.

Porter A, Votta LG, Basili VR. 1995. Comparing detection
methods for software requirements inspections: a
replicated experiment. IEEE Transactions on Software
Engineering 21(6): 563–575.

P2PConference homepage. 2004. http://p2pconference.
jxta.org (last accessed on 03/01/2004).

Sauer C, Jeffery DR, Land L, Yetton P. 2000. The
effectiveness of software development technical reviews:
a behaviorally motivated program of research. IEEE
Transactions on Software Engineering 26(1): 1–14.

Stein M, Riedl J, Harner SJ, Mashayekhi V. 1997. A case
study of distributed, asynchronous software inspection.
Proceedings of 19th International Conference on Software
Engineering (Boston, MA, May 1997). IEEE Computer
Society Press: Los Alamitos, CA, 107–117.

van Genuchten M, van Dijk C, Scholten H, Vogel D. 2001.
Using group support systems for software inspections.
IEEE Software 18(3): 60–65.

Votta LG. 1993. Does every inspection need a meeting?
ACM Software Engineering Notes 18(5): 107–114.

Wiegers KE. 2001. Peer Reviews in Software: A Practical
Guide. Addison-Wesley Reading, Massachusetts, USA.

Wilson BJ. 2002. JXTA. New Riders.

Wood L, Nicol G, Robie J, Byrne S, Le Hors A, Sutor R
Apparao V, Champion M, Isaacs S, Jacobs I, Wilson C.
1998. Document Object Model (DOM) Level 1
Specification, W3C Recommendation, World Wide
Web Consortium. http://www.w3.org/TR/REC-DOM-
Level-1/.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 217–231

231

