
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2003; 8: 183–199 (DOI: 10.1002/spip.187)

Collaboration Practices in
Global Inter-organizational
Software Development
Projects

Research Section
Maria Paasivaara and Casper Lassenius*,†

Helsinki University of Technology, Software Business and Engineering
Institute, FIN-02015 HUT, Finland

Global interorganizational software development projects are becoming common, but their
management and the creation of practices and processes to support collaboration seem to be
harder than what the companies expect. In this article, we present successful collaboration
practices collected in an interview study of eight globally distributed interorganizational
software development projects.

On the basis of 34 semistructured interviews, we were able to identify several practices that
the interviewees subjectively deemed successful. The identified collaboration practices include:
milestone synchronization, frequent deliveries, and the establishment of peer-to-peer links. The
need to plan for problem-solving communication was often neglected in the beginning of the
project, despite its paramount importance. We identified several ways to ease related problems,
such as having a dedicated person solve problems, using bulletin boards and e-mail lists or
dedicated mailboxes. Successful projects had learned the value of two-way communication
regarding project progress monitoring. Finally, practices helping in building and maintaining
a working relationship included face-to-face meetings, distribution of organization charts, and
having people travel to give all sites faces. Copyright 2004 John Wiley & Sons, Ltd.

KEY WORDS: global software development; interorganizational software development; collaboration practices; communication

1. INTRODUCTION

Global interorganizational software development,
including outsourcing, subcontracting and partner-
ships, is becoming increasingly common (Heeks
et al. 2001). Advice for outsourcing and acquiring
large systems or modules with well-defined require-
ments and/or interfaces can be found in literature

∗ Correspondence to: Casper Lassenius, Helsinki University of
Technology, Software Business and Engineering Institute, P.O.B.
9210, FIN-02015 HUT, Finland
†E-mail: Casper.Lassenius@hut.fi

Copyright 2004 John Wiley & Sons, Ltd.

(e.g. IEEE 1998). However, software projects devel-
oping genuinely novel products are often faced with
uncertainty regarding, e.g. both requirements and
implementation technologies, and subcontractors
or partners need to be involved long before these
uncertainties can be resolved. In such projects, the
parties cannot receive clear requirement specifica-
tions at the beginning. Instead, close cooperation
and communication between the parties is required
during the whole project, as the project both builds
a product and tries to understand what to build at
the same time. In these kinds of projects, problems
often arise since practices and processes needed
for collaborating across distances and organizations

Research Section M. Paasivaara and C. Lassenius

are neither well understood in theory nor typically
established in practice.

In our experience, companies easily underesti-
mate the need for specific collaboration practices
and processes when running projects across dis-
tances. Often, companies seem to jump start global
interorganizational projects without first planning
how to work together with their partners. This can
lead to quite problematic situations. Collaborating
companies often have differing cultures, processes,
and practices that may pose significant challenges
to joint projects.

Current literature does not provide much help
for managers planning globally distributed soft-
ware development projects; only a few articles can
be found presenting practices that are really used
in case projects (e.g. Battin et al. 2001, Ebert and
De Neve 2001, Heeks et al. 2001). In particular,
interorganizational aspects are often missing. We
believe that empirically collecting successful collab-
oration practices could provide useful information
for managers who plan and execute global interor-
ganizational software development projects. The
objective of our study was to collect collaboration
practices that really are used in interorganiza-
tional software development projects and that are
perceived as useful. In this paper, we present a
collection of successful practices we identified in
eight globally distributed interorganizational soft-
ware development projects. We focus on practices
useful in interorganizational projects, but we think
that most, if not all, of the practices could be useful
in intraorganizational distributed projects as well.

The rest of this paper is structured in the following
way: Section 2 briefly presents related literature.
After that, in Section 3, we describe the research
methodology and introduce the case companies
and projects studied. In Section 4, we present
the identified collaboration practices. Finally, we
present a discussion of our results, as well as the
conclusions and ideas for future work.

2. RELATED WORK

Global software development literature brings up
many challenges related to collaboration practices
and processes (e.g. Mockus and Herbsleb 2001).
Also, some solutions and advice regarding ‘best
practices’ are presented (e.g. Carmel 1999, Ebert
and De Neve 2001).

Regarding collaboration processes, Battin et al.
(2001) identify the challenge that collaborating
sites even within one company can have differ-
ing development processes, a fact that can be very
problematic when collaborating closely. Differing
change-management processes between sites have
also caused problems, especially in the integration
phase, according to Herbsleb and Grinter (1999).
One solution to these process compatibility prob-
lems could be to force all sites to use the same
process. Another solution, which provides a faster
way to start a project, is to let everybody use
his/her own processes. However, then, it is nec-
essary to clearly divide and specify the work (Battin
et al. 2001). Synchronization of work (Herbsleb and
Moitra 2001) and integrating work products (Bat-
tin et al. 2001) are other process related challenges.
As a solution, Battin et al. (2001) suggest an incre-
mental integration plan, which would be based on
clusters and shared milestones to avoid ‘big bang’
integration. Incremental integration and frequent
deliveries is a core practice in agile methodologies
for collocated projects (Larman and Basili 2003),
but its use in distributed development has not yet
received much attention. Fowler (2004) and Simons
(2002) recently reported their experiences in using
agile methods in offshore development projects.
According to Simons (2002), an iterative model
seems to work well in these distributed projects, and
it benefits the project also by providing increased
visibility into project status.

Communication is in a central position in almost
all collaboration practices and processes. How-
ever, communication is often mentioned as the
biggest problem in distributed projects, since, e.g.
geographical distance limits face-to-face communi-
cation, time zone differences prohibit synchronous
communication, and language and cultural dif-
ferences cause misunderstandings. Literature has
proposed several low-level communication prac-
tices for globally distributed projects, e.g. the use of
liaisons (Battin et al. 2001), cultural liaisons (Carmel
and Agarwal 2001) or straddlers (Heeks et al. 2001)
to share information and facilitate contacts; confer-
ence calls to resolve problems (Battin et al. 2001);
the rotation of management to cope with cultural
diversity (Ebert and De Neve 2001); and setting up
a project home page summarizing project content
and planning information to distribute information
(Ebert and De Neve 2001).

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

184

Research Section Collaboration in Inter-organizational Software Development

Communication practices and patterns have also
been studied in the new product development liter-
ature. Allen (1977) studied communication in geo-
graphically dispersed organizations and identified
several communication patterns, e.g. the gatekeeper
pattern. Gatekeepers are link persons that have sev-
eral peer-to-peer links outside their own project or
company. A gatekeeper disseminates information
from outside to inside the project and translates it
into terms relevant to the project. Gloor et al. (2003)
have built a software tool to uncover and visualize
communication patterns based on the basis of e-
mail messages exchanged in a network. Their work
has already revealed communication patterns and
some central roles in innovation networks.

Software project management literature also dis-
cusses patterns. Coplien (1994, 1995) describes orga-
nizational and process patterns, which he thinks
will help us, both to understand existing soft-
ware development organizations and to build new
ones. Ambler (1998) presents process patterns that
are especially intended for object-oriented software
development. He defines an organizational pattern
as ‘a pattern that describes a common management
technique or a potential organizational structure’
and a process pattern as ‘a pattern that describes
a proven, successful approach and/or series of
actions for developing software’. Both Coplien and
Ambler present patterns that are proven or at least
expected to be successful. Some organizational pat-
terns that Coplien (1994, 1995) presents describe
communication-related problems and solutions.
Coplien’s patterns are carefully described: every
pattern has a name, describes the problem, gives
the context of the problem, explains the forces or
trade-offs affecting it, gives a solution to the prob-
lems, and explains the resulting context and design
rationale. Other collaboration practices or patterns,
especially meant for distributed use, can be found,
e.g. from the Dispersed Agile Software Develop-
ment web site (cited 17.4.2003). These pages present
patterns such as TravellingDevelopers and Daily-
ConferenceCall. However, some of these patterns
are ‘protoPatterns’, i.e. they may be just suggestions
for useful practices that are not yet used as such in
real life.

So far, only a few collaboration practices suit-
able for globally distributed software development
projects are presented in literature. Moreover, the
experiences of the use of these practices in real
distributed projects are also scarce. We therefore

believe that the collection and documentation of
successful collaboration practices from globally dis-
tributed software development projects discussed
in this paper is beneficial to advancing the knowl-
edge in the field.

3. RESEARCH METHODOLOGY

The research presented in this paper is a multi-
ple case study (Yin 1994). We chose six Finnish
companies that developed software: Alpha, Beta,
Gamma, Delta, Epsilon, and Zeta. Three of the
companies developed software products, one devel-
oped customer-specific systems, and two developed
embedded systems. We used purposeful sampling
(Patton 1990) and selected companies that we knew
used software subcontractors and that we expected
to be experienced in interorganizational software
development. All companies, except one, were large
and well known in Finland. The companies were
successful from a business point of view, on mea-
sures such as growth and profits.

We chose eight projects for closer study – one
project each from five companies and three orga-
nizationally dispersed projects from one large
company . We concentrated on projects involving
subcontractors, and focused on the processes and
practices used in the interface between the customer
and the subcontractor(s) in parallel development
situations. We purposefully selected projects that
demanded constant collaboration and lots of com-
munication between parties, e.g. due to a high
degree of uncertainty, dependencies, and chang-
ing requirements. Therefore, in particular, projects
developing new products and having the actual
work of software development divided between
participating companies were interesting for us.

Also, all the selected projects had a global
distribution aspect, either inside or between the
companies. All eight projects had sites or partners
in two or more different countries. Four projects
were distributed between continents, two of them
between Europe and Asia and two between Europe
and North America. In three projects, all sites
were located in Europe. One customer-specific
project had developers only in Finland, but the
requirements came from customer sites located all
over the world.

We performed 34 semistructured interviews, each
lasting 2 to 3 hours. In each customer company

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

185

Research Section M. Paasivaara and C. Lassenius

we interviewed, if possible, both a partnership
manager responsible for software subcontracting
and a process developer involved in developing the
process used between customer and subcontractor.
In some cases, the partnership manager and process
developer was the same person. From each project,
we interviewed a project manager and, if possible,
also one or more team members and a representative
from the subcontractor company. The cases and
interviewees are presented in Table 1.

The number of interviewees differed between
cases, depending, e.g. on the size of the project and
how interesting the project was from the point of
view of collaboration practices. In three cases, the
number of project managers interviewed was more
than one since some subproject managers were also
interviewed. Subcontractors were interviewed only
in half of the projects. In two cases, subcontractors
were situated across such long distances that we
were unable to travel, and in one case, the customer
did not want us to interview the subcontractor. In
one case, we found out that the subcontractors were
not doing intensive concurrent development with
the customer, making us believe that they would
not provide much added value to the study.

In company Alpha, two of the projects, Alpha 1
and Alpha 2, were normal product development
projects from different organizational units and
project Alpha 3 was a bespoke system that was
developed by a subcontractor. In company Zeta, we
interviewed three persons from the subcontractor
since the subcontractor had interesting internal
distribution between Europe and Asia.

In the interviews, we asked the interviewees
to completely describe the practices they used in
their projects and the experiences they had gained.

We did not have any ready-made categories of
practices that we were looking for. Instead, we tried
to encourage the interviewees to also tell about
practices and experiences that we might not have
thought of asking.

We tape recorded all interviews, transcribed
them, and used ATLAS.ti for grouping and ana-
lyzing the data. ATLAS.ti is a software tool that
provides support for grouping and analyzing qual-
itative textual data. In ATLAS.ti, we created cate-
gories that arose from the data and then collected
quotations from data under these groups. The prac-
tices described here are based upon these categories
describing related experiences and practices found
in different projects.

All practices described in this paper have been
successful in the projects they were used, according
to the subjective opinions of the interviewees.

4. RESULTS

This section presents our findings on processes and
practices used in global interorganizational soft-
ware development projects. The most surprising
result of our study was that the interviewed compa-
nies did not have any clear processes and practices
that would have been commonly used in all of their
interorganizational software development projects.
The practices we encountered were mainly project
specific and were created by trial and error at the
project level. The practices identified and presented
in this article might seem quite basic. However, in
our experience, they are often not implemented in
real-life interorganizational projects, even though,
possibly, a lot of problems could be avoided by
using them.

Table 1. Case project interviews

Number of interviews per role

Case
projects

Partnership
manager

Process
developer

Project
manager

Team
member

Subcontractor All Industry Geographical distribution
and number of sites involved

Alpha 1 1 1 2 – 1 5 Telecom Europe (3) and North America (1)
Alpha 2 2 1 1 – – 4 Europe (4)
Alpha 3 – – – 2 2 Finland (several)
Beta 1 1 3 1 1 7 Bespoke SW Europe (6)
Gamma 1 1 1 – – 3 Security Europe (2)
Delta 1 2 1 – 4 Telecom Europe (2) & North America (1)
Epsilon 1 1 1 – 3 SW products to

several industries
Europe (2) & Asia (2)

Zeta 1 1 1 3 6 Telecom Europe (2) & Asia (1)

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

186

Research Section Collaboration in Inter-organizational Software Development

Table 2 presents a summary of the practices iden-
tified and the following subsections describe them
in more detail. The first two practices, synchroniza-
tion of main milestones and frequent deliveries are
directly linked to the software development pro-
cesses that the collaborating companies use. The
third practice, establishment of peer-to-peer links, has
an effect on the organizational structure and the
roles in collaborating companies. The last three,
problem-solving practices, informing and monitoring
practices, and relationship building practices, are actu-
ally collections of several practices that are closely
related and have similar goals. These three classes of
practices support communication and collaboration
within and between collaborating companies.

Table 2. Identified collaboration practices

Collaboration
practice

Main finding

Synchronization
of main
milestones

It is not always necessary for closely
collaborating companies to use the same
software development process.
Synchronizing the main process
milestones between organizations seems
to be enough.

Frequent
deliveries

Using frequent deliveries and an iterative
process seem to be very beneficial in
distributed projects.
It creates transparency, brings real
checkpoints, and adds developer
motivation.

Establishment of
peer-to-peer links

Creating roles, assigning the roles to team
members, and indicating which roles need
to communicate with each other between
companies.
These links can be useful at several
organizational levels; we identified three
levels.

Problem-solving
practices

Problem-solving communication was
extremely important in the distributed
projects studied.
However, in the project-planning phase,
this communication need was often
neglected.

Informing and
monitoring
practices

Creating transparency about project
progress seems to be important.
Besides project managers, team members
from all distributed sites also need
progress information. For them, it can also
be a motivating factor.

Relationship
building practices

Building a good relationship between
distributed teams requires at least some
face-to-face contacts.
Meeting at least someone face to face from
collaborating distributed sites also helps.

4.1. Synchronization of Main Milestones

The first question when collaboration with partners
or subcontractors really starts should be: ‘What is
the software development process the collaborating
companies will use?’ Quite often, the customer
company determines the process to be used. It
can simply give the subcontractor its process
description saying: ‘This is our process, use it’.
This was the case in one of the projects we studied.
However, it seems that it is not really necessary
to enforce the same process. In our study, we
found several successful projects in which both
the customer and the subcontractor used their
own development processes in their collaborative
projects. Only the main phases and milestones were
synchronized between the companies. In particular,
in cases where the subcontractor already has a well-
functioning process in place, this seems to work
well. A few customer companies we interviewed
said that when they notice that a subcontractor has
a good and functioning own process in use, there
is no reason to change that. Instead, letting the
subcontractor use its own process makes starting
the collaboration faster because the subcontractor
does not have to learn a new process. However,
the main milestones and project phases need to be
synchronized. For example, companies can have
the same name for main project phases, even
though every company’s internal processes inside
these phases differ (Figure 1), as was explained by
the person responsible for process development at
company Alpha:

‘When you understand that these two are the
same [when comparing the process descrip-
tions between the customer and the subcon-
tractor], but it is stated differently, then we
could agree that we jointly name this phase
this. It gives a basis for having a common
process which both parties have described in
more detail.’

Our interviewees from projects Alpha 1 and
Alpha 2 emphasized that when using an incremen-
tal process model, it is important that all participants
synchronize the iteration cycles also, i.e. use the
same length for iteration cycles and between deliv-
eries, otherwise, problems will occur.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

187

Research Section M. Paasivaara and C. Lassenius

Figure 1. Synchronization of main milestones

4.2. Frequent Deliveries

The use of frequent deliveries from subcontractors
and distributed sites seemed to be a very suitable
practice for distributed use. Our interviewees said
that when deliveries are integrated and tested right
away, this gives a very good picture of how the
project is progressing. Frequent deliveries normally
mean that the whole project is using an iterative
process model. Of course, frequent deliveries can
be required from a subcontractor also when using
a more traditional process model, as was done in
project Beta. In such cases, the deliveries could
consist, e.g. of draft versions of various documents
in the early phases and code and test cases in the
later ones.

The benefits of using frequent deliveries and inte-
gration are numerous. In our case companies, they
prevented different sites and partners from doing
long periods of independent development, which
could lead to modules that are hard or impos-
sible to integrate. Frequent delivery cycles also
brought transparency of the work to all partners.
When both the customer and the subcontractor used
an iterative process with frequent deliveries, the
subcontractor regularly delivered functioning code
during the development phase, e.g. monthly or even
weekly. The delivery was integrated into the sys-
tem and tested. Frequent deliveries, followed by
integration and testing ensured that the subcon-
tractor was doing work that was compatible and
that the requirements were understood correctly.
Our interviewees had noted that frequent deliver-
ies made it easier for the customer to monitor the
real progress of the subcontractor’s work. Integra-
tion and testing reports gave distributed developers
instant feedback on their work, which they felt was
very motivating. Moreover, when the customer saw
that the subcontractor was doing good work, the

customer’s personnel started to trust and respect
the subcontractor and its developers’ know-how,
which made further collaboration easier.

Half of the projects we studied, Alpha 1, Alpha
2, Beta, and Epsilon, used an iterative process
model with frequent deliveries from subcontractors
and distributed sites. These deliveries contained
functioning code, which was integrated into a build
and tested. The iteration and delivery cycles used
varied between projects and also between project
phases, e.g. in the beginning, they could be longer
and later, in intensive phases, shorter. This was
the case in projects Alpha 1 and Alpha 2. The
subcontractor in project Alpha 1 described their
delivery cycles:

‘In the beginning we did three month incre-
ments. Then they told us that now we will do
weekly deliveries.’

In the projects Alpha 1 and Alpha 2, during the
most hectic development, weekly deliveries and
builds were used. In other projects, builds were
made more seldom. In project Alpha 2, two sub-
contractors used different iteration cycles, which
caused problems when the changes did not come
fast enough from the other subcontractor using
longer iterations. In project Alpha 1, a similar prob-
lem occurred when one of the customer’s offshore
sites that delivered directly to the subcontractor had
longer delivery cycles than all other sites and part-
ners. The Finnish subcontractor in project Alpha 1
describes the situation:

‘Company Alpha let their North American site
deliver to us once every two months. We were
required [to deliver] once a week. When we
noticed that something was missing, we had
to wait for two months. (. . .) We complained

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

188

Research Section Collaboration in Inter-organizational Software Development

about that, and finally they changed to this
same weekly delivery cycle, but it took all too
long [to do this change]. (. . .) This was one
of the biggest mistakes made in this [project].
Our bug fixing average times were somewhere
between two and three months [before the
change]. (. . .) Our scheduling was ruined. (. . .)
We got all the complaints because we were the
subcontractors.’

4.3. Establishment of Peer-to-peer Links

Establishment of peer-to-peer links between collab-
orating companies seems to be crucial in distributed
projects. Creating roles, assigning the roles to team
members, and indicating which roles need to com-
municate with each other between companies was a
successful practice described by interviewees from
companies Alpha and Gamma. These companies
had defined and had already taken into use part
of the roles they had defined, but the work was
still ongoing. Their initial experiences showed that
roles made the interorganizational project struc-
ture more clear to all participating team members
and helped them find the correct person to contact.
These two companies had links between persons at
three different organizational levels: at the manage-
ment level between subcontracting managers or the
like, at the project level between project managers,
and at the team level between individual developers
(Figure 2). Only projects Alpha 1, Alpha 2, Alpha
3, and Gamma had functioning links between roles
at all these three levels. Other projects studied had
different combinations of links, and all the projects
had links at least between project managers from
the collaborating companies.

4.3.1. Creation of Role Descriptions
Companies Alpha and Gamma had already written
part of the role descriptions for their projects. The
process developer in company Alpha described
their goals in this work:

‘. . . we would like to unify these practices for
working with subcontractors: what collaborat-
ing roles we have, what roles the counter party
has, and how these roles exchange informa-
tion. (. . .) The roles are described as a group
of tasks in the process. (. . .) The role includes
being responsible for a specific set of tasks.’

The role descriptions in Alpha and Gamma
included, e.g. tasks to perform, decision-making
rights, responsibilities, and identified other-party
contacts. The idea was to use the same roles and
descriptions in all projects. At the beginning of
a new project, the roles needed are chosen and
persons are assigned to those roles. When start-
ing a project, it is easier to give team members
roles rather than many separate tasks. Some of
the roles may not include any interorganizational
communication, while some may require lots of it.
Our interviewees emphasized that it is important
that the roles requiring interorganizational commu-
nication have matching counterparts, both at the
customer’s and both at the subcontractor’s side.
The role descriptions require both communication
as well as allowing a person to communicate by
making communication a task. Our interviewees
thought that it was important to clearly define com-
munication as a part of the job for certain roles since
it is an important task that takes a lot of time. Actu-
ally, we noticed that in some other companies that

Figure 2. Peer-to-peer links between companies at several organizational levels

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

189

Research Section M. Paasivaara and C. Lassenius

did not have these kind of role descriptions, a few
interviewed link persons complained that commu-
nication was a task that required a considerable part
of their time but their companies underestimated
the time required for that and piled too much other
work on them.

In addition to the customer company, the subcon-
tractors also can make use of these role descriptions.
For example, company Gamma encouraged its sub-
contractor to use the role descriptions it had created
and documented on extranet pages.

4.3.2. Management-level Links
At the management level, collaborating companies
needed peer-to-peer links between persons who
could communicate about matters common to sev-
eral projects (consecutive and parallel projects).
According to our interviewees, communication was
needed, e.g. about the customer’s future project
plans and the subcontractor’s available resources,
prices, infrastructure needs, problems in collabo-
ration, future collaboration development activities,
etc. Company Alpha had instantiated a practice of
naming a subcontracting responsible from its orga-
nization for each of its subcontractors. Company
Alpha also expected each subcontractor to name
a corresponding person from their company to be
a counter party in communication at this level. In
company Gamma, which was a smaller company,
a management-level peer-to-peer link was estab-
lished between its product development manager
and the subcontractor’s corresponding manager.
This link functioned particularly well in the form of
weekly phone meetings between these persons.

4.3.3. Project-level Links
At the project level, the project managers in our case
projects communicated on a daily basis. This peer-
to-peer link seemed to function well in all projects
studied.

4.3.4. Team-level Links
Development teams often have experts in collabo-
rating companies who need to communicate with
each other, e.g. persons responsible for related
modules and software architects. Also develop-
ers, testers etc. may need to communicate across
company borders. Encouragement of peer-to-peer
communication between companies at this devel-
oper level brought contradictory opinions from

our interviewees. Some commented that commu-
nication through these link persons was beneficial,
but on the other hand, others were afraid that too
much direct, uncontrolled communication between
developers might lead to situations that are difficult
to manage. The reason behind this fear was that
because of direct contacts, project managers may
not know what is going on and developers may
agree directly on matters that affect costs, schedule
or other parts of the system. Especially, when the
subcontractors’ personnel discuss with each other,
it might cause some concern, as an interviewee from
project Alpha 1 noted:

‘Some of our subcontractors discuss at the
developer level, but we try to minimize
that by choosing the areas we subcontract
suitably. (. . .) It is not to our benefit that,
e.g., subcontractors create so good discussion
links [to our other subcontractors] that they
could centrally decide their price and start to
pressure us.’

However, directing all intercompany communi-
cation through project managers may burden them
or other key persons too much and it may restrict
the information flow, as had happened in project
Beta. Especially in smaller projects, developers
from the subcontractor and the customer work-
ing on related tasks needed to communicate with
each other. For example, in project Zeta, managers
encouraged direct communication by introducing
the developers to each other. These kinds of situa-
tions emerge when developers from collaborating
companies are working with modules that have
common interfaces. Another example is a situation
in which a developer in the customer company
is testing a module that a developer from the
subcontractor has developed, like in project Zeta.
These specific developers from the customer and
the subcontractor, working on common interfaces
or problems could be introduced and encouraged to
communicate directly. The project manager of the
subcontractor in project Alpha 1 stated:

‘As a project manager my task is to create
the right contacts between the developers,
so that I don’t slow down the work and
communication. Instead, as soon as possible,
the right persons will discuss directly, and I
just follow that it is working and that there

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

190

Research Section Collaboration in Inter-organizational Software Development

aren’t problems. When I meet the customer’s
project manager and he introduces me to
somebody [from the customer company], then
I know that he works with that module and
we have one person working with another
[related] module, and then we arrange a
meeting between these persons either through
email, phone or face-to-face. Then they can
solve the problem together.’

We noted that Internet chat seemed to be
an efficient media for communication between
developers. In two case projects, Epsilon and Zeta,
developers, working in different companies and
countries, communicated frequently using chat.
The chat client made it easy for them to see
who was present at another site. They mentioned
several good properties of chat: it is inexpensive
compared to the telephone, it is possible to have chat
discussions open all the time, several developers can
participate in the conversations, counter questions
can be asked right away, foreign language speakers
are easier to understand when the discussion is in
written form, and from a written conversation, it
is also easy to copy important paragraphs and,
e.g. send them by e-mail to others. A system
architect from project Epsilon used chat to discuss
with developers from a foreign subsidiary and
commented on its use:

‘Chat is more practical than phone, especially
with foreign partners. (. . .) It is already dif-
ficult to understand different pronunciations,
not to mention the difficulties for me to even
express what I want to say. (. . .) Writing emails
takes a lot of time when you have to structure
it and give background information. When
I write some technical explanation, it takes
time – it can take up to two hours to write one
email when I search information and go back
to code. (. . .) But, chat is more like talking. You
do not have to structure things or think too
carefully. Comments are very short. You can
write about what you have on your mind. And
the discussion just flows in the right direction.’

4.4. Problem-solving Practices

In all studied projects, problems and questions
requiring timely solutions constantly appeared.

Issues like this are particularly common in dis-
tributed software development projects (Carmel
and Agarwal 2001). Few of the projects had planned
for this kind of communication beforehand. In sev-
eral of the studied projects, the lack of agreed-upon
channels for problem-solving communication led to
delays in solving the problem, which in turn caused
delays at the project level. We found that the lack
of suitable and defined communication channels
caused project members to spend a lot of time just
trying to find somebody to help them, wasting both
time and energy. In addition, the barrier for the
subcontractor’s personnel to contact the customer
was often high, despite the fact that the problems
were both severe and in need of quick resolution.
Problems that were brought up late were often
both difficult and expensive to solve. Some of the
case projects had taken some very useful problem-
solving practices into use already at the beginning
of the project, whereas other projects created new
practices using trial and error during the project.

Next, we will describe three useful practices that
we identified related to problem solving: solution
provider, bulletin boards and e-mail lists, and problem
e-mail box. Direct contact between developers, as
discussed in Section 4.3.4 was also beneficial for
problem solving.

4.4.1. Solution Provider
In two of our case projects, Beta and Epsilon,
no formal problem-solving role existed at the
beginning of the project, but after some time,
developers learned, by asking around, that a specific
individual, in both cases, a system architect, knew
the answers to many questions. Subsequently, most
of this person’s time was spent on answering
questions, using mainly e-mail, phone, or chat. A
system architect from project Beta commented on
his new ‘role’:

‘It just gradually happened that I became ‘‘a
link person’’. I have a lot of experience since
I have been [here] so long. I have also been
interested in the big picture of the project. But
it is sometimes very hard. Because there are
so many tasks, sometimes tens of tasks at the
same time. And then I have my own work,
the code I should develop. (. . .) My phone
rings 40–50 times a day, but at the same
time I should code thousands of lines. It is
difficult to run from task to task, when you

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

191

Research Section M. Paasivaara and C. Lassenius

cannot concentrate. (. . .) Approximately half
of my time goes to this kind of communication
through phone or email, I’m like a help desk.’

In a way, this ‘solution provider’ liked his new
role since he was a social person. However, he
would have liked management to recognize his
new position and understand that because of this
new role, he did not have as much time to do normal
development work as he used to.

These ‘solution providers’ either answered ques-
tions by themselves or found the answers from
elsewhere in their organizations. Both projects that
had ‘solution providers’ were very satisfied since it
was easier to ask questions and the answers came
quite quickly. However, it took quite a lot of these
individuals’ time to answer the questions. They
reported that more than half of their working time
was spent on answering questions and this was not
taken into account when delegating other tasks to
them. Therefore, in these two projects, this practice
was successful, partly because these two individu-
als were very responsible and were eager to help as
much as they could to make the project succeed.

4.4.2. Bulletin Boards and E-mail Lists
Another practice that was useful for problem
solving was the use of discussion lists or bulletin
boards. They were useful, e.g. for finding experts
on some specific technology in a large project to
answer a specific question. In two larger projects,
Alpha 1 and Epsilon, bulletin boards focusing on
specific technological topics were successfully used.
In a smaller project, Gamma, project-wide mailing
lists were used for the same purpose. According
to our interviewees, in an e-mail or a bulletin
board, questions asked need to be explained very
carefully, otherwise, the readers do not understand
the questions and they have to send several mails
or messages asking clarifying questions before
the question is understood correctly and can be
answered.

4.4.3. Problem E-mailbox
In project Beta, an e-mailbox for problems was
used in the early phases of the project. This project
was distributed between 6 sites and had over 50
team members, most of whom did not know each
other beforehand. In the beginning, it was extremely
difficult to find the correct persons to ask questions.
Therefore, this project decided to take a ‘problem

box’ into use. The problem box was implemented as
an e-mail address to which questions were sent. A
person responsible for the problem box forwarded
the questions to the persons she believed had the
needed knowledge to answer. During the early
phases of the project, this practice functioned very
well. In the later phases of the project, the problem
box was removed, partly because direct contacts
were established and partly because it was regarded
as an attempt by the customer’s technical project
manager to control communication a bit too much.

4.5. Informing and Monitoring Practices

Customers normally remembered to monitor how
the subcontractor’s work was progressing, even
though it was difficult in the projects in which only
time sheets were used. In interviews, we noticed
that not only did project managers need progress
information but the subcontractors’ personnel and
other distant sites also hoped to get information
about the status of the project. The interviews
showed that in addition to helping the personnel
at distant sites to accomplish their tasks, this
information also helped to motivate them, e.g. to
adhere to the schedule since they understood why
it was important. Subcontractors commented that
in parallel development situations in which the
work of various sites and partners was strongly
interconnected, it was important to have status
information flow not only from the subcontractor
to the customer but also in the other direction.

Customers often forgot to inform the subcontrac-
tor about decisions and changes made or about
new documents produced. The subcontractor in
project Alpha 1 even commented that the cus-
tomer gave them almost no documents unless
they asked for it. The subcontractor further com-
mented that it is very difficult to ask for documents
that you don’t know exist! In project Alpha 1,
the lack of information concerned even the divi-
sion of different tasks and modules between part-
ners. The subcontractor in this project did not get
enough information on how the responsibilities
for creating certain modules were divided. The
personnel at the subcontractor had some knowl-
edge about the modules assigned to them and
expected that probably someone else was doing
the rest. This knowledge was partly wrong since
there were modules that were needed between
the parts the customer was developing and the

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

192

Research Section Collaboration in Inter-organizational Software Development

parts the subcontractor was developing, but nobody
was taking care of them. The subcontractor’s
project manager was quite nervous when he found
this out:

‘We expected that they [the missing modules]
would come from somewhere else, until we
found the truth. (. . .) You never know whether
some matter is forgotten or whether it is just
that they [customer] are not telling us about
it. You just don’t want to ask about things
for many years, when all you get is counter
questions, such as ‘How are YOU meeting the
deadlines?’ – meaning that it is none of our
business. And then we get feedback that we
should carry the responsibility for the whole
project. (. . .) It is hard to be a subcontractor!’

Besides progress information, subcontractors also
expected feedback on their work, e.g. about quality.
They hoped to get comments also when they were
doing something right, not only when things went
wrong. This was also a motivating factor. We found
that subcontractors rarely were given information
on the current state of the project, and in some cases,
they did not even receive feedback on their work.
In many projects we studied, this communication
need was totally disregarded.

We identified three useful practices for informing
and monitoring: weekly meetings, progress reports,
and traveling steering group.

4.5.1. Weekly Meetings
Physical meetings are difficult to arrange in dis-
tributed projects because of geographical distances.
Time differences complicate matters further. In
large projects, there are so many participants that it
is difficult for all of them to be at the meeting at the
same time and on the other hand, not all of them
could be interested in every detail of the project,
as some of our interviewees commented. On the
other hand, all team members, both from the cus-
tomer and the subcontractor, need information on
project progress, what tasks to perform next, and on
changes. They also need feedback on their work. In
a small project, all distributed sites could have one
common teleconference. In a larger project, smaller
meetings can take place at every site or team, and
team leaders or project managers can have common
video-/teleconferences afterward, which was one
of the practices used. In three of the case projects,

Alpha 1, Beta, and Epsilon, different kinds of weekly
meetings were used. For example, project Alpha 1
used site-specific meetings followed by teleconfer-
ences between team leaders and project managers.
All projects using weekly meetings considered them
to be useful. They all preferred teleconferences
over videoconference since they felt that the pic-
ture in videoconferences was of low quality and,
therefore, did not bring added value. Incompatible
videoconferencing equipment decreased the value
further.

4.5.2. Progress Reports
The customer needs to monitor the progress in
the subcontractor’s teams, but doing this is often
very difficult since, e.g. the number of code lines
or hours used in coding does not give very useful
information. Lack of sufficient progress monitor-
ing can cause negative surprises. Two case projects,
Alpha 1 and Zeta, used quite detailed progress
reports. In project Zeta, they were delivered every
week, and in Alpha 1, they were delivered every
month since in this project, weekly meetings partly
compensated for reports. The subcontractor wrote
weekly or monthly progress reports that included
information, e.g. about tasks accomplished, open
questions, problems, and future estimations about
task- and problem-solving schedules. The customer
gave feedback on every issue in the report. When
the customer knew the situation in the subcon-
tractor’s teams, it could react quickly when the
project was not going in the right direction and
could also help in resolving problematic situations.
Feedback received from the customer also gave the
subcontractor confirmation that the correct tasks
were being performed. Getting feedback also moti-
vated team members.

4.5.3. Traveling Steering Group
Project Alpha 1 had a ‘traveling steering group’ that
consisted of members from all sites and partners.
Since all sites were involved, most important deci-
sions could be made in the meetings and none of the
partners were forgotten. Because the subcontractors
could participate, their point of view and worries
were also accounted for. In addition to decision-
making, these meetings gave participants a good
overview of the whole project, which they could
convey to their own teams. The fact that the meet-
ing location changed forced everyone in the steering
group to visit all sites at least once and nobody had

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

193

Research Section M. Paasivaara and C. Lassenius

to travel every time. This gave the team members at
every site a possibility to meet representatives from
all other sites. The frequency of meetings needed
seems to depend on several factors. It seems that
the level of uncertainty and the degree of require-
ment stability influence the meeting frequency the
most.

4.6. Relationship building practices

When starting a distributed interorganizational
project, it is quite common for many of the persons
participating to not know each other beforehand,
as was also the case in the projects we studied.
In distributed software development projects, rela-
tionship building is especially important for collab-
oration to succeed. Relationship building actually
takes place during all collaboration and communi-
cation between parties. However, in a distributed
project, communication is more difficult than in a
collocated project. It is normally easier to communi-
cate with a person that you have met at least once.
Therefore, when starting a distributed project with
several partners and sites that have no common
history, having all involved personnel meet face-to-
face would be an optimal solution. Early face-to-face
meetings also facilitate later electronic communica-
tion. For this kind of situations, literature suggests
common kickoff meetings for the whole project
(Carmel and Agarwal 2001). However, in prac-
tice, this is often not cost efficient. Actually, none
of our case projects arranged a common kickoff
meeting that would have included personnel from
the subcontractors. This was mainly due to cost
reasons since the projects were large and the dis-
tances were long. A couple of projects arranged
kickoff meetings for their internal staff but did not
invite subcontractors or people from all distributed
sites.

Next, we describe two simple practices that we
noticed were good for relationship building in
cases where meeting everybody is not seen as
a viable alternative: give faces and organization
chart. Besides these two, a practice presented
earlier, frequent deliveries, was also beneficial
when building trust and a good relationship
between distant colleagues since being able to
produce functioning code in the early phase of
the development builds trust between parties on
the basis of their know-how.

4.6.1. Give Faces
We noticed in our study that distant sites and
subcontractors were easily forgotten, and, e.g. their
questions were not regarded as important and
urgent to answer as the questions from colleagues
nearby. It seems to be much easier to disregard
questions or deliveries coming from unknown
persons. A common kickoff meeting is certainly
beneficial, if arranged. Instead of a kickoff, our case
companies, using trial and error, arranged other
possibilities to meet, often in response to problems.

Arranging for everybody to meet at least some-
body from all other sites that they would be
collaborating with seemed to be a well-working
practice in our case projects. This gave the distant
sites and companies ‘faces’, i.e. they were no longer
unknown and easily disregarded partners when
team members knew at least someone from each
site. ‘Giving faces’ seemed to be the major benefit
of various face-to-face arrangements that our case
projects did.

These face-to-face meetings took different forms.
Some examples were as follows: a system architect
or some other key person traveled to the subcon-
tractor’s site to train them. The subcontractor’s key
persons were invited to the customer’s site for train-
ing or for a short collocated working period. A
practice presented earlier, traveling steering group,
was also beneficial in giving faces to different sites,
by arranging meetings at all sites.

In project Epsilon, testers were reluctant to test
the code delivered by a subcontractor from a distant
country. They preferred to test their mates’ work
first. The situation improved significantly after
mutual visits. The project manager from Epsilon
commented:

‘We had difficulties to get our acceptance
testing people to understand that we are in
the same boat [with our subcontractors] and
it is no use being enemies. (. . .) [The reason]
might be that when these developers get a
delivery and it is not functioning perfectly
well, and they know that it is not made by their
friends here, but by someone living in Turkey
who they think is trying to do it as cheap as
possible. (. . .) And that was the reason why it
[testing] was delayed here, because it was not
motivating. (. . .) [In this project] we learned a
lot (. . .) about communication and how much

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

194

Research Section Collaboration in Inter-organizational Software Development

it actually helps to see those [subcontractor’s]
faces. It was difficult to believe it beforehand!’

In project Beta, a common cruising trip was orga-
nized in the middle of the project when the project
was facing difficulties. Before this trip, many of the
workers from different sites had never met each
other. After the trip, communication and collabora-
tion improved according to the interviewees. The
subcontractor in project Beta commented on this
trip:

‘The trip was useful, because there we saw
persons we had never met, but with whom
we had been exchanging email every day. We
also met the end-customer for this project for
the first time.’

4.6.2. Organization Chart
An organization chart covering the whole interor-
ganizational project was missing in most of our case
projects. This was quite surprising since it is quite
an easy thing to do, but it can help a lot. Such a chart
makes it easier to find the correct persons to contact
when questions emerge. In project Gamma, a simple
web page with information about project person-
nel, including names, roles, photos, and contact
information was regarded as very useful.

In project Alpha 1, the customer did not want
to give the subcontractor its internal organization
chart, which caused difficulties to the subcontractor.
The subcontractor’s project manager tried to solve
the problem by creating his own organization chart
of the customer by adding new persons and their
contact information when he met them.

4.7. Summary of the Results

Table 3 summarizes the practices found in the case
projects and presented in this article. In the table, we
also summarize the benefits of using each of these
practices and suggest the project phase in which
each practice could be most useful.

5. DISCUSSION AND CONCLUSIONS

In this article, we presented collaboration practices
and processes collected from globally distributed
interorganizational software development projects.
The most surprising result was the low state of

practice regarding collaboration practices used in
the case companies, all of them successful in
their field. Actually, none of the case companies
had clear practices that were commonly used in
all their interorganizational projects. The practices
we encountered were mainly project specific and
created by project-level trial and error. For example,
the case companies mainly did not agree upon
communication practices in the beginning of their
projects, a fact that later caused problems. The
practices found and presented in this paper may
seem very basic. However, we believe that in real-
life projects, a lot of problems could be avoided by
their systematic use.

5.1. Impact on Process

We believe that all the practices presented in this
article have an impact on the software development
process used. First of all, choosing a suitable process
model for a project distributed between a customer
and one or more software subcontractors is not triv-
ial since all parties may have their own processes.
We noticed that the customer organization often
tended to enforce its process on subcontractors.
However, this is not necessarily easy to implement.
Starting to use a new process requires a lot of work
and training, which of course requires additional
time, and often is a constraining factor in these
kinds of projects. Moreover, many subcontractors
already have defined working software processes.
When working with several different customers,
these subcontractors might end up having to use
different processes depending on the customer they
are working with. Some of the customers in our
case projects had noticed that when a subcontractor
has a functioning process of its own, there is no
need to change it. Instead, the customer and the
subcontractor should sit down and compare their
process descriptions and discuss the terms used
and tasks done inside the process phases. This way,
they can deepen their understanding of each other’s
processes and decide which main phases and mile-
stones they should have in common and to what
degree they can use their own processes. In gen-
eral, when the main steps were synchronized, each
company’s internal tasks and processes could differ.

The second practice, frequent deliveries, also has
a direct impact on the process used. The use of
frequent deliveries seemed to be very suitable for
distributed use since it provided transparency on

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

195

Research Section M. Paasivaara and C. Lassenius

Table 3. Summary of the collaboration practices found

Collaboration practice Description of the practice
(and the number of projects

in which identified)

Benefits of the practice Process phase in
which useful

Synchronization of
main milestones

– If collaborating companies have
good processes of their own, they
do not have to change to a single
common process but can instead
focus on synchronizing the main
milestones (4/8)

– Collaborating companies can
use their own processes

– Faster project start
– Easier when collaborating

with several companies

– Decided in the beginning of
the collaboration

– Benefits the whole process

Frequent deliveries – Frequent deliveries of code, and
integration and testing was very
suitable for distributed use (4/8)

– Transparency of the progress
– Early checks ensure that all

parties have understood tasks
correctly

– Especially useful during the
software development phase

Establishment of
peer-to-peer links

– Communication link persons
between companies

– Established at all organizational
levels: subcontracting managers,
project managers, and
developers (functioning links at
all levels: 4/8, functioning links
at one or more levels: 8/8)

– Communication easier later
on in the project

– Communication increases
between companies at all
organizational levels

– Designed in the beginning of
the collaboration

– Benefits all project phases

Problem-solving
practices

– A number of different practices:
• solution provider (2/8)
• bulletin boards/mailing lists

(3/8)
• problem e-mailbox (1/8)

– Encourages to ask questions
– Problems get solved right

away, not after the problems
get really bad

– Designed in the beginning of
the collaboration

– Useful especially in the
implementation phase

Informing and
monitoring
practices

– A number of different practices:
• weekly meetings (3/8)
• progress reports (2/8)
• traveling steering group (1/8)

– Creates transparency of the
progress in the projects

– Prevents mistakes
– Motivates all participants

– Designed in the beginning of
the collaboration

– Benefits all project phases,
especially implementation,
integration, and testing

Relationship
building practices

– All face-to-face meetings help in
building a good cooperative
relationship

– Also, developers need some
face-to-face contacts to distant
sites

– Practices discussed:
• give faces (5/8)
• organization chart (3/8)

– Collaboration and initiating a
contact is easier when you
personally know at least
someone from other
collaborating sites

– Takes time especially in the
beginning of the collaboration

– Benefits the collaboration
thereafter

work done at distributed sites and ensured that
all sites were doing compatible work. Frequent
deliveries can be used even when the software
development process model used is the normal
waterfall model since, even then, work in all phases
can be done in small steps and delivered frequently,
as was done in one of our case projects. An
incremental process model with several iterations
is of course an even more natural choice and seems
to fit in distributed environments extremely well.

The third practice, establishment of peer-to-peer
links has an effect on the organizational structure
and roles in collaborating companies. By creating

roles and by linking collaborating roles across
companies, the interorganizational communication
at different organizational levels especially will
improve.

Finally, the last three groups of practices con-
centrated on communication: problem solving,
informing and monitoring and relationship build-
ing practices. The most surprising finding was the
huge need for problem-solving communication in
these projects. This communication need was rarely
thought about when planning the projects. Instead,
solutions to arrange for this kind of communication
emerged during the project. It seems that managers

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

196

Research Section Collaboration in Inter-organizational Software Development

should take this communication type into account
and plan practices to arrange for efficient problem-
solving communication already in the planning
phase of a distributed project. Of course, part of
this communication can be avoided, e.g. by care-
ful planning, but it cannot be totally removed. The
communication practices presented are just some
examples of successful practices that companies
can use in distributed interorganizational projects.
Communication is an important and challenging
aspect of distributed environment. Therefore, when
planning processes for distributed projects, com-
munication practices should be taken into account.

5.2. Managerial Implications

The ideal point in time for deciding which practices
are needed and designing their use is in the
beginning of the project, before the real work
starts. Of course, practices can, and should, be
revised, added, and also left out during the project,
according to the situation. In this section, we discuss
when, i.e. in what kind of projects, each of the
practices identified in our study could be used.

Synchronization of the main milestones is a prac-
tice that companies that will be collaborating closely
should adopt early, when designing their collabora-
tion process. How much synchronization is needed
depends, e.g. on how closely the companies will
be collaborating and by how much their current
processes differ.

‘Frequent deliveries’ seems to be a practice that
suits distributed projects very well, and gives sev-
eral benefits. Therefore, we think that it could well
be used beneficially in most interorganizationally
distributed software development projects. In par-
ticular, projects that suffer from uncertainties, e.g.
in the form of changing requirements, will benefit
from it. The length of the iteration cycles should be
chosen carefully according to the project in ques-
tion. The successful range for iteration length in our
case projects was between one week and one month.

Creating peer-to-peer links at three levels between
collaborating organizations is a practice that
enhances communication. Besides naming the links,
it is also important to encourage them to commu-
nicate. This practice is needed especially when the
collaborating organizations are large and links do
not form naturally.

We presented several problem-solving practices.
It is important to remember that the need for

problem solving exists in all projects and to
design at least one practice when starting the
project. Such practices are needed especially when
partners do not know each other well beforehand,
when the project is large, and/or when there is
lots of uncertainty in the project. In particular,
when responsiveness is important, we think that
it is a good idea for the customer organization
to define problem-solving roles, e.g. to name a
person or two, whose primary responsibility is
to make sure that both internal and external
questions are answered quickly enough. When the
subcontractor’s developers know that there is an
individual whose job it is to answer their questions
and they know who he or she is, it is much easier
to initiate contact. The use of ‘solution providers’
ensures that questions are answered quickly and
that the work progresses in the right direction.
Since answering questions and finding the solutions
takes time, the solution provider should not have
too many other duties.

Several informing practices were also presented.
Even though some projects used several practices
at the same time, we believe that in most projects
any one practice would bring much benefit. Weekly
meetings, face-to-face or through conference calls,
is probably the best form when a project faces a lot
of uncertainties. More stable projects could either
have meetings more seldom or make do with only
progress reports.

Relationship building practices are most impor-
tant for projects with new partners and/or requiring
quite constant collaboration. Making an organiza-
tion chart of all persons contributing to a distributed
project, and putting it, e.g. on the project extranet,
where everybody in the project can easily find it
could be a good idea in all projects. This chart
could include names, roles, contact information,
and, preferably, also photos and some personal
information, e.g. about hobbies. ‘Giving faces’ is
important, especially between persons and sites
that are starting their collaboration.

5.3. Limitations

This paper presented a collection of successful
processes and practices that were used in the
eight case projects studied. The number of case
projects was quite small and the practices presented
were used only in part of the projects. Therefore,
this study can only give an idea of what kind

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

197

Research Section M. Paasivaara and C. Lassenius

of practices can be useful in globally distributed
software development projects. Studying another
set of projects would probably have resulted in a
bit different collection. Therefore, we cannot say
that these are the ‘best practices’, but only that they
were useful according to the subjective opinion of
the people we interviewed in those particular cases.
When studying more projects, additional useful
practices will certainly be identified.

The sample comprises only companies based in
Finland. This can give some bias, e.g. due to cultural
factors. However, all these Finnish companies also
had offices in other countries and all studied
projects, except one, were distributed in at least two
countries. Therefore, international aspects were at
least to some degree included in the results, though
we did not explicitly focus on them.

We reported practices that were successful in the
projects in which they were used. Of course, the
success and usefulness of each practice depends
on the specific project type in which it is used.
For this study, we chose projects that demanded
constant collaboration between the customer and
the subcontractor and also between geographically
dispersed sites since all parties were developing the
same new software at the same time and everything
could not be specified precisely beforehand. For
other kinds of projects, other practices might prove
to be more useful. Moreover, the projects studied
were all interorganizational. Therefore, the practices
identified are particularly suitable for these kinds
of projects. However, we believe that most of the
practices, such as frequent deliveries as well as all
communication-related practices, could be used in
distributed intraorganizational projects as well.

All the practices presented were subjectively
determined as successful by the interviewees. We
were not able to use any other measure of success,
e.g. measuring the performance of a project would
not have provided much added value since many
other factors affect the performance, and all projects
were one of a kind. Therefore, the best and easiest
success measure seemed to be to rely on the
subjective expert opinions of the interviewees.

5.4. Future Research

In the future, we plan to study more case projects
and collect successful practices, concentrating espe-
cially on communication practices and the software
development process used. First, our plan is to add

some more similar case studies to find out more
practices that can be useful but were not used in
this very limited sample. Second, we plan to collect
more detailed data about some of the most interest-
ing and probably also important practices and their
use in different situations, e.g. about frequent deliv-
eries and problem-solving communication. Third,
on the basis of the additional case studies, the clas-
sification of practices, which was presented in this
paper, can be improved and then used as a base
for quantitative studies. These quantitative studies
could bring more knowledge, e.g. about the fre-
quency of use of each of the practices and their
effect on project success, measured, e.g. by software
quality or by decrease in costs or by time to market.

The future research should also study what kind
of projects and which project phases each of the
practices should be chosen for. Moreover, we hope
that this piece of research can help in developing
communication tools that can better support the
collaboration practices identified.

REFERENCES

Allen T. 1977. Managing the Flow of Technology: Technology
Transfer and the Dissemination of Technological Information
within the R&D Organization. MIT Press: placeCambridge,
MA.

Ambler S. 1998. Process Patterns, Building Large-Scale
Systems Using Object Technology. Cambridge University
Press: Cambridge, UK.

Battin R, Crocker R, Kreidler J, Subramanian K. 2001.
Leveraging resources in global software development.
IEEE Software 18(2): 70–77.

Carmel E. 1999. Global Software Teams – Collaborating
Across Borders and Time Zones. Prentice Hall: Upper Saddle
River, NJ.

Carmel E, Agarwal R. 2001. Tactical approaches for
alleviating distance in global software development. IEEE
Software 18(2): 22–29.

Coplien J. 1994. A development process generative
pattern language. Proceedings of PloP/94, Monticello,
August 1994, 1–34.

Coplien J. 1995. A generative development-process
pattern language. In Pattern Languages of Program Design,
Coplien J, Schmidt D (eds.). Addison-Wesley: New York,
pp 183–238.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

198

Research Section Collaboration in Inter-organizational Software Development

Dispersed Agile Software Development and Dispersed
eXtreme Programming web site. Cited 17.4.2003.
http://www.fastnloose.com/cgi-bin/wiki.pl/dad.

Ebert C, De Neve P. 2001. Surviving global software
development. IEEE Software 18(2): 62–69.

Fowler M. 2004. Using Agile Software Process with Offshore
Development. Cited 7.1.2004. http://martinfowler.com/
articles/agileOffshore.html.

Gloor P, Laubacher R, Dynes S, Zhao Y. 2003.
Visualization of communication patterns in collaborative
innovation networks: analysis of some W3C working
groups. Proceedings of ACM CKIM International
Conference on Information and Knowledge Management,
New Orleans, LA, November 3–8 2003, 56–60.

Heeks R, Krisna S, Nicholsen B, Sahay S. 2001. Synching
or sinking: global software outsourcing relationships.
IEEE Software 18(2): 54–60.

Herbsleb J, Grinter R. 1999. Architectures, coordination,
and distance: Conway’s law and beyond. IEEE Software
16(5): 63–70.

Herbsleb J, Moitra D. 2001. Global software development.
IEEE Software 18(2): 16–20.

IEEE. 1998. IEEE Recommended Practice for Software
Acquisition. IEEE Std-1062. Institute of Electrical and
Electronics Engineers, Inc.

Larman C, Basili V. 2003. Iterative and incremental
development: a brief history. Computer 36(6): 47–56.

Mockus A, Herbsleb J. 2001. Challenges of global software
development. Proceedings of the Seventh International
Software Metrics Symposium, London,UK, April 4–6
2001, 182–184.

Patton MQ. 1990. Qualitative Research and Evaluation
Methods. Sage Publications: Newbury Park, CA.

Simons M. 2002. Internationally agile. InformIT, March
15.

Yin RK. 1994. Case Study Research, Designs and Methods.
Sage Publications: Thousand Oaks, CA.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 183–199

199

