
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2003; 8: 267–281 (DOI: 10.1002/spip.188)

Global Software
Development in Practice
Lessons Learned

Research Section
Rafael Prikladnicki,1*,† Jorge Luis Nicolas Audy1 and
Roberto Evaristo2

1 School of Computer Science, Pontifı́cia Universidade Católica do Rio
Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS
90619-900, Brazil
2 College of Business Administration, University of Illinois at Chicago,
601 S. Morgan Street, MC 294, Chicago, IL 60607, USA

More than a decade ago, organizations seeking lower costs and access to skilled resources
began to experiment with remotely located software development facilities. This change is
having a profound impact not only on marketing and distribution but also on the way products
are conceived, designed, constructed, tested, and delivered to customers. The number of
organizations distributing their software development processes worldwide keeps increasing.
As a result, software development is becoming a multi-site, multicultural and globally
distributed undertaking. More recently, attention has turned toward trying to understand
the factors that enable multinationals and virtual corporations to operate successfully across
geographic and cultural boundaries. On the basis of these factors, we present the lessons learned
from case studies in two software development units from multinational organizations located
in Brazil. Copyright  2004 John Wiley & Sons, Ltd.

KEY WORDS: software engineering; software development process; distributed software development; global software development;
offshore outsourcing; offshore insourcing

1. INTRODUCTION

Software has become a vital component of almost
every business. Success increasingly depends on
using software as a competitive advantage (Carmel
1999). More than a decade ago, many organizations
seeking lower costs and access to skilled resources
began to experiment with remotely located soft-
ware development facilities. Economic forces are

∗ Correspondence to: Rafael Prikladnicki, School of Computer
Science, Pontifı́cia Universidade Católica do Rio Grande do Sul,
PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS 90619-900,
Brazil
†E-mail: rafael@inf.pucrs.br

Copyright  2004 John Wiley & Sons, Ltd.

relentlessly turning national markets into global
markets and spawning new forms of competition
and cooperation that reach across national bound-
aries. Several factors have contributed to build this
scenario (Herbsleb and Moitra 2001) such as:

– the business market proximity advantages,
including knowledge of customers and local
conditions;

– pressure to improve time-to-market by using
time-zone differences in ‘round-the-clock’ deve-
lopment;

– the need to have a global resource pool to suc-
cessfully and cost-competitively have resources,
wherever located.



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

This change is having a profound impact not
only on marketing and distribution but also on
the way products are conceived, designed, con-
structed, tested, and delivered to customers. The
number of organizations distributing their software
development processes worldwide and aiming at
heightened profit and productivity as well as cost
reduction and quality improvements keeps increas-
ing. As a result, software development is becom-
ing a multi-site, multicultural, globally distributed
undertaking. Engineers, managers, and executives
face formidable challenges on many levels, from the
technical to the social and cultural.

Considering these factors and the global sce-
nario, it is reasonable to believe that there will be
continuing pressure toward the adoption of global-
ized approaches to software development (Carmel
1999). Although many organizations have faced
difficulties in their experience with global software
development (GSD), others experienced large ben-
efits with geographic dispersion.

The objective of this study is to understand the
problems organizations have faced when going
global in software development, and is a result
of a two-year-long study in multinational organi-
zations in Brazil. Two case studies were conducted
identifying some of the difficulties, solutions, and
critical success factors of distributed software devel-
opment. Our contributions are the lessons learned
from the case studies as a first step to propose
a reference model aiming to minimize problems
in GSD projects. Although the main title suggests
global development, the topics in this article also
apply to most distributed software development
environments, even those across towns.

This article has the following structure: Section 2
presents the theoretical base; Section 3 describes the
research method; Section 4 describes the case study;
Section 5 discusses the results found in the case
study and presents the lessons learned; Section 6
presents the final remarks, future studies and the
research limitations.

2. THEORETICAL BASE

2.1. Global Software Development (GSD)

The software process is defined by a set of activities,
methods, practices and technologies that people
and companies use to develop and to keep related
software and products (Pressman 2001). The interest

in the software process is based on the following
premises:

– The software quality is strongly dependent on
the quality of the process used in its preparation;

– The software process can be defined, managed,
measured, and improved.

It is not a simple task to develop software, even
when using a well-defined development process.
As part of the globalization efforts currently pre-
vailing in society, software project teams have
also become geographically distributed on a world-
wide scale. This characterizes GSD. Any software
professional knows that even ‘normal’ – let alone
‘global’ – software development is fraught with dif-
ficulties (Carmel 1999). On the basis of widely
available and varying estimates, perhaps half of
all system projects are failures.

The list of features that distinguish GSD from
normal (centralized) is short and precise: distance
(the distance of developers from each other and
from their customers or end users); time-zone
differences (time zone is to a large extent a
confounding factor with distance); and national
culture (including language, national traditions,
customs, and norms of behavior) (Carmel 1999).
Distance, time zone and national culture have effects
on many levels:

– Strategic issues: The decision whether a par-
ticular project should be developed by globally
dispersed teams – and where it can be better
developed, as well as how to divide it across
sites – is difficult. Some analysis considering the
risk and benefit of project dispersion is nec-
essary. Solutions are constrained by resources
available at the sites, their levels of expertise
in various technologies, infrastructure, etc. A
number of models are possible and appropriate
under different circumstances (Herbsleb 2001).

– Cultural issues: GSD require close cooper-
ation of individuals with different cultural
backgrounds. Cultures differ on many critical
dimensions, such as national, ethnic, organiza-
tional, professional, technical, and team culture
(Carmel 1999). While many people find such dif-
ferences enriching, they can also lead to serious
and chronic misunderstanding. For instance,
e-mail, from someone in a culture where com-
munication tends to be direct might seem abrupt
or even rude to someone from a different back-
ground. Culture differences often exacerbate

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

268



Research Section Global Software Development in Practice

communication problems (Marquardt and Hor-
vath 2001).

– Knowledge management: Without effective
information and knowledge-sharing mecha-
nisms, it is difficult to exploit the benefits of
GSD. Poor documentation can also cause inef-
fective collaborative development. The resis-
tance to documentation among developers is
well known, but in GSD environments the value
of documentation is very important to clarify
unspoken assumptions and ambiguity, and to
support maintainability (Karolak 1998).

– Technical issues: When teams are working
across sites, the lack of synchronization can be
particularly critical. There is a need to assure
commonly defined milestones and clear entry
and exit criteria for all tasks. Typically, risk
management does not take into account possi-
ble impacts of the dispersion, diverse cultures,
time and attitudes (Evaristo et al. 2003). The
overheads of control and coordination associ-
ated with any software projects are astounding.
Owing to distance, people cannot coordinate by
peeking around the cubicle wall, nor can man-
agers control by strolling down the hall and
visiting the team’s office. Furthermore, time-
zone differences impede a quick phone call
to resolve an issue or clarify an algorithm on
the fly. Since networks spanning globally dis-
persed locations are often slow and unreliable,
tasks such as configuration management that
involve transmission of critical data must be
meticulously planned and executed. The need
to control product changes and to ensure that
all concerned hear about them is much greater
in GSD (Carmel 1999).

Tools and technological environments have been
developed over the last few years to help in the
control and coordination of the development teams
working in distributed environments. Many of these
tools are focused in supporting procedures of formal
communication such as automated document elab-
oration, processes and other noninteractive com-
munication channels.

The traditional problems and the existing chal-
lenges in GSD can be summarized as follows.
Organizations search for competitive advantages
in terms of cost, quality and flexibility in the area
of software development (Prikladnicki et al. 2002),
looking for productivity increases as well as risk

dilution (McConnel 1996). Many times the search
for these competitive advantages force organiza-
tions to search for global solutions, where two
main options are currently under use: offshore
outsourcing (contracting services with an external
organization located in another country), and off-
shore insourcing (contracting with a wholly owned
subsidiary also located in another country).

2.2. Related Work

Global software development causes a profound
impact on the way the products are conceived,
designed, constructed, tested, and delivered to cus-
tomers (Herbsleb and Moitra 2001). Thus, the struc-
ture needed to support this kind of development is
different from the one used in collocated environ-
ments. The literature mentions reference models for
GSD, with emphasis on the global team. These stud-
ies consider both technical and nontechnical factors.
In the following sections, we present three of these
studies.

2.2.1. Karolak, 1998
Karolak (1998) proposes a model for GSD following
the traditional project life cycle: predevelopment,
requirements, design, code, test, customer delivery,
and maintenance. It begins with the description of
necessary steps to set up the development envi-
ronment and project team, and how to effectively
manage intellectual property, followed by a discus-
sion of the differences between traditional (man-
agement of a solely in-house project) and virtual
management. The model also includes require-
ments traceability, communication infrastructure,
software configuration management, risk manage-
ment, documentation, test, and software quality.

2.2.2. Carmel, 1999
Carmel (1999) proposes a model of software devel-
opment for global teams. He sees software glob-
alization as a centrifugal force that propels things
outwards from the center as it disperses developers
to the far corners of the world. A centrifugal force
must be balanced by centripetal force, a counter-
force that is directed into the center. Centrifugal is
derived from the Latin ‘to flee the center’, and cen-
tripetal, from the Latin ‘to seek the center’. The five
centrifugal forces, or the problems, pull the global

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

269



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

Coordination
breakdown

Loss of
communication

richness

Geographic
dispersion

Global
teams

Loss of
“teamness”

Cultural
differences

Figure 1. Centrifugal forces (Carmel 1999)

software team apart and inhibit its performance
(Figure 1).

The first centrifugal force is geographic disper-
sion. The next three forces build on the problem
of distance: loss of communication richness, coordi-
nation breakdown, and loss of ‘teamness’. The last
force is cultural differences and culture breakdowns
inside global teams. The six centripetal forces, or the
solutions, pull the global software teams together
and make it more effective (Figure 2).

Telecommunication infrastructure is the foun-
dation for all the other strategies. Collaborative
technologies hold it all together. Development
methodology and product architecture needs to be
conceived carefully. Team building is the human
resources effort and finally, managerial techniques
are focused on global managers.

2.2.3. Evaristo, 2003
Evaristo et al. (2003) suggests dimensions to the
concept of ‘distributedness’ through a theory-based
model. These dimensions are related not only to
software development projects but also to more
general distributed projects (Figure 3).

The main objective is to understand what ‘dis-
tributed’ means when discussing the management
of distributed projects and to suggest better ways
to manage distributed projects by finding out what
the critical problems in ‘distributed’ projects are.

Product
architecture

Team
building

Managerial
techniques

Telecomm
infrastructure

Global
teams

Development
methodology

Collaborative
technology

Figure 2. Centripetal forces (Carmel 1999)

Trust

Levels of
dispersion

Synchronicity
Perceived
distance

Policies and
standards

Type of
projects

Type of
stakeholders

Complexity
Systems

methodology Culture

Distributed
projects

Figure 3. Dimensions for distributed projects (Evaristo
2003)

2.2.4. Critical Analysis
The approaches described previously consider
global projects in three different perspectives. While
Karolak (1998) proposes a specific model for global
software projects, guided by traditional project life
cycle, Carmel (1999) considers the global teams,
their characteristics and the main challenges to have
success in this scenario. Finally, Evaristo et al. 2003)
discusses a more general type of project. These
approaches present essential characteristics of GSD.
Many other authors have studied these character-
istics (Damian and Zowgui 2002, Sarma and Hoek
2002, Kiel 2003, Lanubile 2003), expanding the con-
cepts and developing specific studies with each of
the given characteristics. Different models search

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

270



Research Section Global Software Development in Practice

for strategies to manage such projects and we can
see many improvements in tools and methods over
the last decades. In spite of that, organizations are
experiencing many difficulties. The main motiva-
tion of this study was to try and understand these
problems as well as the solutions adopted.

3. RESEARCH METHOD

This research is exploratory in nature and is based
on case studies. Qualitative methods are appropri-
ate to study the system development process in its
real context, with description and the understand-
ing of the state of the art in those situations in which
practice precedes theory (Yin 1994).

The case studies were developed in two software
development units, each one owned by a multi-
national organization with worldwide units. The
organizations were selected considering their size,
the existence of a formal and documented pro-
cess and their recognition as a SW-CMM1 level 2
organization.

The first organization works mainly in consulting,
software development projects and training. It
has nine software development units located in
Brazil. The organization also has offices located
in Brazil and Latin America as well as in the
United States and Europe. Its headquarters are
located in Brazil. The second organization supports
and manufactures computers. It has three software
development units located in two continents that are
responsible for internal client demand worldwide.
Its headquarters are located in the United States.

The data collection was composed of primary
and secondary sources. We conducted 22 individ-
ual interviews (11 in each organization). Secondary
sources were also used: document reviews, strategic
mission analysis, business process, minutes of meet-
ings, and software development process description
beyond access to the homepage of both organiza-
tions. For data analysis, a content analysis was
developed, with stability test (Krippendorff 1980).

We developed two questionnaires (Appendix
1), each considering a specific dimension to be
explored: ‘organizational’, containing information
about the organization as a whole, and ‘project’,
with information on the four projects included

1 SW-CMM is one of the CMM models used for software
engineering organizations (http://www.sei.cmu.edu).

in this study. One development manager was
interviewed in each organization, whereas five
interviews were conducted for each project. Our
convenience sample was not probabilistic although
we looked for a good representation of all groups
involved (Table 1).

The respondents were chosen according to the
unit of analysis and the study purpose. Therefore,
we interviewed project team members, develop-
ment managers, quality assurance team members
(SQA), representatives responsible for software pro-
cess improvement (SEPG2), and individuals repre-
senting the organization strategic level, all of them
located in Brazil.

4. CASE STUDY

The case studies were conducted through 11 inter-
views in each organization. Document review was
performed, and other interviews were conducted
as needed to clarify ambiguities. In the subsequent
sections, we present specific details of each organi-
zation as well as the consolidated results.

4.1. Organization 1

This case study was developed in the organization
headquarters, in a city located in the southeast of
Brazil, where the main software development unit
is also located. It has 80 collaborators working in
software development and all its clients are external
to the organization. Their software development
process is based on Rational Unified Process (RUP)
and Project Management Institute (PMI). The unit

Table 1. Interviewee profile

Role Qty Dimension Org.

Development Manager 2 Organizational,
Project

1, 2

Project Manager 4 Project 1, 2
Technical Leader 4 Project 1, 2
Developer 4 Project 1, 2
SQA Representative 1 Project 1
SEPG Representative 1 Project 2

2 SEPG is a group of specialists who facilitate the definition,
maintenance, and improvement of the software process used by
the organization.

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

271



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

studied is certified as ISO 90013 since 1996 and
recognized as an SW-CMM level 2 organization
since 2002.

When asked about the reasons to invest in
distributed and global software development, the
individual representing the strategic level of this
organization pointed out the following items:

– Cost reduction, quality focus, competitiveness
– The creation of centers of competence, having

each unit with specialization in specific skills
and/or technology

– Global standard of software development
– To have competitive costs, wherever located.

4.1.1. Defining the two projects evaluated
The purpose of Project A was to develop an
application for a large company located in the
United States. The project was managed both by
the company in the United States and by the
branch office located in Brazil. According to the
classification proposed by Prikladnicki, Audy, and
Evaristo (Prikladnicki et al. 2003), the project team,
customers and users were related in the following
way (Figure 4).

The project team was located in two different
offices in Brazil, while customers were located both
in Brazil and in the United States. All the users were
company employees.

Inter-group

Global
distance

Global
distance

Global
distance

Project
team

Intra-group

National
distance

P

Intra-group

C

Customers

Intra-group

U

Users

Legend

Distance

Global
distance

Global
distance

Figure 4. Project A

3 ISO 9001 is the international standard for assessing qual-
ity systems to ensure process consistency and predictability
(http://www.iso.ch).

The objective of Project B was to develop an
application for a bank in São Paulo. The bank
contracted the job to a third-party company, which
in turn subcontracted the software development to
the unit that we studied. Therefore, the bank was
the user, and the third-party company contracted
by the bank was the customer, acting sometimes
as part of the project team. And the unit studied
was the project team. According to the classification
proposed (Prikladnicki et al. 2003), the stakeholders
were related in the following way (Figure 5).

The project team, users and customers were
located in Brazil. But the project team was
distributed in two different cities, while customers
and users were in the same physical location. There-
fore, they were separated from part of the project
team. The other part of the project team was inside
the bank.

4.2. Organization 2

The case study was developed in the software devel-
opment unit in a city located in the south of Brazil.
This center aims to perform worldwide technolog-
ical development for the organization. Almost all
projects are distributed, mainly global, since cus-
tomers and users are located in offices around the
world. It has 180 collaborators working in soft-
ware development and all clients are internal to the
organization. The software development process is
based on the Microsoft Solutions Framework (MSF)
and also on known methodologies, like RUP, and
PMI. The unit was SW-CMM certified on level 2
since 2003.

Inter-group

National
distance

Project
team

Intra-group

National
distance

National
distance

National
distance

P

Intra-group

C

Same physical
localization

Customers

Intra-group

U

Same physical
localization

Users

Legend

Distance

Figure 5. Project B

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

272



Research Section Global Software Development in Practice

The individual representing the strategic level
of this organization presented the following rea-
sons to invest in distributed and global software
development:

– Cost reduction
– Expanding strategy to global markets
– Consolidate the organization trademark outside

the United States.
– Global standard of software development.

4.2.1. Defining the two projects evaluated
Project C involved the development of an appli-
cation to manage talent to be used by the global
human resources department. According to the clas-
sification proposed (Prikladnicki et al. 2003), the
stakeholders were related in the following way
(Figure 6).

The project team was located in Brazil and in the
United States, while customers (Human Resources
Department) were located in the United States
unit, and in the same physical location. The users
were also located in the United States, and in the
same physical location, but noncollocated with the
customers.

The purpose of Project D was to develop an
application for the organization manufacturing
area. According to the classification proposed
(Prikladnicki et al. 2003), the stakeholders were
related in the following way (Figure 7).

The project team was dispersed, but located
in Brazil. Customers and users were located in
the United States, each one in the same physical
location, but dispersed.

Inter-group

National
distance

Global
distance

Global
distance

Project
team

Intra-group

P

Intra-group

C

Same physical
localization

Customers

Intra-group

U

Same physical
localization

Users

Legend

Distance

Global
distance

Figure 6. Project C

Project
team

Intra-group Intra-group

Inter-group

National
distance

National
distance

Global
distance

Global
distance

P C

Same physical
localization

Customers

Intra-group

U

Same physical
localization

Users

Legend

Distance

Figure 7. Project D

4.3. Case Study Results

Both organizations were involved with globally
distributed projects. We found empirically factors
that were theoretically predicted, and consolidated
the combined learning under ‘lessons’ below. We
concluded that difficulties, solutions and critical
success factors involve three dimensions: techni-
cal, nontechnical and hybrid (both technical and
nontechnical). Technical factors are those related to
technical knowledge used in software development,
whereas nontechnical (social, cultural, languages,
behavior, and so on) factors are the ones that include
knowledge of related areas needed for the software
development activity. The hybrid factors include
both technical and nontechnical knowledge. The fol-
lowing sections present the consolidated case study
results (we will use CS1 for the case study in orga-
nization 1 and CS2 for the one in organization 2).

4.3.1. GSD difficulties
According to the interviews, the difficulties with
GSD are related to the lack of standards in the
activities between distributed teams, the difficulty
of sharing information, and the lack of a well-
defined software development process. As corrobo-
rated by Carmel (Carmel 1999) and Evaristo (2003),
difficulties concerning language barriers and com-
munication, cultural differences, context sharing
and trust acquisition between teams (Table 2) were
also found.

Requirements engineering was a consistent dif-
ficulty, involving requirements elicitation, analysis,
specification, validation, and management. Some

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

273



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

Table 2. GSD difficulties found

GSD difficulties Dimension Source

Requirements engineering Technical CS1, CS2
Software development process Technical CS1, CS2
Software configuration Technical CS1
Knowledge management Technical CS1
Communication and language Nontechnical CS1, CS2
Culture and context sharing Nontechnical CS2
Trust Nontechnical CS1, CS2

interviewees mentioned the need to have a very
detailed set of requirements to compensate the dis-
tribution across many sites.

The software development process was consid-
ered a large difficulty since distributed teams were
sometimes not using the same process. Software
configuration is also a critical issue and the source
of many problems (artifacts with different versions
and content in each site).

The case studies identified the lack of a formal
and consistent knowledge management process in
both organizations, emerging as a great obstacle
to sharing information. Trust was also a prob-
lem, mainly the necessity of a distributed trust
acquisition. Finally, communication and language
misunderstandings were motivated by the cultural
differences between the dispersed stakeholders.

4.3.2. Solutions to GSD difficulties
Although there were many possible solutions for
each of the problems identified, the organizations
focused their solutions mainly on the need for
work standardization, investment in planning, pro-
cess engagement, and continuous risk management.
Other solutions mentioned included the integra-
tion and ways to increase trust between global
teams and continuous training, also mentioned by
Evaristo (2003). A formal software development
process and an effective requirements engineer-
ing was mentioned and are also supported by
Carmel (1999), Karolak (1998), and Damian (2002)
(Table 3):

Initial planning was a necessity to select the
projects to be distributed, evaluating its char-
acteristics and the unit availability to work on
them. Moreover, the process engagement plays an
important role to start the interaction between dis-
tributed teams.

Another solution implemented was training
in soft skills (nontechnical factors). Some topics

Table 3. Solutions implemented

Solutions Dimension Source

Formal planning and engagement Hybrid CS1, CS2
Training Hybrid CS1, CS2
Standardization Technical CS1, CS2
Risk management process Technical CS1
Software development process
definition

Technical CS1, CS2

Face-to-face requirements
elicitation

Technical CS1, CS2

Trust acquisition and integration Nontechnical CS1, CS2

explored were leadership, communication, culture,
context sharing, project management, and techni-
cal training. Standardization was adopted when the
distributed teams were not using the same process.
Three strategies were considered: forcing standard-
ization; blending methodological components from
the various sites into one ‘new’ methodology; and
imposing high-level guidelines.

Risk management was growing in both orga-
nizations. Some groups practiced traditional risk
management, not taking into account the possible
impacts of dispersion, the diverse cultures, time
and attitudes, leading to the recommendation of
the need for a distributed risk management pro-
cess.

Both organizations are investing in face-to-face
requirements elicitation, something dependent on
project characteristics and travel limitations. There
was a large effort to create formal approvals
for artifacts in every project. Finally, integration
activities are being conducted aiming at trust
acquisition. Some of these activities are developed
virtually, but most of them occur when teams (or
part of it) meet face-to-face.

4.3.3. GSD critical success factors
The critical success factors (CSF) identified are
directly related to the organizational ‘modus
operandi’. For the same activity, we can have dif-
ferent CSF related to the strategies adopted by each
organization. Consolidating the results, we identi-
fied the following critical success factors (Table 4):

The existence of a formal software development
process was considered one of the most important
success factors for distributed projects. Other CSF
included large investments in training resulting in
improved relationships. The initial planning was
important to evaluate distributed projects correctly

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

274



Research Section Global Software Development in Practice

Table 4. Critical success factors

Critical Success factors Dimension Source

Software Development Process Technical CS1, CS2
Training Hybrid CS1, CS2
Planning and Engagement Hybrid CS1, CS2
Infrastructure Technical CS2
Team integration Nontechnical CS1, CS2
Communication and Feedback Nontechnical CS1, CS2

and to select the proper unit to assign each project.
Process engagement was considered a success factor
because it was the first contact between teams in
distributed projects. Integration activities improved
soft skills of individuals, increasing trust and
minimizing cultural differences. Finally, integration
improved the communication and feedback.

5. LESSONS LEARNED

The study conducted in both organizations shows
many characteristics of GSD (Section 4). In this
section, we will present the lessons learned.

Lesson 1: Project management and, in particular,
risk management need additional effort and steps

According to the Project Management Institute
(2000), project management is the application of
knowledge, abilities and techniques to plan activ-
ities that can reach the needs and expectations of
all stakeholders involved in a project. Bad project
management can mean the loss of the project and
the resources involved. Therefore, risk management
is one of the most important activities in a project,
involving the identification, treatment and elimina-
tion of risk sources before it becomes a concrete
threat for the project. Risks can also be treated in
different levels.

It was found that all activities involving project
management and risk management have extreme
importance for distributed projects and almost all
project managers interviewed said that in dis-
tributed projects these activities take longer than
in traditional collocated projects, requiring larger
effort and additional steps as compared to tradi-
tional models. For instance, one of the development
managers interviewed said that ‘the culture is a risk
for this kind of projects and can have a huge impact
on attitudes and team behaviors. It is easier to notice

and clarify misunderstandings in co-located situa-
tions, but in the case of distributed projects, how-
ever, cultural differences that may pass unnoticed
magnify any problems that may occur because of
the inherent difficulty in distributed environments’.

Lesson 2: The existence of a well-defined
software development process is responsible for
many advantages in distributed projects

According to Pressman (Pressman 2001), a well-
defined process is a process with good documenta-
tion, detailing what is being done (product), when
(steps), for whom (actors), the artifacts used (input)
and the developed artifacts (output/results). More-
over, a life cycle must be selected as the starting
point for any project.

The study showed that in both organizations all
projects without a well-defined process experienced
many problems, some of them related to process
(requirements, configuration management, testing,
etc.), and others inherited from previous problems
with process, such as communication, synchroniza-
tion and trust. Thus, a single and well-defined
process in accordance with the project environment
can be the solution for many difficulties in global
development. For this reason, when cross-border
sites are consolidated into a team, a good way is to
consider one of three strategies: forcing standard-
ization; blending methodological components from
the various sites into one ‘new’ methodology; or
imposing high-level guidelines.

One of the technical leaders interviewed men-
tioned that ‘there are a lot of issues that need to
be considered from the beginning of distributed
projects. Things like coding standards, project life
cycle, who will be the code owner, how the devel-
opment will be conducted, and if the distributed
team will work in the same or in different modules’.

Also, a developer said that ‘even if the each team
has a different process, an internal process must
be created specifically for that project, defining
standard tools to be used, activities flow, coding
standards, etc., in order to manage the team
expectation related to the process to be used’.

Lesson 3: Knowledge management stimulates the
information sharing and stimulates the learning
from experience

The purpose of knowledge management is to
absorb the organizational intellectual capital to use

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

275



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

in the future Lindvall (Lindvall and Rus 2002).
But the main problem is that the intellectual
capital is intrinsic to the human being. In software
development organizations, this concept has been
applied with the purpose of investing in learning
from experience, i.e., an individual can learn
on the basis of the experiences lived by other
individuals, since all experiences are documented
in a systematic way. Knowledge management
can help in the decision process, increasing the
quality and decreasing costs and project time
(reuse), stimulating the developing of a consistent
information repository to be used in the future.

Knowledge management also relates to infor-
mation collection from projects. Projects generate
many types of information that, if shared, can bring
benefits for the teams and for the organization
(Desouza and Evaristo 2003). One of the conse-
quences for distributed projects is the stimulation
of learning from experiences shared between dis-
tributed teams. The interviews conducted indicated
that such investment in knowledge management
(tools or activities that stimulate information shar-
ing) minimized many obstacles to GSD.

One of the project managers interviewed said that
‘despite of the existence of historical data from all
projects in the organization, there is not a culture of
using this information in an efficient way, because
people are not able to use, don’t want to use or
simply are not trained to use the benefits of an
information repository’.

Lesson 4: Requirements engineering is the main
challenge for the software development process
point of view

Requirements engineering plays an important role
in the software development. A requirement is the
condition or capacity that a system that is being
developed must satisfy (Oberg et al. 2000). There-
fore, the compliance with requirements determines
the project’s success or failure. Requirements are
identified, registered, organized and verified dur-
ing the project development, and are essential to
keep the ‘contract’ among project team, users and
customers.

The problems related with requirements engi-
neering are one of the main reasons for software
projects failures (Oberg et al. 2000). Research has
identified (Oberg et al. 2000) that 70% of the require-
ments were difficult to identify and 54% were not

clear and well organized. Therefore, it is not dif-
ficult to find errors in requirement specifications
with the resulting large impact in the project costs.
It is clear that the earlier a problem is detected and
solved (especially during the requirements phase)
the earlier other problems are minimized in the fol-
lowing phases (Damian 2002). Damian, and Zowgui
(2002) conducted a study in which the main chal-
lenges on managing requirements in a multi-site
organization were identified. The study identified
four major problems of geographical distribution
(inadequate communication, knowledge manage-
ment, cultural diversity, and time differences).
These problems created specific difficulties con-
ducting requirements engineering, like managing
conflict, common understanding of requirements,
effective meetings, delay, etc.

In the same lines as Damian’s study, almost all
project managers and technical leaders interviewed
in our research pointed out difficulties related
to requirements engineering activities. The main
problem of one of the projects was requirements
instability, mainly because the distance between
teams, compromising understanding and agree-
ment between parties. In all projects, requirements
identification was a challenge, involving activities
like meetings, requirements documentation as soon
as defined, traceability, requirements control and
management. One of the development managers
interviewed said that ‘a good approach to mini-
mize problems with the distributed requirements
engineering was to conduct as many meetings as
necessary to understand all requirements, and to
document all meetings in detail, in order to get the
acceptance of all people involved’.

Lesson 5: The planning phase is important to
organize and manage the distributed projects
properly

The definition of strategies in information systems
based on a formal planning process is a challenge
(Audy 2001). The lack of a formal planning phase
can be one of the main problems in the software
development process. According to Martin (1991),
the lack of a formal planning phase causes a great
number of problems in the next phases.

We found that the initial planning was a formal
phase to decide if a project should be distributed and
to plan its development. Thus, planning involves

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

276



Research Section Global Software Development in Practice

the definition of the strategies that will lead the
development of the whole process.

The SEPG representative mentioned that ‘a
planning phase is very important for distributed
projects, because we are able to select the proper
projects to be developed by distributed teams, and
also to define the better way to engage the teams
in the project’. Additionally, a project manager said
that ‘when you are working in a distributed project,
if you don’t have a formal planning phase before
the project starts, there is a greater possibility to dis-
cover risks not considered when the decision was
made to distribute the project development. These
risks can range from security constraints and phys-
ical environment availability, requirements clarity
and complexity, experience in distributed projects,
to other technology risks’.

Lesson 6: The investment in recruiting and
training global teams can minimize the
difficulties related to the nontechnical dimension

In global development, project managers have
to organize and manage projects with a team
composed of individuals from different cultures,
with different customs. According to Kiel (Kiel
2003), the technical barriers are diminishing rapidly.
On the other hand, the human factors are less
studied. Therefore, when distribution ultimately
fails, it can be a web of social, cultural, linguistic and
political factors, rather than use or misuse of specific
tools or techniques (Kiel 2003). There are other
factors that can be added to this list (communication,
context, interpersonal relationship), but this study
brought up a very important conclusion. Lack
of investment in the recruiting and training of
project teams to become global teams can lead to
unexpected problems in project development.

The policies of organization 2 included investing
in team training, focusing on communication,
cultural differences, trust, and context sharing. As
a result of this initiative, the interactions between
distributed teams (including customers, users, and
project team) became more effective. Problems
identified before the training started to occur
less frequently, showing that the management of
distributed teams is a key to the project’s success.

The importance of training can be reinforced by
a project manager, who said that ‘we will always
have problems when working with people from
different sites. We will have problems even with

people from the same site. But in a global scenario
this is even more critical due to the geographical and
time dispersion. For this reason, we are investing
in minimizing the impact of these differences,
investing in training to be effective working with
global teams. And this training is conducted with
all people as soon as they are onboard’.

Lesson 7: Tools can act as a facility in the
distributed interaction

Theory suggests that some problems can be solved
using specific tools to support collaboration, coop-
eration, knowledge management, and requirements
engineering, e.g., Sarma and Hoek (2002), and Lanu-
bile (2003). The use of tools to support the global
development depends on the characteristics of each
team, since people are different from each other,
and these differences can show in tool use.

We found that both organizations have strate-
gies to work with global tools, aiming at global
knowledge management and global integration.
Moreover, tools to support communication, like
e-mail, video conferencing, teleconferencing, and
chat are frequently used.

A project manager interviewed said that ‘there is a
tool aiming at the global knowledge management in
the organization, and the idea to develop this tool
appeared in a meeting with all employees. Thus,
the tool was developed as an internal project and
now we expected this tool to help in information
sharing’.

Lesson 8: Distributed Software Development is a
maturity process

According to Paulk (1993), maturity means the
state or condition of full development, state or
quality of mature. When the CMM model was
proposed, it was structured and developed in a
way that could be represented in different levels of
maturity. Moreover, each level has a set of practices
and standards as a guide to improvement of the
process. After the CMM framework, other maturity
models have emerged in different areas for different
activities.

The data showed a clear difference between
the maturities of both organizations related to the
distributed software development. Organization 1
was working with distributed projects for at least
four years, while organization 2 was doing the

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

277



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

same for only one year. Thus, organization 1 was
experiencing different and more complex problems
compared with organization 2. On the basis of our
data, the development of distributed projects is
something that needs time to mature.

In GSD, the maturity concept is applied to global
teams and to the organization on a strategic level
(maturity levels for offshore development, e.g.). For
this reason, the maturity of distributed projects
must consider not only the maturity of distributed
teams but also other factors, complementing the
GSD theory.

6. FINAL REMARKS

It is becoming harder to justify completing a soft-
ware development project inside company walls.
As the software community appreciates the econ-
omy of merging diverse development skills and
domain expertise and as communication media
become more sophisticated, the cost and technology
pressures push more organizations toward GSD. It
is becoming less and less cost-effective or compet-
itive to develop a software product in the same
building, company, or even country.

Although software development engineering is
still far from a mature discipline, improvements in
tools and methods over the last several decades
are allowing groups from different locations and
backgrounds to come together as a GSD team.
Moreover, GSD is leading researchers to acquire
new knowledge and to be more interdisciplinary.

This article advances the knowledge in the
GSD area by identifying important characteristics
of this recent and growing field. Lessons were
learned on the basis of case studies in two
software development units from multinational
organizations located in Brazil. This study enabled
a better understanding of GSD and the relationship
between the project team, customers and users.
These results give us indication that the search for
greater formalism and the selective utilization of
international patterns will provide full conditions
to overcome the problems originating from the
dispersion.

There is no need to tell experienced managers
that it is better to manage groups of people who are
colocated rather than dispersed. Colocation allows
managers to manage by observation but has some
disadvantages like informal oral communication.

Despite that, an advantage of dispersion is the
innovation of smaller, more independent groups
and more formalism in the software process. The
main consequence of such software development
is the reliance on asynchronous communication
techniques, primarily e-mail. Problems that should
have been simple to resolve many times can
take days. Furthermore, the conversation through
e-mail can introduce greater opportunities for
misunderstanding, particularly when the content of
the communication is argumentative. The challenge
in GSD is to create strategies, techniques and
practical lessons from experience to alleviate such
problems.

Planned follow up studies on this topic will delve
in the study of specific factors like requirements
engineering, risk management and project alloca-
tion.

ACKNOWLEDGEMENTS

We would like to thank the organizations that
accepted to be part of this study. The study was
funded in terms of the Brazilian Federal Law for
Information Technology (Law No. 8.248/91).

REFERENCES

Audy JLN. 2001. Strategic Planning Model of Information
Systems: Contributions of Decision Process and
Organizational Learning (in Portuguese)’’. PhD Thesis,
PPGA – UFRGS, Brazil.

Carmel E. 1999. Global Software Teams – Collaborating
Across Borders and Time-Zones. Prentice Hall, New Jersey:
USA.

Damian D. 2002. The study of requirements engineering
in global software development: as challenging as
important. Proceedings of International Workshop on Global
Software Development at ICSE, Orlando, FL, USA.

Damian D, Zowgui D. 2002. The Impact of stakeholders’
geographical distribution on managing requirements
in a multi-site organization. Proceedings of International
Conference on Requirements Engineering, Monterey, CA.

Desouza K, Evaristo R. 2003. Global knowledge
management strategies. European Management Journal
21(1): 62–67.

Evaristo JR, Scudder R, Desouza K, Sato O. 2003. A
dimensional analysis of geographically distributed

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

278



Research Section Global Software Development in Practice

project teams: a case study. Journal of Engineering
Technology and Management 11(4): 58–70.

Herbsleb JD, Moitra D. 2001. Guest editor’s introduction:
Global software development. IEEE Software 18(2): 16–20.

Karolak DW. 1998. Global Software Develop-
ment – Managing Virtual Teams and Environments. IEEE
Computer Society: Los Alamitos, CA.

Kiel L. 2003. Experiences in distributed development: a
case study. Proceedings of International Workshop on Global
Software Development at ICSE, Oregon, Portland, USA.

Krippendorff K. 1980. Content Analysis: An Introduction to
its Methodology. Sage Publications: CA.

Lanubile F. 2003. A P2P toolset for distributed require-
ments elicitation. Proceedings of International Workshop on
Global Software Development at ICSE, Oregon, Portland,
USA.

Lindvall M., Rus I. 2002. Knowledge management in
software engineering. IEEE Software 19(3): 26–38.

Marquardt MJ, Horvath L. 2001. Global Teams: How Top
Multinationals Span Boundaries and Cultures with High-
Speed Teamwork. Davies-Black Publishing: Palo Alto, CA.

Martin J. 1991. Information Engineering (in Portuguese).
Campus Rio de Janeiro.

McConnel S. 1996. Rapid Development. Microsoft Press:
Canada.

Oberg R, Probasco L, Ericsson M. 2000. Applying
Requirements Management with Use Cases. Rational
Software White Paper, Cupertino, CA.

Paulk MC, Curtis B, Mary BC, Weber CV. 1993. Capability
Maturity Model for Software, Version 1.1. Technical Report
CMU/SE1-93-TR-025, Software Engineering Institute.

Pressman RS. 2001. Software Engineering: A Practitioner’s
Approach, 5th edn. McGraw-Hill: USA.

Prikladnicki R, Audy J, Evaristo R. 2003. Distributed
software development: toward an understanding of the
relationship between project team, users and customers.
Proceedings of ICEIS, Angers, France.

Prikladnicki R, Peres F, Audy J, Móra MC, Perdigoto A.
2002. Requirements specification model in a software
development process inside a physically distributed
environment. Proceedings of ICEIS, Ciudad Real, Spain.

Project Management Institute. 2000. A Guide to the Project
Management Body of Knowledge (PMBOK guide). Project
Management Institute, USA.

Sarma A, Hoek A. 2002. Palantı́r: Increasing awareness
in distributed software development. Proceedings of
International Workshop on Global Software Development at
ICSE, Orlando, Florida, USA.

Yin RK. 1994. Case Study Research: Design and Methods.
Sage Publications: USA.

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

279



Research Section R. Prikladnicki J. L. Nicolas Audy and R. Evaristo

APPENDIX 1

Questionnaires

.
Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

280



Research Section Global Software Development in Practice

.
Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 267–281

281


