The Ramp-Up Problem in Softwar e Projects:

A Case Study of How Softwar e Il mmigrants Naturalize

Susan Elliott Sim
Department of Computer Science
University of Toronto
10 Kings Colleg Rd.
Toronto, Ontario, Canada M5S 3G4
416-978-1685
simsuz@cs.utoronto.ca

ABSTRACT

Joining a software development team is like moving to a
new country to start employment; the immigrant has a lot
to lean about the job, the locd customs, and sometimes a
new language. In an exploratory case study, we
interviewed four software immigrants, in order to
charaderize their naturali zation process Seven patterns in
four major caegories were found. In this paper, these
patterns are substantiated, and their impli cations discussed.
The lesons leaned from this gudy can be gplied equally
to improving the naturalization process and to the
formulation of further research questions.

KEYWORDS
empiricd study, software maintenance, new employess,
process

1. INTRODUCTION

The title of Brooks bodk, The Mythical Man-Month,
nedly sums up a software tean management concept:
adding personnel to a projed adualy deaeases
productivity in the short term due to the start-up costs of
new tean members.[3, 4] Despite this difficulty, it is often
necessry to add new employees to replacepersonnel or to
grow the teamn in order to take on additional work.
Studying the ramp-up process for these reauits helps us
identify ways to make this transition easier. The benefits
of making this adjustment more manageale include:
employees who are productive sooner; fewer distradions
for senior tean members who

Richard C. Holt
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
519-888-4567 x4671
holt@plg.uwaterloo.ca

ad as mentors; and the flexibility to add new employees as
they are needed. Such improvements are particularly
beneficial to a growing tean that expeds the arival of
many new hires or to an aging tean badfilli ng paositions
that are open due to attrition.

When software maintainers begin work on a projed, they
facethe daunting task of re-toding themselves for a new
job. Thistask usually requiresthem not only to lean about
the system, but also to adapt to the new working
environment. In order to become productive they need to
learn:

* programming languages or dialects

* tools

« the intricacies of a software system

* project jargon

* development processes

* coding standards

* background information about the problem domain
» team dynamics—who does what

* organizational structure

* how to obtain resources and supplies

Thisis an incomplete list of potential areas in which a new
reauit may have to make alaptations. The spedfics will
vary according to the team and the recruit.

New staff members are usualy experienced programmers
who already have arich set of skills and badkground
knowledge. Despite their persona as<ts, they often lack

basic knowledge @out the spedfic projed. For these
ressons, we cdl these new tean members “software
immigrants’, since their experience is analogous to those
of people who arrive in a new land and need to lean its
language and culture. Software immigrants are often
referred to by other terms guch as newcomers, newbies,
reauits, new hires, rookies, and even “fresh blood'.
Novice is an inappropriate term since it implies a ladk of
experience. Extending this analogy, the process by which
software immigrants adapt to a new projed is cdled
“naturalization”. Others may cdl it adaptation, re-tooling,
start-up, ramp-up or bringing someone up to speed.

In too many cases, little preparation has been put into a
software immigrant’s training, beyond assgning them to a
senior developer who ads as a mentor. This person is
expeded to help the new reauit become productive by
providing whatever guidance she or he needs. DeMarco
and Lister[4] observe “We dl know that a new employeeis
quite uselesson day one or even worse than useless since
someone dse’'s time is required to begin bringing the new
person wp to speed.” They go on to estimate that this cost
is about twenty percent of the @st of an employee who
works for two years, more if the project is complex.

While there eists a significant body of work from the
fields of organizaional psychology, business
administration and occupational training on the acdimation
of new employees, this work tends to focus on domains
such as educaion, medicine, manufaduring, and
adminigtration. Wilson[12] is a detailed study of how
registered nurses responded to the stresses of starting
employment at a hospital. Van Maanen and Schein [13]
developed six bipdar scdes to charaderize the
sociadlizaion of new hires. Pradicd advice on designing
orientation sesgons for reauits is given in Beder [2].
These papers are but a minuscule seledion from the
literature of these aeas. Unfortunately, there has been
littl e work done on new employees in technology oriented
domains, such as engineering or computing.

Studies have been urdertaken in software engineaing and
cognitive psychology on working with legacy systems.
There ae some publi cations which gve pradicd adviceon
working on urdocumented software systems[6, 10] and
aneadotes from praditioners and consultantg[3, 4]. The
most significant contribution comes from Berlin [1] who
studied the interadion patterns between mentors and
apprentices at the onversation level and found that
mentoring is a highly effedive way to transmit information
about the system. Mentors tend to provide not only
answers to apprentices questions, they also give
explanations of design rationale. Their conversations tend
to be highly interadive in neture, using techniques such as
confirmation and re-statement to verify that a message has
been passd corredly. While mentoring hes its merits, it
tends to be atime inefficient method to train a software
immigrant because it results in a net deaease in tean

productivity. As an antidote, Berlin suggests capturing the
information that mentors convey in documentation or an
intensive course for apprentices.

Since the naturalizaion process is understood from
different perspedivesin a piecaned fashion, we undertook
a study to charaderize the process as a whole, a
perspedive that includes orientation, socialization, and the
aquisition of domain knowledge. An exploratory case
study methoddogy was used becaise we were
investigating a relatively uncharted area[14] Thisreseach
design is not used to test hypotheses using constructs
formulated, a priori. Rather, it is used to build a body of
knowledge aout an areathat is not well understood An
exploratory case study begins with a rationde ad a
diredion. Our reseach rationde was to aquire an
understanding of the naturalization process of immigrants
for the purpose of redressng any shortcomings. The
diredion we chose to take to forge this understanding was
to interview a number of software immigrants about their
naturalization experience.

This approach would allow us to consider naturalization in
context and to formulate theories about the process based
on interview data. Another benefit of using this
methoddogy is that ead immigrant examined can be
viewed as a replicdion of the cae study, and as sich
contribute to the formulation of analytic generalizaions.
These inferences can stand on their own merit, or they can
be used later as the basis for quantitative investigations.
Probabili stic generalizaions can not be made using only
the quantitative data from case studies, and, indeed, should
not, since this type of result is reserved for more
experimental reseach designs. Since the logic of case
studies differs dgnificantly from the logic of
experimentation, they use different approaches to preserve
internal and external validity, construct validity, and
reliability.[5, 14]

Using this method, we were &le to charaderize the
naturaliztion process and make inferences about the
fedures observed. In sedion two, the methods we used to
colled and analyze data ae described. In sedion threg we
detail the seven patterns in four major areas that we found.
The lesons that can be learned from these patterns by both

practitioners and researchers are discussed in section four.

2. METHOD

e A multi-case study was performed with four
respondents, al software immigrants to a singe team.
By interviewing subjeds, we hoped to identify
commonalties and differencesin their experiences, and
to infer naturalizaion patterns from this comparison.
In this study, our goals were to:

» describe the naturalization process;

Experience on
Case Interview rnetaeznvigfv Time of Highest Level of | PreviousWork Experience
Frequency Educational Attained
S1 Every 3 weeks | 0-4 months Masters in CS (compilers)| 4 co-op work terms
for 4 months
S2 Every 3 weeks | 0-4 months Masters in CS (compilers)| 3 yeas as Windows g/stem
for 4 months programmer
S3 Once 7 months Bachelors in CE 2 yeas with an optimizing
compiler
S4 Once 8 months (on leave) Doctorate in CS (artificial | Summer jobs
intelligence)

Table 1: Summary of Respondent Characteristics

e identify shortcomings and succeses of the process
and

» charaderizethe strategies oftware immigrants used to
adapt to the new job.

In order to highlight areas that would profit from
modification or improvement, we must identify strengths
and weaknesses in the naturalization process.

The unit of analysis in this dudy is a singe software
immigrant. Data was colleded using structure interviews,
and was analyzed using qualitative data analysis methods.
Variables of interest were identified using a pattern
matching technique. A data matrix was populated with
these variables to articulate aosscase patterns.[9] In the
foll owing three subsedions, we will describe, in order, the
development team, the data wlledion procedure, and that
data analysis techniques that were used.

2.1 Research Setting

We studied software immigrants to a development tean
maintaining a legacy system at a very large computer
company. The software is approximately fifteen yeas old
and had has twelve major releases. There ae
approximately 250 000lines of source @de in 1000files.
Developers used workstations running the AlX operating
system (an IBM UNIX variant). Senior developers on this
projed estimate that it takes $x to twelve months for a new
team member to become fully productive. Through most
of its history the development tean consisted o
approximately ten people, but in recant yeas its sze has
nealy doubled. The growth of the team provided us with

an oppatunity to study a relatively large number of
software immigrants.

2.2 DataCaoallection

Interviews were conducted from February 1997 to June
1997with four respondents. Data mlledion began with S1
and S2 shortly after they joined the company. As the study
procealed, S3 and 4 were identified as relatively new
software immigrants, and were willi ng to participate in the
study. Consequently, using “controlled oppatunism”[5],
they were interviewed using a sub-set of the questions used
with the first two respondents. At the time of interview, $4
was on an educaional leave of absence The badckground
of each respondent is summarized in Table 1.

Structured interviews were used with all subjeds, in which
standard questions were asked and the respondents were
allowed to elaborate @ appropriate to their situation. All
interviews were nducted by a single investigator and
were tape recorded. Prior to being interviewed,
respondents sgned consent forms. All raw data is kept

confidential, and the respondents anonymity is maintained.

Threesets of questions were used: the first set of questions
inquired about the respondent’'s badkground, both
educaiona and industrial; questions from the second set
concerned the respondent’s growing urderstanding of the
software system and naturali zation processin progress and
the last set explored the respondent’s naturalizaion
experiencein retrosped. Question set one was used during
the first interview with a respondent, and set three during
the last. With S3 and $4, these occasions coincided.
Question set two was used only with S1 and S2 as we

Cases Question Set 1 Used During: Question Set 2 Used During: Question Set 3 Used During:
S1, S2 First interview Interview every 3 weeks Last interview
S3, 84 Only interview No Only interview

Table 2: Summary of Question Set Usage

followed them through their naturalization. The usage of
these question sets with the respondents is simmarized in

Table 2. These question sets can be found in Appendix A.

At the end dof the four months, we cncluded our interviews
with S1 and S2, becaise we felt that the immigrants had
readed a plateau in their naturalization. Thisis not to say
that they were mpletely familiar with the software
system, but rather they had settled into a stable work
routine and would be making a stealy transition to being
fully productive team members.

2.3 DataAnalysis

Since asingle investigator conducted al of the interviews,
we were ale to formulate hypaotheses throughout the study,
using a method d constant comparison.[5] After data
coll edion concluded, notes and recordings made during the
interviews were reviewed entirely. During this gage,
seventeen variables of interest in five magjor areas of
inquiry were identified using crosscase wmparisons. It is
important to note that the variables used were not scdar,
but quantitative. A “value” assgned to avariable could be
numericd, but textual descriptions and lists are dso valid.

The variables are listed in Appendix B, and the areas are:

» respondent characteristics,

e orientation and training,

» difficulties outside of learning about the system,
e timing and type of tasks given, and

» approaches used to understand the system.

Data from the interviews were used to asdgn values to
these variables and this information was put into a data
matrix. A pattern matching technique was used, in which
several pieces of information from one or more caes are
related to a theoreticd propasition. Seven propasitions, or
“patterns’ in were found. Some of the propasitions were
grouped together because their causes or effeds were
tightly linked. These patterns will be presented in the next
section.[5, 9, 14]

3. RESULTS

In this edion, the findings of the study are discussed. It
begins with a narrative overview of the naturalization
process then it continues with analytic results. Courts of
some variables will be presented, where relevant, using the
following rotation: (A, B, C, D) units. Thistuple indicaes
a ount of A unitsfor S1, B unitsfor S2, and so on. There
are sufficiently few cases that it is possble to present this
data, and this notation allows us to do so compactly.

When software immigrants began work, they were eab
assgned a mentor. Only S3 receaved a threehour formal
orientation sesson from the human resource department;
the remainder receved informal orientations from their
manager. Some respondents attended external formal
courses, but they did not find them relevant to their work;

respondents attended (0, 1, O, 2) courses. Mentors aded as
primary sources of information to software immigrants, and
they passed on awide range of information to respondents.
This information tended to be pradicd low-level
information, such as file naming conventions, system set-
up, and pointers on tool usage.

The first two weeks were focused on administrative issues,
that is, providing the software immigrant with the
equipment, tools, and user identificaions necessary to do
hisor her job. Half the respondents receved their first task
after two weeks, the other half after three Thesefirst tasks
tended to be isolated modificeions to the software, or
open-ended investigations with no fixed endpant. After
four months, five in the cae of $4, respondents were
working independently of their mentors on tasks that had
gradually increased in scope. Although respondents did
not yet have athorough urderstanding of the system, they
were on their way to aaquiring one. In the words of S3,
“I'm fairly comfortable now. | can real the mde ad
understand it. ...I know where to look for problems, and
that's half the battle and | know who to consult, when |
don't.”

In the remainder of this <edion, patterns in the
naturalization process will be discused. The pattern is
substantiated with details from the caes, then its
implicaions are discused, and related to the literature,
where possible.

3.1 Mentoring

e Pattern 1: Mentoring is an effedive, though
inefficient, way to tead immigrants about the software
system.

e Pattern 2. Ladk of documentation forces ftware
immigrants to rely on mentors or consultants.

3.1.1 Evidence

When respondents joined the team, ead was assgned a
mentor who helped them with al aspeds of naturali zation.
This assstance ranged from providing basic information
about the software system, to workstation system
administration, to navigating them through the food
choicesinthelab’s cafeteria. Initialy, mentors gpent many
hours a day with their charge. This time may have been
lumped together into a long ledure or it may have been
spread out over two or three question and answer sessons
in aday. This frequency was maintained for about two
weeks and then tapered off quickly. The intensity and
length of the initial contad period was less for subjeds
whose mentors who were working on time-critica tasks.
Although contaa with their mentors deaeased over time, it
never stopped completely as maintainers often consult
experts about esoteric parts of the software system. By four
months, S1's interadion with his mentor consisted o a
short question every two days or so. In contrast, $4 had a

steady ongoing contad with her mentor becaise they
worked closely together on the same problems.

There is a paucity of documentation for this g/stem; what
information does exist resides primarily in the minds of
those developers who designed the system architecure and
continue to maintain it. S3 stated, “Most people operate
under the aumption that there ae no dacuments, so you
shouldn’t try asking for one.” This shortage means that for
immigrants, their mentors becme their primary source of
information about the software system.

Beyond passing on knowledge, mentoring fills a socia
function aswell. Mentors ad as a means for integrating an
immigrant into the social life of the software team, by
providing them with an introductions at the lunch table and
during coffee bregks. Newcomers neal to develop an
awarenessof their fellow tean members, and their areas of
responsibility, so that they can turn to the gpropriate
consultant when necessary.

3.1.2 Implications

A magjor drawbadk of mentoring is that it is very time
consuming for the senior developer, a phenomenon
discus=d in the introduction of this paper. Despite the
inefficiencies of mentoring, it may not be possble, or even
desirable, to eliminate the system. Mentors function as
more than mere repositories of data eout the legacy
system; they provide extends into the administrative and
social domains as well. In light of the ladk of
documentation, it is important to identify who the experts
are to new team members.

If changes are to be made to the naturalization process the
mentoring system should be mplemented, but not
replaced. The experiences of software immigrants in this
study were onsistent with those in Berlin[1]. Their
interacdions with their mentors were dso highly interadive,
and they recdved timely fealbadk about their
comprehension of the software. Efforts sould be made to
reduce the time commitment required by mentors, so they
can ill maintain their productivity, while providing
adequate guidanceto a software immigrant. Asaresult, an
immigrant who has a mentor with a busy schedule, can till
receive the necessary training.

3.2 Difficulties Outside of the Softwar e System

e Pattern 3. Administrative and environmental issies
were a maor source of frustration during
naturalization.

3.2.1 Evidence

In every case, almost the antire first two weeks were spent
deding with administrative and environmental issues.
These difficulties included setting up their computers,
configuring software, aoquiring accessto systems or todls.
In many instances, there was overheal involved in
performing simple tasks. Respondents had to maintain an
average of eight identificaions, acounts or registrations,

to do their job; they reported having (11, 11, 5, 5)
identifications.

Only S3 had afully functioning workstation on the first day
of work. Respondents had to wait (3, 6, 0, 1) weeks, an
average of two and a half weeks, for fully functioning
madiines. S4 had a cmputer on the first day, but had to
spend a week configuring it to be usable. S2 did not even
have aworkstation on his desk for the first three weeks,
and then he needed another threeweeks to set it up to mee
his needs.

Sometimes these problems are interrelated, as recdled by
S1, “I tried to [set up badkups for my maching], but | got
stalled because | had to register my machine. So when that
comes badk, I'll continue...” Although hs computer was
basicdly operational after threeweeks, S1 had to ded with
system administration problems throughout the study.

Items ranging from user identificaions to light bulbs had to
be requested. Some requests could be serviced quickly but
most requests required an overnight wait. Once, when S2
returned to his office with a binder, his office mate asked
him, “Where cax | apply to get a binder?” Ironicdly,
binders, unlike so many other supplies, did not need to be
requested.

Although respondents worked hard to comprehend a large
undocumented system, in no case did they describe the task
as frustrating. In contrast, frustration was a word that
every respondent used with resped to at least one system
administration task. This difficulty could be dtributed to
respondents ladk of experience performing system
administration, or the feding that machine problems were
kegping them from their red jobs—programming.
Regardlessof the causes of this sntiment, it is a problem
common to software immigrants during raturalizaion.
Later discussons with the projed manager indicated that
difficulties with the ladk of computing resources were
experienced by all members of the team.

3.2.2 Implications

The problems with administrative and environmental
isaues, particularly the computing resource shortage, would
be worth addressng for this team, since benefits would be
felt not only by software immigrants but also by veterans.
Some red productivity gains could be made here if
developers were not distraded by administrative isaues. It
is not very efficient for every tean member has to invest
the time to lean how perform system administration tasks,
an adivity not diredly related to writing code. Many of
the proceses could be streamlined o combined; for
example, user identificaions for a set of tools could be
linked so that access to them neal to be requested
separately.

3.3 First Assignments

e Pattern 4: Initial tasks were open-ended problems or
simple bug repairs, that were begun ro ealier than two
weeks after a software immigrant’s arrival.

e Pattern 5. Mentors tend to pass on low-level
information about the software system.

3.3.1 Evidence

Shortly after respondents had functioning madines, they
receved their first assgned task, which occurred at (3, 4,
2, 2) weeks. Theseinitial assgnments tended to be limited
in scope and complexity, and dd not have afixed dealine.
Three of the respondents were given open-ended problems
to explore, for the purpose of improving the compiler’'s
performance. S3 was given a bug repair that had been
screened for excessve ammplexity by his mentor. S4'sfirst
assgnment was to add a feaure to a subsystem, and she
recdls, “It was a small enoughprojed and | didn’t have to
know anything else aout the rest of the mde. So it was a
matter of modifying, maybe threeor four files... It didn't
seem very challenging, but looking bad, | appredate the
fad that they gave me something so isolated. It allowed
me to gain familiarity with at least those four files.”

Three of the four mentors concentrated on conveying low-
level information to immigrants. These lessons tended to
concentrate on the subsystem that an immigrant would be
working on and as a result tended to focus on knowledge
that was immediately useful. Only S1's mentor began with
high-level system design concepts, but even these lesons
were limited to a single subsystem. By concentrating on
pragmatics, software immigrants were ale to start working
with source code quickly.

3.3.2 Implications

Given the types of information conveyed by mentors,
small, non-criticd tasks are gpropriate first assgnments
for software immigrants. Even in the ésence of presare
from the team, respondents tended to push themselves
contribute. S1 olserved this in himself, saying,
“Sometimes it’s me trying to doseveral things at the same
time: trying to set up my machine and ...be alittle bit
productive for the tean.” In such situations, the alditional
demands of a task with a tight deadline is unrecessary.
The relationship between these two patterns can be viewed
as ymbiotic. Any modificaions to one pattern, must be
refleded in the other. Clealy, the initia task needs to
provide an oppatunity for software immigrants to use the
lessons learned.

3.4 Predictorsof Job Fit

e Pattern 6: Programmers who prefer to use bottom-up
comprehension approaches have a smocther
naturalization that those who don't.

» Pattern 7: There neadsto be aminimal interest match
between immigrants and the software system.

3.4.1 Evidence

Cases S1-3 are till working on the software team, but case
4 is on atemporary educdional leave. This provides an
oppatunity to examine the differences between a team
member who may pursue other interests, and ones who are
satisfied working as ftware maintainers on a compiler.
The two key differences were S4's inclination to take a
top-down approach to comprehending the software system,
and her ladk of previous experience with compilers
coupled with her depth of badkground and interest in
another field.

Immigrants were trained up from simple tasks to more
complex ones. Consequently, software immigrants
aqquired their understanding of the software, one
subsystem at a time, in other words, in a bottom-up
fashion. S1-3 took this approach when they tadkled a
problem by reading the source @de or by profiling the
subsystem. In contrast, S4 preferred to take atop-down
approach, adthough there were no red tools or
documentation that supparted this line of inquiry. She
said, “The system was humungous and | didn’t know what
comes first or anything. So the only way to doit is to
dump everything [exeaution traces]. | didn't do that from
the beginning, but | found it redly frustrating because |
wouldn’'t know what was adually being done. You reed to
know... or you don’t know where to start.”

SA's badkground aso dffered from those of the other
respondents. During their Masters degrees, S1-2 bah
wrote theses in the aea of compilers. S3 had previous
experience working on a highly similar software system.
4 had completed a Doctorate in artificia intelligence
She indicated this was another reason she did not find her
work compelling, “1 had spent four years working on my
Ph.D. and | got hired into an areathat had nothing to do
with my Ph.D. | just never found it fascinating. They
knew that when they hired me. ...They just wanted some
one they felt could pick things up quickly.”

At this point, it must be stated that S4 was not an
unsuccesul software maintainer. Although she is on
leave, she has not given any indication that she will not
return. When describing her work, she included as many
low-level details of the software system as S1-3. She was
able to handle tasks that were a complex as the ones given
to other respondents. Furthermore, throughout the
interview she amphasized that despite the interest
mismatch she had cordial relations with the development
team. She stated, “The adual group was amazng. | think
| was very fortunate to be in that group,” and “ ...it was a
positive experience. | don'’t regret working there.”

3.4.2 Implications

Any improvement in job fit is, indiredly, an improvement
on the naturalization process since reducing a possble
turnover rate deaeases the time spent in this area by the
team as a whole. When hiring rew employees to be

software maintainers on a large projed, managers sould
look for at least a minimal interest match and a preference
to work with system detail sin a bottom-up fashion. Thisis
not to say that immigrants without these charaderistics are
certain to fail or leare, but they will facegreaer frustration
in their ealy months on the job, a time that has its own
share of difficulties. A newcomer with a strong interest
match is more likely to buoyed by a high level of initial
excitement about the position, a feding that does much to
mitigate many of the frustrations he or she may face
Indicators of an interest match could be experience in a
related field, or it may be & smple & an expresed
preference A scheme to give enployees choices in the
work they undertake is proposeddeMarco and Lister.[4]

4. APPLICATION OF THE PATTERNS

Looking at the patterns acoss the caes, one of the
conclusions we drew was that software immigrants could
benefit from an intensive urse on that focused on high-
level system details. Such a curse could: complement the
lesons given by mentors, present important core
information to al immigrants; reduce some of the
variability between mentors;, and deaease the time
commitment required by mentors. Immigrants could attend
this course outside of the department in a locaion where
ladk of resources is not an issle. Such a curse ould
replacementoring, since dasgoom ledures tend to isolate
immigrants from the rest of the tean. As Dftware
maintainers, they will eventually need to consult fellow
experts when trying to solve problems. Therefore, it would
not be desirable or even possble to eliminate mentor or
consultant relationships entirely.

In June, we undertook a pilot study in which we designed
such a wurse axd administered it to three software
immigrants with six weeks or lessexperience. Threesenior
developers were interviewed to help selea curriculum for
this course. They were asked “What does a newcomer to
the tean need to know in order to become productive?’
Two o the three senior developers consulted felt that it
was important for immigrants to aacquire an urderstanding
of the system to work effedively. Of these, one of them
emphasized the importance of conveying design rationale
to immigrants. The third developer consulted was
primarily concerned with the pradicd knowledge required.
Since mentors alrealy present this information, we dedded
not to overlap the lessons.

This course was based on two hours of videotaped talks
previously given by senior projed developers, and a
software achitedure visudizaion tod, Software
Bookshelf.[6] These materials were cosen with the
eventual goal of making the course self-guided.

The readions to the curse were encouraging. On the
course evaluations, the participants remarked that they
would have like more information on the overall system
architedure and main data structures. Based these results

and the suggestions made by the immigrants, we found that
the material was pitched at the right level, although some
of the mntent needed fine-tuning. Four months after
subjeds completed the course, they were given an e-mail
guestionnaire that asked them to evaluate to the murse in
retrosped. They found parts of the curse very helpful.
Althoughthey did not find the aurse diredly applicable to
their daily work, they often thought about the mncepts they
had learned.

The ourse developed should not be used as a substitute for
the aurrent mentorship system. Mentors also serve & the
basis for a social introduction to the tean that a @urse
cannot replace These mnsultation sessons remain very
effedive for transmitting low-level information where no

documentation exists and for conveying design rationale.

Other teams could evolve similar courses for immigrants to
their legacy systems. The murse muld be self-direded o
taught in a ledure format, depending on the goals of the
course, available resources, arrival rate of immigrants, and
personaliti es on the tean. The ourse or courses could be
aimed at different points in time during an immigrant’s
naturalizion. Teams could seled curriculum appropriate
for their problem domain, but a standard course should
focus on core information to ensure its applicability aaoss
the team.

Such a ourse should be short, and consequently intense
and highly direded. It should be presented in a manner
that requires littl e intervention on the part of experts. This
could be done using videotaped presentations or short talks
from a number of tean members or some @mbination of
these gproaches. Finally, the arrent naturalizaion
processcould be m-opted into helping to prepare material
for such a murse. Informal ledures by experts could be
videotaped for viewing by future immigrants. New hires
could reoord information they uncover during their
naturalizaion, adding to the documentation available on
the software system.

5. CONCLUSIONS

The study undertaken in this paper used a cae study
methoddogy to describe the naturalizaion process of
software immigrants. The study was replicaed with four
newcomers to a single development tean. Seven patterns
were identified in cross-case analysis; they are:

« Pattern 1. Mentors are a effedive, though
inefficient, way to tead immigrants about the software
system.

e Pattern 2. Ladk of documentation forces ftware
immigrants to rely on mentors or consultants.

e Pattern 3: Administrative and environmenta issies
were a maor source of frustration during
naturalization.

e Pattern 4: Initial tasks were open-ended problems or
simple bug repairs, that were begun ro ealier than two
weeks after a software immigrant’s arrival.

e Pattern 5. Mentors tend to pass on low-level
information about the software system.

e Pattern 6: Programmers who prefer to use bottom-up
comprehension approadhes are more gpropriate for
the job of software maintenance.

» Pattern 7: There nealsto be aminimal interest match
between immigrants and the software system.

These caes identified not only the strengths and
wedknesses in the process but also areas for future
reseach. The lesons leaned can be gplied bah to the
naturalization process itself, and to future research.

A theme that repeds itself aaoss patterns, almost as a
meta-pattern, is that the key to improving the naturali zation
processis to minimize frustration. This tadic is alrealy
used in some aess, for example, the use of mentors, and
the tight coupling of lesons and initial tasks. Software
immigrants did not speak negatively bout tasks that were
difficult, only about tasks that were frustrating. While
newcomers ealy excitement and motivation caries them
over many obstades, it's best to maintain these paositive
fedings for as long as posdble. While strategy may not
diredly reduce the time they need to naturalize, it may do
so indiredly by keging immigrants enthusiastic about
their work.

The obstades facel by respondents outside of leaning
about the software system led us to the next conclusion:
any efforts to fadlit ate the naturali zation processcannot be
limted to technicd solutions suich as “more
documentation” or “better tools’. Improvements must
encompass modifications to the organizaional processes
surrounding the arival and integration of new developers
to the tean. Such changes were outside the scope of this
study, and may require revisions not only at the team level,
but also at the organization level.

Asis often the case, this sudy pased many more questions
than it answered. While software immigrants expended
much effort resolving administrative isaues, to what extent
is this typicd of team veterans? Some developers have
estimated that they spend only 20% of their time
programming; the other 80% is gent doing things they
can. Isthisadage true, and how do software immigrants fit
in? It was observed that mentors needed to spend a grea
ded of time with their charges. How much of a time
commitment is needed? Is lesstime neaded on systems
that are better documented?

The use of an exploratory case study methoddogy to
examine software processs is effedive for two reasons.
First, beyond anedotal evidence, there have been few
studies that document what adualy happens on a

development projed. Reseachers neal to build an
understanding of the processs arealy in place so that
they can crede innovations that are more likely to be
adopted. Case studies allow us to examine and dacument
software processs in context. Seand, this methoddogy
allows the nstruction of theories from qualitative data.
While cae studies are not a universal solution for
empiricd reseach, they can be used forge a
understanding of many hitherto unexamined phenomena.
Investigations like this have the potential to bridge the gap
been between the pradice ad theory of software
engineering.

ACKNOWLEGEMENTS

This reseach was generously supparted by CSER, ITRC,
and IBM Canada Ltd. We would like to the thank the
software immigrants who generously gave of their time to
participate in this gudy and the senior developers for their
helpful advice. Thanks also to Stephen Perelgut, and Gary
Farmaner who helped with the studies.

REFERENCES

[1] L.M. Berlin. Beyond Program Understanding: A
Look at Programming Expertise in Industry.
Empirical Sudies of Programmers, Fifth Workshop,
pages 6-25, Palo Alto, USA., 1993.

[2] C. Beder. Roll out the welcome wagon: structuring
new employee orientations. Public Management,
Vol. 76, August, pages 14-17, 1994.

[3] F.P. Brooks. The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition.
Addison-Wesley, 1995.

[4] T.DeMarco and T. Lister. Peopleware: Productive
Projects and Teams. Dorset House Publishing, 1987.

[5] K. M. Eisenhardt. Building Theories from Case
Study Reseach. Academy of Management Review,
Vol. 14, No. 4, pages 532-550, 1989.

[6] S.D. Fay and D.F. Holmes. Help! | Have to Update
an Undocumented Program. |EEE Conference on
Software Maintenance, pages 194202, Washington
DC, USA, 1985.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K.
Kontogiannis, H. Mdller, J. Mylopaulos, S. Perelgut,
M. Stanley, and K. Wong. The Software Bookshelf.
IBM Systems Journal, forthcoming.

[8] D.C Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental Models and Software Maintenance
Empirical Sudies of Programmers, First Workshop,
Washington DC, USA, pages 80-98, 1986.

[9] M.B. Miles and A.M. Huberman. Qualitative Data
Analysis: An Expanded Sourcebook, Second Edition.
Sage Publications, 1994.

[10] T.M. Pigoski and C.S. Looney. Software
Maintenance Training: Transition Experiences. |EEE
Conference on Software Maintenance, pages 314
318,Montréal, Canada, 1993.

[11] W.J. Ray. Methods: Toward a Science of Behavior
and Experience, Fourth Edition. Brookg/Cole
Publishing Company, 1993.

[12] R.M. Wilson. Patterns of Response to the Demands
of Starting New Employment. Master of Arts Thesis,
OISE, University of Toronto, 1972.

[13] J. Van Maanen and E.H Schein. Towards a theory of
organizdional socialization, in Research in
Organizational Behavior, edited by B.M. Staw, Vol.
1, pages 209-264, JAI Press, 1979.

[14] R. K. Yin. Case Sudy Research: Design and
Methods, Second Edition. Sage Publications, 1994.

APPENDIX A: QUESTION SETS
Question Set One: Subject’'s Background

1. What is your educational background?

2. What experience have you as a professonal software
developer? What kinds of projeds did you work on?
What tools and languages did you use?

3. Are there ay educaiona materials that your found
particularly useful such as bodks, manuals, guides,
course, videos ?

4. What do you enjoy most about your work?
5. What do you dislike most about your work?

Question Set Two: Observing the Naturalization
Process

1. What is your current asignment? What have you
been working on over the last week?

2. How did you gather information about the problem?

3. What resources did you use? What documentation did
you read? Who did you consult?

4. What new things did you learn over the last week?
What new tools did you use over the last week?

6. Did you use Software Bookshelf? Include information
about how and why if appropriate.

7. Over the last week, what have you done to become
more familiar with the software system?

8. Draw a diagram of your current understanding of the
system.

Question Set Three: Realling the Naturalization
Process

1. How long have you been working at this job?

2. What administrative issues did you have difficulties
with? (i.e. badges, logins, machines, payroll, etc.)

3. How many different computer systems do you have to
use to do your job?

4. How many different todls or applicaions do you have
to use to do your job?

5. What technicd isaues did you have difficulties with?
(i.e. missing background knowledge)

6. What difficulties did you encounter when leaning
about the system you are working on?

7. How long did it take you to beaome comfortable with

your new environment? (i.e. office, building, cafeteria)

8. How long did it take you to figure out office numbers?

9. How long did it take to become productive?
APPENDIX B: VARIABLES USED IN ANALYSIS
» educational background

» work experience

* orientation

e training

* mentoring relationship

* |IDs acquired

« computer systems used

* tools used

» time to fully functioning workstation

» system administration tasks reported

* initial task

« time until initial task assigned

» time until working independently

» shortcomings of technical background

» approach to learning system

» time to comprehend office numbering system
* other

