
Automatic Mining of Source Code Repositories
to Improve Bug Finding Techniques

Chadd C. Williams and Jeffrey K. Hollingsworth, Senior Member, IEEE

Abstract—We describe a method to use the source code change history of a software project to drive and help to refine the search for

bugs. Based on the data retrieved from the source code repository, we implement a static source code checker that searches for a

commonly fixed bug and uses information automatically mined from the source code repository to refine its results. By applying our

tool, we have identified a total of 178 warnings that are likely bugs in the Apache Web server source code and a total of 546 warnings

that are likely bugs in Wine, an open-source implementation of the Windows API. We show that our technique is more effective than

the same static analysis that does not use historical data from the source code repository.

Index Terms—Testing tools, version control, configuration control, debugging aids.

�

1 INTRODUCTION

SOURCE code repositories hold a wealth of information
that is not only useful for managing and building source

code, but also as a detailed log of how the source code has
evolved during development. If a piece of the source code is
refactored, evidence of this will be in the repository. The
code describing how to use the software pre and post-
refactoring will exist in the repository. As bugs are fixed,
the changes made to correct the problem are recorded. As
new APIs are added to the source code, the proper way to
use them is implicitly explained in the source code. As the
code evolves and new rules develop detailing how to use
internal functions, they are implicitly written into the source
code, no matter if they are ever formally documented. The
challenge, then, is to develop tools and techniques to
automatically extract and use this information. In this
paper, we focus on using data describing bug fixes mined
from the source code repository to improve static analysis
techniques used to find bugs.

It is easy for programmers to think about types of bugs
that might occur, and then devise a tool to look for these
bugs. However, the space of possible tools to build is large.
Instead of creating solutions and looking for bugs, we
propose that efforts to build bug-finding tools should start
from an analysis of the occurrence of bugs in real software
and then proceed to building tools to locate these bugs. This
paper describes a method where the source code change
history of a software project drives, and helps to refine, the
search for bugs.

The first step in the process is to identify the types of
bugs that are being fixed in the software. We have done this
by a manual inspection of the bug database and source code

repository of the Apache Web server [29]. The next step in
this process is to build a bug detector driven by these
findings. The bug detector we chose to build is a function
return value checker, which determines if a function’s
return value is tested before being used. The innovative
aspect of our bug detector is that it uses information
automatically mined from the source code repository to
refine the rankings of the warnings it produces.

2 PRELIMINARY MINING OF HISTORICAL DATA

The first step in this investigation was to review the
historical data for the Apache Web server, httpd [1], to gain
an understanding of what data exists and how useful it may
be in the task of bug finding. For this, we did a manual
inspection of the data by combing through historical
information trying to determine how much information
about fixed bugs exists and how easy it is to identify such
information. By categorizing the types of bugs that had
been fixed, we were able to drive the next stage of our work,
the creation of a static analysis tool to find a particular type
of bug. The details of our study can be found in [29].

Our preliminary, manual inspection of the data gave us
two important insights. First, we decided that automatically
mining the source code changes in the CVS repository [7],
and ignoring the commit messages and bug reports, would
be the most efficient way to make use of the historical
information. This conclusion was based on the difficulty of
correlating bug reports and the corresponding source code
changes. Second, we discovered a list of bug types that were
commonly fixed in the software project we studied.

3 STATIC ANALYSIS TOOL

Many of the bugs found in the CVS history are good
candidates for being detected by static analysis, especially
NULL pointer checks and function return value checks. We
chose to develop a function return value checker based on
the knowledge that this type of bug has been fixed many
times in the past. Briefly, this checker looks for instances

466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

. C.C. Williams is with the University of Maryland, 4140 AV Williams
Bldg., College Park, MD 20742. E-mail: chadd@cs.umd.edu.

. J.K. Hollingsworth is with the University of Maryland, 4155 AV Williams
Bldg., College Park, MD 20742. E-mail: hollings@cs.umd.edu.

Manuscript received 25 Oct. 2004; revised 8 Apr. 2005; accepted 19 Apr.
2005; published online 8 June 2005.
Recommended for acceptance by A. Hassan and R. Holt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0240-1004.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

where the return value from a function is used in the source
code before being tested. The static checker we implemen-
ted takes advantage of data that has been automatically
mined from the changes stored in the source code
repository to refine its results. The data that we produce
from this mining is a list of functions that are involved in a
potential bug fix in the software repository. The following
sections describe in detail the source code checker we have
implemented, how we mine the source code repository, and
how the mined information is used to refine the results of
the tool.

3.1 Function Return Value Checker

The return value checker determines if, when a function
returns a value, that value is tested before being used. Using
a return value can mean passing it as an argument to a
function, using it as part of a calculation, dereferencing the
value if it is a pointer or overwriting the value before it is
tested. We also check for return values that are never stored
by the calling function. Testing a return value means that
some control flow decision relies on the value. The checker
does a dataflow analysis on the variable holding the
returned value only to the point of determining if the value
is used before being tested. The checker simply identifies
the original variable the returned value is stored into and
determines the next use of that variable. If the variable
during its next use is an operand to a comparison in a
control flow decision, the return value is deemed to be
tested before being used. If the variable is used in any way
before being used in a control flow decision, the value is
deemed to be used before being tested. In order to improve
our results, a small amount of interprocedural analysis is
performed. It is often the case that a return value will be
immediately used as an argument in a call to a function. In
these cases, the checker determines if that argument is
tested before being used in the called function.

The need for checking the return value is intuitive in
C programs since the return value of a function often may
be either valid data or a special error code. For example,
functions returning a pointer often return NULL as an error
code. This error code could cause problems if the return
value is dereferenced without being tested. If an integer
value is returned often -1 or 0 may be used as an error code
and if so these values should not be used in arithmetic. The
idea of a function return value checker is not new [18];
however, refining the results based on data mined from a
source code repository and data mined from the current
version of the software (as described later) is new.

Our checker categorizes each warning it finds into one of
several categories. Warnings are flagged for return values
that are completely ignored or if the return value is stored
but never used. Warnings are also flagged for return values
that are used in a calculation before being tested in a control
flow statement. Any return value passed as an argument to
a function before being tested is flagged, as well as any
pointer return value that is dereferenced without being
tested. Table 2 shows the complete list of categories of
warnings our checker reports.

While it is often the case that a function written in C
returns either an error code or valid data as the return
value, this is not a hard and fast rule. Some functions never

return an error code and, hence, do not need their return
value tested before being used. Other functions, such as
printf, produce a return value that is seldom useful and
nearly always ignored. These types of functions cause a
static analysis tool to produce false positive warnings.
Without prior knowledge, it is difficult to tell which
functions do not need their return value checked. The data
we mine from the source code repository and from the
current version of the software is used to help determine the
actual usage pattern for each function.

3.2 Mining the Source Code Repository

While we previously gathered data from the repository
through a manual inspection of the CVS commit messages
and source code changes, the data used by the static
analysis tool is automatically mined from the source code
repository by having our tool inspect every source code
change in the repository. The CVS commit messages are not
used when this data is gathered.

In mining the source code changes, we try to determine
when a bug of the type we are concerned with is fixed. We
look for a source code change that takes a function return
value, which was previously not tested before being used,
and adds a test of the return value. For each such bug fix,
we are interested in the function called to produce the
return value. We believe that such a bug fix indicates that
the called function is likely to need its return value checked
before being used elsewhere in the system. The fact that the
programmer took the time to go back and make this change
leads us to believe that it is an important change to be made.

To perform the source code mining, we use the source
code checker we have developed to determine when a
potential bug has been fixed by a source code change. We
run our checker over both versions of the source code. If, for
a particular function called in the changed file, the number
of calls remains the same and the number of warnings
produced by our tool decreases, the change is said to fix a
likely bug. The heuristic does not try to determine if a test of
a return value is removed (which may indicate the check is
not needed). This may be a useful addition to the heuristic
and something we plan to investigate in the future. If we
determine that a check has been added to the code, we flag
the function that produces the return value as being
involved in a potential bug fix in a CVS commit. The end
result of the mining is a list of functions that are involved in
a potential bug fix in a CVS commit.

3.3 Ranking the Results

The output of the function return value checker is a list of
warnings denoting instances in the code where a return
value from a function is used before being tested. The user
receives a full description of the warning including the
source file, line number, and category of the warning. As
previously mentioned, there are a number of reasons why
this static analysis may produce a large number of false
positive warnings. In order to make this analysis more
useable, our tool tries to rank the warnings from least likely
to most likely to be false positives. Two separate compo-
nents are used to rank the warnings. The first is the data
mined from the source code repository, the historical context

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 467

information. As noted above, this is a list of functions that are
involved in a potential bug fix in a CVS commit.

The second component of the ranking is data mined from
the current version of the software, the contemporary context
information. This tracks, over the entire current version of
the source code, how often each function has its return
value tested before being used. We determine the percen-
tage of the invocations of a particular function where its
return value is tested before being used. We use this
information to gauge, from the current version of the
software, how likely the programmer thought it was
necessary to check the return value of a particular function.

For ranking purposes, warnings are grouped by the
function called to produce the return value. The called
functions, rather than the individual warnings at a call
site, are ranked by our system. All warnings produced by
calling a specific function are ranked together. By mining
the source code repository and the current version of the
software we are trying to determine the functions that are
most likely to need their return values checked before
being used.

The ranking is done in two parts. First, the functions are
divided into two groups, those that are involved in a
potential bug fix in a CVS commit and those that are not,
with the former group being ranked above the latter. Next,
within each group, the functions are ranked by how often
their return values are tested before being used in the
current version of the software. We believe that the
functions most likely to need their return values checked
and whose warnings are most likely to be true errors, are
those that have been involved in a potential bug fix in a CVS
commit and have their return values checked very often but
not all the time in the current version of the software.

4 CASE STUDIES

We have used our software repository mining techniques
and static analysis tool on two different software projects.
First, we looked at the Apache Web server software project.
Next, we looked at the Wine project, an open-source
implementation of the Windows API. Each of these projects
is a multiperson, multisite effort and the resulting software
is in daily use by many people.

4.1 Evaluation of Results

To evaluate our results for each case study, we produce two
rankings of the warnings our static analysis tool produces.
The Naı̈ve Ranking contains warnings produced by calls to
functions whose return value is tested before being used
more than half the time in the contemporary context. This
ranking is sorted by the functions’ contemporary context
information, and acts as the baseline for our evaluation. The
ranking produced by our technique is the HistoryAware
Ranking. The top half of the HistoryAware Ranking consists of
all warnings produced by a call to a function that is
involved in a potential bug fix in a CVS commit. This
includes warnings produced by calls to functions whose
return value is tested before being used half of the time or
less in the contemporary context. This list of warnings is
ranked by the functions’ contemporary context information.
The bottom half of the HistoryAware Ranking consists of all

warnings in the Naı̈ve Ranking that are not already ranked
in the HistoryAware Ranking, ranked by the functions’
contemporary context information.

For the Naı̈ve Ranking, we are only inspecting functions

that have their return value checked more than half of the

time in the contemporary context. Since we are using this

cutoff, functions that are called exactly twice and have their

return value checked exactly once will never be included in

the Naı̈ve Ranking. We do not believe this to be a significant

population. In the Apache case study, we found three

functions that were called exactly twice and had the return

value checked exactly once, and they all happened to have

been flagged with a potential bug fix in a CVS commit. In

the Wine case study, we found 11 such functions, nine of

which were flagged with a potential bug fix in a CVS

commit.

4.2 Apache Web Server Case Study

We ran a case study of our checker on the Apache Web
server source code. This is a large project with a lengthy
CVS history and we looked at nearly 3 years of CVS
commits. The current snapshot contains about 200,000 lines
of code and approximately 2,200 unique functions are
called.1 These counts include both the core of the Web server
and optional modules. Our checker runs on Linux; thus, we
only considered modules that would run on such a system.
We also included the Apache Portable Runtime (apr and
apr-util) since the Web server will not compile without it.

We successfully evaluated 6,944 CVS commits to
determine which functions were involved in a function
return value check bug fix in a CVS commit. There were
2,212 more commits made to the CVS repository that we
could not run through our checker. The commits that would
not run through our checker did so for a number of reasons.
Some CVS commits would not configure correctly, for
reasons discussed in Section 5.4. Some files contained C
constructs that the parser we used could not handle, most
notably having a variable number of arguments to a #define
macro. Also, the parser [24] does not yet fully support
parsing of GNU extensions to the C language [27]. A small
number of commits also had compile errors where a file
with a syntax error was checked in to the repository.

4.2.1 Special Considerations

The Apache Web server source code is unique in a number
of ways. First, the code is divided into a number of pieces,
many of which are optional to build. The core code is quite
small (around 30,000 lines of code) and provides only the
basic functionality of a Web server. All of the interesting
functionality resides in modules that the user can optionally
build and load at runtime. One of the challenges we faced
was to ensure that, when we analyzed a source file that was
part of one of these modules, we configured the source code
correctly to include that module in the build process.

In addition to the optional modules, the Web server also
relies on the Apache Runtime Library. The APR is a set of
libraries produced by the Apache project to isolate some of
the platform specific code from the Web server and give the

468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

1. Our study was confined to the 2.0 branch.

developer a consistent set of APIs to use for common tasks.
This code is an Apache project outside of the Web server’s
source code repository and it is one of the pieces that has
been most troublesome in getting source trees to configure
correctly. Early in the development of the Web server, it
appears, from looking at old releases of the software, that
the APR was part of the Web server’s repository and
located in a different directory than it is today. See
Section 5.6 on CVS shortcomings for a discussion as to
why this is a problem.

4.2.2 Results for the Apache Web Server Case Study

Our checker flagged 6,718 function call sites in the current
snapshot (taken from the CVS repository on 29 Oct 2003) of
the Apache Web server source code with warnings. These
6,718 warnings represent calls to 1,779 unique functions.

In searching the CVS commits, we found 110 functions
that are flagged with a likely return value check bug fix and
are called at least once in the current CVS snapshot. Those
functions were involved in 232 likely bug fixes identified in
the source code repository. Of those 110, 58 (52 percent)
have their return value checked 100 percent of the time in
the current CVS snapshot and so are involved in no
warnings. For comparison, 56 percent of all functions
(1,001) had their return value checked 100 percent of the
time. The remaining 52 corrected functions are involved in
284 warnings flagged by our checker. We consider these
284 warnings likely candidates to be true errors. These
284 warnings do not include functions whose return value
is never checked, functions with large numbers (over 50) of

unchecked return values, functions called via function
pointers or functions whose return value is checked less
than 11 percent of the time in the contemporary context. We
chose 11 percent as our lower bound after inspecting
warnings produced by functions down to 1 percent. We
observed that all warnings below the 11 percent mark were
false positives.

Upon inspecting these 284 warnings, we believe
101 warnings could be true bugs and need further
inspection. By this, we mean that in the particular calling
context of the warning, it was either clear the return value
could not be safely used without being tested or not clear the
return value could be safely used without being tested. The
101 bugs found in these warnings give a false positive rate
of 64 percent for this chunk of our results (functions flagged
with a CVS bug fix). See Table 1 for the breakdown of these
results. The warnings produced by functions flagged with a
potential bug fix in a CVS commit are broken down in
Table 1 by contemporary context ranking as well.

There were 100 functions that did not have a bug fix
identified by our tool in the CVS repository whose return
value was checked more than 50 percent of the time in the
contemporary context. These functions account for 283 of
the warnings flagged by our checker. Since these functions
have their return values checked more often than not, we
expect these warnings are also likely candidates for being
true errors. Upon inspecting these 283 warnings, we believe
70 could be true bugs and need further inspection. This
subset of our results produces a false positive rate of
75 percent. See Table 1 for the breakdown of these results.

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 469

TABLE 1
Warnings and Likely Bugs for the Apache Web Server

TABLE 2
Warnings Reported for the Apache Web Server

Table 2 contains a breakdown of the warnings we inspected
by category (see Section 3.1 for a description of these
categories).

Overall, we inspected 567 warning reports and found
171 that we believe are suspicious and should be marked as
a likely bug. This gives an overall false positive rate of
70 percent. The remaining 6,151 warnings marked by our
checker are produced by functions whose return value is
checked 50 percent of the time or less and we expect these
warnings to be unlikely candidates to be true errors, thus
we did not inspect them.

A false positive rate closer to 50 percent would be more
palatable since, at this level, a user is as likely as not to find
a bug when inspecting a warning reported by our tool. Our
technique has not yet achieved this false positive rate.
However, a simple Lint-like tool would have had a higher
false positive rate as each warning report is given equal
weight and not ranked in any way. A programmer using
Lint would have had to review each of the 6,718 warnings
to find the 171 bugs, which would be 39 false positives for
every real bug. Furthermore, the density of false positives
near the top of the list is equally, perhaps more, important
than the total rate. The distribution of false positives within
the results is explored in Sections 4.5.3 and 4.5.4.

4.3 Wine Case Study

We conducted a second case study of our checker on the
Wine source code [30]. This is another open-source project
with an extensive CVS history. We mined more than 6 years
worth of history. The snapshot used in the analysis was
taken from the CVS repository on 14 September 2004.

We successfully evaluated 21,671 CVS commits to :c files
to determine which functions were involved in a potential
bug fix in a CVS commit. There were 18,847 more commits
made to C language source files in the CVS repository that
we could not run through our checker. The commits that
would not run through our checked did so for a number of
reasons. Some CVS commits would not configure correctly,
for reasons discussed in Section 5.4. Some files contained C
constructs that our parser could not handle, most notably
having a large multidimensional array initialized in a
declaration.

4.3.1 Special Considerations

The Wine source code presented our tools with a number of
constructs that our underlying parser could not handle.
These include the keyword inline, inlined assembly code,
and function attributes. For the most part, we were able to
write Perl scripts to patch the source code from the
repository to remove these constructs. However, with over
40,000 source code revisions to C language source files, we
could not inspect each one by hand to ensure that the source
code would go through the parser. Certainly, at least some
of the parser’s failures were due to the patch scripts failing
to correct the code or producing incorrect code.

The source code repository also contained a number of
odd attributes. Almost all of the commits made to the
repository are marked with the same author (69,654 of
70,703 are attributed in the CVS repository to the same
author). This resulted in there being a much smaller
number of CVS transactions identified than we expected.

The Wine repository has 70,715 revisions but has only
4,971 CVS transactions (an average of 14.2 files per
transaction versus 2.7 files per transaction for the Apache
Web server). Since our sliding window algorithm, dis-
cussed in Section 5.3, uses the author field as a matching
criterion we believe that having the same author on almost
all the commits may have inflated the size of the
transactions. Many of the commit messages in the reposi-
tory listed an e-mail address and name that was different
than the name of the author that made the CVS commit.
However, this was not the rule in the repository and we did
not try to mine the repository for this information. It
appears that multiple people contribute to this project but a
single source code librarian performs virtually all the CVS
commits.

We do not expect these larger transactions to affect our
results since we do not do any analysis of potential bug
fixes per transaction. As long as the source trees produced
by these transactions configure properly, allowing our static
checker to run on the updated files, we will still be able to
recover all the potential bug fixes from the CVS repository.

4.3.2 Results for the Wine Case Study

Our checker flagged 84,812 warnings in the current snap-
shot of the Wine source. These warnings represent calls to
11,735 unique functions. In searching the CVS commits, we
found 147 functions that have are flagged with a likely
return value check bug fix and are called at least once in the
current CVS snapshot. Those functions were involved in
262 likely bug fixes identified in the source code repository.
Of those, 50 have their return value checked 100 percent of
the time in the current CVS snapshot (34 percent) and, so,
are involved in no warnings. For comparison, 37 percent of
all functions (4,404) had their return value checked
100 percent of the time. The remaining 97 functions are
involved in 778 warnings flagged by our checker. We
consider these 778 warnings likely candidates to be true
errors. These 778 warnings do not include functions whose
return value is never checked, functions with large numbers
(over 50) of unchecked return values, functions called via
function pointers or functions whose return value is
checked less than 11 percent of the time in the contempor-
ary context.

Upon inspecting these 778 warnings, we believe
260 warnings could be true bugs and need further
inspection, using the same criteria outlined for the Apache
Web server case study. The 260 bugs found in these
warnings give a false positive rate of 67 percent for this
chunk of our results (functions flagged with a CVS bug fix).
See Table 3 for the breakdown of these results.

There were 513 functions not flagged with a potential
bug fix in a CVS commit but with their return value checked
more than 50 percent of the time in the current software
snapshot. These functions account for 1,537 of the warnings
flagged by our checker. Since these functions have their
return values checked more often than not, we expect these
warnings also to be likely candidates for being true errors.
Upon inspecting these 1,537 warnings, we believe 285 could
be true bugs and need further inspection. This chunk of our
results produces a false positive rate of 81 percent. Overall,
we inspected 2,315 warning reports and found 546 that we

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

believe are suspicious and should be marked as a bug. This

gives an overall false positive rate of 76 percent. Table 3

shows the breakdown of these results. Table 4 contains a

breakdown of the warnings we inspected by category.

4.4 Analysis of the Ranked Functions

It is informative to look at what types of functions are

ranked highly by our HistoryAware metric. The first set of

functions to study includes those that are ranked highest by

our system. The next set of functions to study contains those

functions that are checked, in the current context, 50 percent

of the time or less, but are flagged with a potential bug fix in

CVS. These functions produce warnings that would not be

recommended for inspection except for being flagged by

CVS mining.
We first look at the top functions from each of our case

studies. Three of the top ranked functions for the Wine

project are system supplied string manipulation functions,

strrchr, strchr, and strstr. The function strrchr is also one

of the top ranked functions for the Apache project. Three

of the functions in the Wine results return a pointer to an

already allocated data structure; they are basically lookup

functions. Two of the functions in the Apache results fit

this description. These functions return NULL to indicate

the data was not found. An example of a bug involving
one of these functions can be found in Fig. 1. If the
function ap_server_root_relative returns the value
NULL, the code snippet will cause a segmentation fault.
One of the highly ranked functions in each case study is
used to allocate memory, alloc_handle in Wine and malloc
in Apache. The Apache results also contain two highly
ranked functions that perform some complex logic and
return a status code to signal if the logic failed. Another
two highly ranked functions in the Apache results
manipulate a data structure and return a status code to
indicate success or failure.

We look next at the highest ranked functions that are
checked 50 percent or less in the current context but are
flagged with a potential bug fix in the CVS history. In the
Apache results, three of the functions access an already
allocated data structure via a pointer. Three functions
perform some logic and return a status flag. One manip-
ulates a piece of data passed to it as an argument and either
returns that data or an error code. One function allocates
and initializes memory. For the Wine results, five of the
functions perform some type of complex logic and return a
status flag. One is a system string manipulation function
(strtoul). Two functions access a previously created data

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 471

TABLE 3
Warnings and Likely Bugs for Wine

TABLE 4
Warnings Reported for Wine

Fig. 1. Example return value check bug.

structure. It is interesting to note that one function in each
set of results is concerned with some type of locking
functionality, a general mutex lock in Apache and a lock on
a byte range within a file in Wine.

4.5 Effectiveness of Using Mined Data

Our goal for using data mined from the software repository
is to improve the results of the static analysis tool we have
built. To judge the efficacy of this approach, we need to
determine whether a developer will be more likely or more
quickly able to find true bugs in a list of warnings ranked
with historical context information than without. To do this,
we measure whether our ranking system produces a lower
overall false positive rate and if the true bugs tend to cluster
near the top of the list of warnings.

4.5.1 Statistical Significance

In order to evaluate our results, we ran a Chi-square test on
the results of each of our case studies to determine if the
improvement we see in the false positive rate due to our
ranking system is statistically significant. For each case
study, we compare the false positive rates of the population
of warnings selected by looking at functions checked more
than 50 percent of the time in the current context against the
population of warnings selected by looking at the functions
that are flagged with a potential bug fix in the software
repository.

In performing the Chi-square test on the data from the
Apache Web server case study, we determined the Chi-
square value to be 6.149, which exceeds the criteria (3.84) for
95 percent confidence. The data from the Wine case study
was also statistically significant. The Chi-square value was

calculated to be 26.76. This also exceeded the criteria (3.84)
for 95 percent confidence. In fact, the Wine data was
statistically significant at the 0.001 level. Table 5 shows the
number of potential bugs in each category used to calculate
the Chi-square value for the Apache Web server case study.
The calculations in parenthesis explain how the numbers
were derived and are from Table 1.

4.5.2 Relationships of Ranking Criteria

In analyzing our results, it is important to look at where the
likely bugs are found within our ranking of warnings. Our
ranking is really based on two criteria. The historical
context information contains functions flagged with a
potential bug fix in a CVS commit. The contemporary
context information measures how often a function has its
return value tested before being used in the latest snapshot
of the source code. For the Naı̈ve Ranking, we have chosen
to look at warnings produced by functions whose return
value is checked more than half the time in the con-
temporary context. For the HistoryAware Ranking, we have
chosen to look at all the returned warnings, except those
specifically discussed before. The Ven diagram in Fig. 2
shows how the HistoryAware Ranking interacts with this
notion of checking only warnings produced by functions
whose return value is checked more than half the time in
the contemporary context for the Apache Web server
results. The left circle represents all warnings listed in the
HistoryAware Ranking. The right circle represents all
warnings produced by functions flagged as having their
return value checked more than half the time in the
contemporary context. The intersection of the two circles
shows the warnings flagged by both criteria. Fig. 3 shows

472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 5
Apache Chi-Square Calculation

Fig. 2. Division of warnings, Apache Web server.

the same thing for the Wine results. Figs. 8 and 9 examine

the false positive rates for the subsets of warnings produced

by using cutoff rates other than 50 percent.
In both cases, the group of warnings included in the

HistoryAware rankings associated with functions that do

not have their return value checked more than half the time

in the contemporary context have the lowest false positive

rate. This seems to indicate that functions that do not often

have their return value checked in the contemporary

context but are involved in bug fixes in the repository

produce warnings that are more likely to be real bugs. It

could be that these functions do not need their return value

checked in every case, but that programmers have a

difficult time in understanding the cases where they do.

This data invites further investigation.

4.5.3 Precision

In Figs. 4a and 5a, we plot the measure of precision of the list

of warnings produced by running the Wine and Apache

Web server source code, respectively, through our static

analysis tool. Figs. 4b and 5b provide a more detailed view

of the left side of the graphs, representing the first warnings

inspected, from Figs. 4a and 5a, respectively. Precision

measures how many of the retrieved items are relevant

items. In the context of our case studies, we are measuring

how many warnings we classified as likely bugs were

retrieved (the relevant items) versus the number of false

positive warnings (the irrelevant items). We plot precision
against the number of warnings inspected. We would like

to have a very high precision for the first warnings we

inspect. That would indicate that the true errors are being

pushed to the top of the list by our ranking system.
Figs. 4a and 5a show the precision over warnings

inspected in two different lists of warnings. Fig. 4a shows

that our ranking system starts out well and continues to

achieve a higher precision than the list of Naı̈ve Ranking
until warning number 165. From about warning number

500 our system again begins to be more precise than the

Naı̈ve Ranking. Fig. 5a shows our ranking system starting

out very precise then falling a bit below the Naı̈ve

Ranking before becoming more precise again around

warning 121. In the Wine results shown in Fig. 4a, for
the top 50 warnings our precision is 0.62 (meaning nearly

two of every three warnings is a likely bug) while the

precision of the Naı̈ve Ranking is 0.53. In the Apache

results shown in Fig. 5b, for the top 50 warnings the

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 473

Fig. 3. Division of warnings, Wine.

Fig. 4. (a) Precision in the Wine case study. (b) Precision in the Wine case study, detail.

precision for the Naı̈ve Ranking is 0.32, while the precision

for the HistoryAware Ranking is 0.42.

4.5.4 Recall

Figs. 6 and 7 plot the measure of recall of the same two sets

of warnings for Wine and the Apache Web server,

respectively. Recall measures how many of all of the

possible relevant items have been retrieved. It is a measure

of how deeply down the list of warnings a user would need

to go to find some desired percentage of the relevant

warnings. This is a monotonically increasing function of the

number of warnings inspected. If a ranking function is

effective, the plot will increase steeply near the left side of

the graph. In both figures, the recall of the Naı̈ve Ranking

increases at a faster rate then the recall of the HistoryAware

Ranking. This is the result of the HistoryAware Ranking, in

both case studies, identifying more likely bugs than the

Naı̈ve Ranking. Since the HistoryAware Ranking has more

possible relevant items than the Naı̈ve Ranking, the recall of

the Naı̈ve Ranking increases more quickly, even though the

474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Fig. 5 (a) Precision in the Web server case study. (b) Precision in the Web server case study, detail.

Fig. 6. Recall in the Wine case study.

Fig. 7. Recall in the Web server case study.

precision, or density of likely bugs, is higher for the
HistoryAware Ranking.

4.5.5 Cumulative False Positive Rate

Figs. 8 and 9 plot the cumulative false positive rate against
the measure of contemporary context for the functions that
produce the warnings that are inspected. The x-axis on
these two graphs is the contemporary context informa-
tion—how often in the contemporary context a function has
its return value checked? We were interested to see how the
contemporary context information would affect the false
positive rate. Thus, these graphs have three, instead of two
plots on them. The Naı̈ve Ranking plot is the same as was
described earlier. The HistoryAware Ranking has been
broken into two parts here, the HistoryAware Ranking—CVS
Flagged and HistoryAware Ranking—Non-CVS Flagged. The
CVS Flagged plot shows the results of inspecting the
warnings from the HistoryAware Ranking that were
produced by a function that was flagged with a potential
bug fix in the source code repository. Our ranking scheme
places these warnings at the top of the list. The Non-CVS
Flagged series consists of the rest of the warnings produced
by our ranking system, the warnings produced by functions
not flagged with a potential bug fix in the repository and
with their return values checked more than half the time in
the contemporary context. These are placed at the bottom of
the list produced by our ranking.

The CVS Flagged warnings have a lower false positive
rate throughout the rankings in both case studies. There is
also an increase in the false positive rate for the CVS

Flagged series very near the 0.6 contemporary context
ranking in both sets of results. There is also a decrease in the
false positive rate for this series around 0.4 in the Wine
results and 0.3 in the Apache Web server results. We
speculate that this may indicate a class of functions whose
return value needs to be checked only in particular calling
contexts, thus giving these functions a ranking from the
contemporary context that is in the middle of the graph.
Programmers may have difficulty determining when the
return values for these functions need to be checked,
leading to these functions being flagged with a potential
bug fix in the CVS commit.2 However, since many of these
functions only need their return values checked in
particular contexts, a large number of their warnings are
false positives.

While the false positive rate for our HistoryAware
ranking remains high, over 50 percent, this is a considerable
improvement over the original set of warnings produced by
our tool and over traditional compiler warnings and tools
such as Lint. This work takes a bug pattern that is nearly
unusable with its number of false positives and allows it to
be used with some success. More dataflow analysis and a
deeper understanding of the context of function calls may
help to improve the false positive rate; however, the goal of
this work is to determine how much improvement historical
data could provide to the results.

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 475

Fig. 8. False positive analysis in the Wine case study.

Fig. 9. False positive analysis in the Web server case study.

2. This is perhaps an indication of a maintenance issue with the code.
These functions may need to be refactored to make their need of a return
value check more consistent or to be better documented to inform
developers of their peculiarities.

4.6 Threats to Validity

This section discusses a number of threats to the validity of
our experiments. Only the first author inspected the large
number of warning messages produced by our tool. The
author is not an expert on either the Apache httpd source
code or the Wine source code. In reviewing the warnings,
an attempt was made to determine which warnings were
truly false positives and which should be further inspected
by an expert. The false positive rate is based on likely bugs,
those bugs that we believe should be inspected by an
expert. This causes our calculation of false positives to be a
lower bound on the true false positive rate as determined by
an expert developer. For our analysis, we have only
measured the false positive rate of the warnings; we have
not dealt with false negatives. In the future, we may analyze
the false negatives produced by our static checker by
seeding bugs in a selection of gold standard code to
determine how many false negatives are produced. Finally,
we have not tried to identify instances of function
renaming. If a function foo had previously been named
bar, bar being flagged with a potential bug fix in the CVS
repository would not contribute to the ranking of warnings
produced by foo.

5 IMPLEMENTATION DETAILS

In the following sections, we give a brief description of the
overall process we developed to take data from a CVS
repository and produce results from our static analysis tool.

5.1 Storing Revision Histories in a Database

CVS is implemented as a layer on top of an earlier revision
control system called RCS [25]. When data is stored in a
CVS repository, there are two options for querying the data,
operating on the RCS files directly or using CVS commands
to retrieve the data. Neither of these options are particularly
pleasant. Our solution was to replicate all the data from the
CVS repositories we worked with in a MySQL database
[28]. In addition, when we run any analysis on a source file,
we store those results in the database.

Storing the data from the CVS repository in a database
has been a boon to our productivity. Using the Perl DBI
Interface has allowed us to easily produce scripts that
interact with the database [8]. The schema we have used is a
modified version of the schema described by Zimmermann
[31]. The changes we made were to not store information
regarding directories separate from the information stored
for files and to not store CVS branch information. With
regards to the directory information, we believe this more
accurately represents the way CVS stores information (see
Section 5.6 which describes the shortcomings of CVS). For
each file in the CVS repository, the full text of each revision
is stored in the database. While less efficient than storing a
diff from the previous version, in this era of cheap storage
devices, this makes recreating a source tree and searching
the text of the revisions easier. Storing data for both case
studies took less than 5 gigabytes of disk space.

A branch in CVS is a fork in the development of the
source code, creating a parallel source tree that continues to
be managed by the same CVS repository. A branch is often
used to represent a released version of the software. This

allows the software team to support bug fixes in the
released software from inside CVS while still working on
development tasks for the next release on the trunk.
Changes made to the branch are not visible in the main
trunk of the source tree unless those changes in the branch
are explicitly merged back into the trunk. We do not want to
analyze the same update twice: once in the branch and once
as the changes on the branch are merged back into the main
trunk. Therefore, we do not mine any changes made to a
branch; we only mine changes made to the main trunk.
Changes made to a branch are mined when changes on that
branch are merged into the main trunk.

5.2 The Results Database

We store the results of running the static analysis on each
version of each source file in a database. Storing the results
of our static analysis in the database provides us the ability
to sort, search, and inspect the results quite easily. This is
particularly useful in identifying files that have failed to go
through the static analysis tool or for particular time spans
where updated files fail to go through the tool. The latter
case pointed out an instance of a particular revision of an
autoconf file in the Apache Web server source that was
incompatible with the installed version of autoconf and
prevented 15 transactions from configuring correctly. Fully
automatic mining may eventually be possible, but currently
it is an iterative process, and storing results in the database
eases this process.

5.3 CVS Transactions

A series of commits may be part of a larger CVS transaction
if they are all the result of one CVS command line operation.
Also, some developers may issue several commit com-
mands which are logically related (e.g., one per file or
directory). Unfortunately, CVS does not explicitly store
transaction information in the repository.

The goal of identifying a CVS transaction is to recreate as
correctly as possible the state of the source tree that the
programmer commits from when the repository is updated.
We expect that the programmer’s local copy of the source
tree is the version that has been tested with the updated
code and is a stable, working source tree. A source tree that
does not encompass an entire CVS transaction may contain
configuration or syntax errors as a result. These errors may
prevent static analysis tools from operating properly on the
source code. We have implemented a variation of the
sliding window algorithm described in [31] to rebuild the
CVS transactions. However, we do not consider commit
messages since a programmer can provide different commit
messages on a per directory basis during a single commit.
Our implementation of the sliding window algorithm is
based strictly on timestamps, authors, and the notion that a
file cannot be updated twice by the same commit.

This approach may catch commits that are not only
produced by one CVS command but by a series of CVS
commands issued by the programmer in quick succession.
We expect that any commits made by an author in less time
than it takes to compile and build the software project are
related, or at least represent a set of changes that need to be
made together to maintain a usable source tree. As long as
these commits are done within a reasonable amount of time

476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

the sliding window algorithm can recognize that they are
part of a related transaction. Since CVS commit styles differ
so much, even if CVS did record the transactions, some
version of the sliding window algorithm would be required
to reconstruct logical commits.

The size of the window in the sliding window algorithm
determines how far apart to commits can occur and still be
considered part of the same transaction. Choosing the size
of the sliding window is somewhat tricky. We initially used
a window of 30 seconds, thinking that the difference in
successive timestamps from one CVS command could not
be very large. However, as mentioned earlier, many
programmers commit large numbers of files one by one or
by directory, causing the logical CVS transaction to stretch
beyond one CVS command and beyond what a 30 second
sliding window would identify. We evaluated window
sizes of 30, 180, 240, 300, and 360 seconds. We jumped from
30 to 180 seconds because the gap between the two commits
that tipped us off to this problem was just over 120 seconds.
The decrease in the number of transaction found was
substantial between the 30-second and 180-second win-
dows, a loss of 1,189 transactions (8 percent of the
transactions found with a 30-second window). The decrease
in the number of transactions was smaller for the rest of the
window sizes with the differences between 180, 240, 300,
and 360 seconds being 313, 212, and 198, respectively. The
window of size 300 seconds seemed to provide a stable
number of transactions and that was the size we use
throughout this paper.

Another challenge regarding CVS transactions is to deal
with overlapping transactions from different authors. Two
transactions overlap if at least one file from the second
transaction is updated between the first file and the last file
from the first transaction. If we simply checked out the
source code from the CVS repository when the last file of
the first transaction is updated, we will have not only the
first transaction applied to the source tree but at least part of
the second transaction as well. Since our goal is to recreate
the source tree seen by the programmer making the commit,
the source tree that would be checked out from the
repository would be incorrect. In order to produce the
most accurate source tree, we need to check for overlapping
transactions and be sure to rollback any commits that
belong to a transaction that overlaps the transaction that we
are interested in.

5.4 Interactions with the Build Environment

We need each source tree we analyze to configure correctly.
Each software project we analyzed is supported on multiple
platforms and passes a number of command line options to
the compiler to describe which parts of the source code
need to be included to compile on a particular platform. In
order to do our analysis, we need to capture exactly how the
Makefiles invoke the compiler for each source file we are
studying. Since many of the Makefiles are generated by the
configure scripts supplied in the source tree, this requires
the source tree to configure properly. Further, many of the
header files in the Apache httpd project are generated by the
same configure scripts to allow for platform specific
differences to be incorporated.

We wanted to avoid compiling as much of the source
code as possible since the software projects we studied can
take more than 20 minutes to fully build. Our solution has
been to invoke gmake with the -n option, which will merely
print out all the commands that the Makefile would invoke.
This scheme has the added benefit of revealing which
directory is the current directory while the Makefile
operates. Knowing the current directory is important since
the compiler may be invoked from a directory different than
the one the file resides in, and the relative paths to header
files in the source file may reflect that. Both our scheme and
the one outlined in [10] have problems with “sneaky”
Makefiles that move files generated by the make process
around during the build process and do not properly
specify a dependency in the Makefile between the new
location of the file and the old location. We deal with this by
identifying a skeleton set of code that must actually be
compiled for gmake -n to function properly. The scheme in
[10] proposes dealing with this by adding wrappers for the
cp, mv, and ln commands. Additionally, in the case of the
Apache Web server project we need to ensure, when we
analyzed a file from a loadable module, the module was
enabled during configuration.

Trying to configure and build the source tree raises
another issue; one that we believe could be solved by a
version control system. Most software projects rely on a
hodge-podge of tools, libraries, and homegrown languages
to configure and compile the source code. Not surprisingly,
it is important to capture the history of the versions of these
tools to aid in the mining of the source code of the main
software project. Different tools and libraries may be used
through the lifetime of the project or, more likely, the
versions of the tools and libraries used will change.
Unfortunately, as these support packages change the new
versions may be incompatible with the previous versions.
Some projects include the tools they use during the build
process in their repository. However, widely available tools
like autoconf and gmake are rarely archived. It would be
extremely helpful if the version control system tracked not
only source code produced by the project but the tools and
libraries that the project relies on. Programmers could then
denote clearly in the repository when support for a new
compiler was established, or when the autoconf files were
updated to be used with a particular version of autoconf. As
it stands now, a project may have an ad hoc way of tracking
which versions of which tools it relies on, or this data may
be buried in the commit messages of the project. Providing
a standard way to store this information, which is vital to
configuring and building a source tree, seems like a natural
fit for the version control system.

5.5 Computational Costs

Beyond the overhead of getting the source tree to build
correctly is the computational cost of running the analyses.
To mine the data from the source code repository required
us to run our tool over tens of thousands of revisions of files
(between the two projects we have analyzed almost 50,000
revisions) stored in over 20,000 CVS transactions. Checking
one CVS transaction, from extracting the source tree to
storing the results in the database, took roughly 4 minutes.
Most of this time was taken by the configure scripts. Our

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 477

tool takes about as long as a compiler to analyze a source
file and never took more than a few tens of seconds on any
of the source files we checked.

In order to mine all these CVS transactions, we used a
64 node Linux cluster managed by the Portable Batch
Scheduler (PBS). We only used 20 processors at a time so as
not to overburden the database machine. Dedicating a
subset of the processors on a 64-node cluster to such a task
may seem extravagant, but the acquisition cost of such a
cluster is about the same cost of salary and overhead for a
midlevel developer for a year. In a production environment,
we would expect commits to be mined as they are made to
the repository with the results stored away for later
analysis.

5.6 Challenges in Dealing with CVS

CVS has become ubiquitous in the open-source community
as the tool of choice for source code version control. As a
tool for developers, it is a wonderful piece of open-source
software that fills a critical need in the software develop-
ment community. However, as a tool to support the mining
of a large source code repository that may go back many
years (or decades) it could be more helpful if it addressed a
small number of key issues.

One of the tasks required to mine a CVS repository is to
run our static analysis tool over a snapshot of code from the
repository at a particular moment in time. It would be
terrific if we could reliably checkout a source tree that
would compile and build. Of course, there are times when a
syntax error is committed to the repository or the source
code is in a state of flux and will not build. However, there
are many times when CVS itself stymies the compilation of
the source tree because of the information it does not store.

First, there is no way to move a file from one directory to
the next while maintaining the file’s revision history. To
move a file in the repository, the user is forced to edit the
repository by hand or use CVS commands to remove the
file from its original location and add it in the new location.
This erases all mention of the file’s existence somewhere
else and causes problems in checking out a version of the
source tree that should contain the file in its original
location. Obviously, this source tree will not compile and an
analysis that requires the source tree to compile will fail.
Slightly less problematic is when a header file or some other
widely used file is moved and the repository updated. We
did see this problem in some of the early versions of the
Apache Web server source code. A file or directory had
been moved and as a result the source tree would not build
and very few of the files would go through our static
analysis tool successfully.

Related to the above problem is the fact that there is no
way to rename a directory. If the user wishes to rename a
directory, either every file will need to be moved to a new
directory or the CVS repository will need to be edited by
hand to update the name of the directory. Each of these
solutions brings on a number of problems very similar to
those discussed for moving a file.

Finally, as discussed above we need to reconstruct CVS
transactions from individual file commits to ensure a
consistent source tree.

6 RELATED WORK

The main thrust of our work has been to investigate how we
can use data mined from source code repositories to
improve software development. While others have tried to
make general predictions about faults and to identify trends
across the software project from software repositories, our
work is concerned with discerning specific properties of the
code. We use these properties to refine static source code
checkers when looking for specific bugs. Much of the other
work in this area has dealt with historical data from within
a single company or from a series of class projects, the data
we have mined came from large-scale open-source projects.

Bevan and Whitehead show how static dependency
graphs can be augmented with data from software
repositories to identify areas in the code that need to be
refactored due to code evolution [4]. Ostrand et al. describe
a tool that automatically looks at the characteristics of a
software project and, using historical data, predicts which
files are likely to contain a larger number of faults [22].
Graves et al. use change histories to understand how code
ages. They define code to be aged if its structure makes it
unnecessarily difficult to understand or maintain. They
posit that data based on change history is more useful in
predicting fault rates than metrics based on the code, such
as size [14].

Purushothaman and Perry present a study of small
changes to determine the impact they have on the software
[23]. Specifically, they look at the properties of the change
itself, number of lines added, removed, or modified, rather
than properties of the code being changed, to determine
how small changes affect the code.

Chen et al. have built tools to allow the user to search for
information via a grep-like command that operates on the
source code and CVS commit comments [5]. This allows
developers to search the source code via CVS comments for
source code snippets.

Other work has focused on trying to locate common
updates to source code to identify successful maintenance
strategies. Rysselberghe and Demeyer document using
clone detection techniques to identify frequently applied
changes to the source code [26]. These changes are then
studied to identify possible maintenance activities, such as
refactoring. They also propose matching frequently applied
changes to bug reports to help to identify bugs in the code
and, possibly, solutions to these bugs. Hassan and Holt
propose tracking changes of more fine grained entities,
namely, function, variable, or data type, to determine how
changes propagate from one entity to another [15].

Zimmermann and Weissgerber have studied the tasks
necessary to extract usable data from a software repository
[31]. This includes looking at the task of identifying a
transaction, which is a set of commits to a collection of files
made by the same developer at the same time. They also
look at the problems associated with merges of branches in
a CVS repository. German describes an algorithm to
reconstruct transactions that is very similar in [13]. They
include a file revision in a transaction if that file revision has
the same author and same log message as other files in the
transaction and that file revision is at most t seconds away
from at least one other file revision in the transaction. The

478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

addition of that file revision also must not produce a
transaction that is more than T seconds long. The main
difference from the algorithm discussed in [13] and [31] is
the addition of the maximum length of the transaction. Our
goal in recreating a transaction is to produce a buildable
source tree from the repository. Different CVS mining tasks
may require different properties from a source tree
produced by a CVS transaction. As we discuss in
Section 5.3, our algorithm does not take into account the
log messages for commits since, for various reasons, the log
messages may differ within one transaction.

While our algorithm was driven by recreating every
CVS transaction applied to the source code, other work has
focused on tying bug reports or modification requests to
CVS commits. Fischer et al. analyzes CVS commit messages
for problem report identification numbers to determine
links between the software repository and bug tracking
system [12]. They use filenames found in software patches
associated with problem reports as well as identification
numbers to rate the confidence of each link they produce.
Fischer and Gall show that their algorithm is able to link at
least 50 percent of the problem reports to CVS commit
messages [11]. Cubranic has done work in building project
memory, tying together data that describes the source code
from multiple sources [6].

Some work has focused specifically on uncovering bugs
in source code by looking for violations of program specific
rules [20]. Matsumura et al. describe a case study that
shows 32 percent of failures detected during the main-
tenance phase of a software project were due to violations of
implicit code rules. The implicit rules used to check the
source code were generated by ’expert’ programmers and
had not previously been described in design documents.

Ferenc et al. have proposed a framework for capturing
how the Makefiles invoke the compiler for each source file
in open source software projects [10]. Their scheme, in part,
creates a wrapper script that is called by the Makefiles in
place of the compiler. The script receives the command line
arguments the compiler would receive and records them for
later use by the analysis tools as well as using them to
invoke the compiler.

Static analysis of source code to locate bugs is a well-
researched area [3], [16]. There are a number of systems
that provide a means to write code snippets that will be
used to statically check code for one type of bug or another
[9], [17]. These systems have been very successful in
finding various types of bugs [2]. The simplest of these
systems are compilers that perform type checking. A step
beyond these are tools like Lint that have a set of patterns
to match against the code to flag common types of
programming errors [18]. Systems such as metal allow
the user to define what type of patterns the static analysis
checker should look for via state machines that are applied
to the source code [9].

While static checkers are effective at finding bugs, they
can produce a large number of false positives in their
results. Therefore, the order in which the results of a static
bug checker are presented may have a significant impact on
its usefulness. Checkers that have their false positives
scattered evenly throughout their results can frustrate users

by making true errors hard to find. Those tools with few
false positives at the top of their report will likely be
perceived by users as more effective. Previous work on
improving ordering of results has focused on analyzing the
code that contains the flagged error [19].

7 CONCLUSIONS

In this paper, we have shown how data mined from a
source code repository can improve static analysis tools.
Furthermore, we have compared the results produced by a
static analysis tool using our HistoryAware ranking
historical data to the results produced using a naı̈ve
ranking technique that only looks at data from the current
snapshot of the software. We demonstrated that the value
added by the data mined from the software repository is
statistically significant and that the precision of highly
ranked items is much better than the naı̈ve technique.

From a preliminary investigation of historical data, we
have shown that the bugs cataloged in bug databases and
those found by inspecting source code change histories
differ in the types and level of abstraction. The users, not
the developers, of the software, often report the bugs found
in a bug database. This affects the type of bugs reported and
in which phase of software development these bugs are
found. Inspecting the software repository provide much
better data. Repositories record all the bugs fixed, from
every step in the development process. The knowledge
gained from the preliminary investigation was used to
guide the reminder of our work.

The next step of our work was to implement a static
source code checker and to implement a system to
automatically mine data from a source code repository.
With our static checker we have been able to identify
178 likely bugs in the Apache Web server and 546 likely
bugs in the Wine source code. The two case studies we
present show our technique to be more effective than the
same analysis without using historical data. Our technique
for ranking warnings had better precision than a similar
technique that was based on data gleaned only from the
current snapshot of the source code. In each of our case
studies, the false positive rate of the rankings produced by
our technique was consistently lower then that of the naı̈ve
ranking.

In the future, we need to explore expanding this research
to other types of bugs. It would be interesting to investigate
software repositories to see how often bugs found by such
tools as FindBugs [17] get fixed. Another matter to
investigate is how to use this data to refine the results of
such tools, as we have done here, or to predict where these
tools would be useful, in a similar manner to previous work
[21] that try to gain knowledge from bug reports and
change requests. Automatically discovering where these
bugs are fixed, rather than relying on bug reports, may
provide a more complete set of data.

ACKNOWLEDGMENTS

This work was supported in part by Department of Energy
(DOE) Grants DE-FG02-93ER25176, DE-FG02-01ER25510,
and DE-CFC02-01ER254489 and US National Science

WILLIAMS AND HOLLINGSWORTH: AUTOMATIC MINING OF SOURCE CODE REPOSITORIES TO IMPROVE BUG FINDING TECHNIQUES 479

Foundation award EIA-0080206. The authors would like to

thank Dan Quinlan at Lawrence Livermore National

Laboratory for help in using ROSE. They would also like

to thank Mustafa Murat Tikir for his kind advice during the

preparation of this paper. They also would like to thank the

anonymous reviewers for their extremely thorough and

thoughtful comments.

REFERENCES

[1] Apache Web Server, httpd, available online at http://httpd.
apache.org, 2004.

[2] K. Ashcraft and D. Engler, “Using Programmer-Written Compiler
Extensions to Catch Security Holes,” Proc. IEEE Symp. Security and
Privacy, May 2002.

[3] T. Ball and S.K. Rajamani, “The SLAM Project: Debugging System
Software via Static Analysis,” Proc. 29th Symp. Principles of
Programming Languages (POPL ’02), pp. 1-3, Jan. 2002.

[4] J. Bevan and E.J. Whitehead, “Identification of Software Instabil-
ities,” Proc. 10th Working Conf. Reverse Eng. (WCRE ’03), pp. 134-
143, Nov. 2003.

[5] A. Chen, E. Chou, J. Wong, A.Y. Yao, Q. Zhang, S. Zhang, and A.
Michal, “CVSSearch: Searching through Source Code using CVS
Comments,” Proc. IEEE Int’l Conf. Software Maintenance (ICSM ’01),
pp. 364-373, Nov. 2001.

[6] D. Cubranic, “Project History as a Group Memory: Learning from
the Past,” PhD thesis, Univ. of British Columbia, 2004.

[7] CVS—Concurrent Versions System, available online at http://
www.cvshome.org, 2004.

[8] A. Descartes and T. Bunce, Programming the Perl DBI. O’Reilly,
2000.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking System
Rules Using System Specific, Programmer-Written Compiler
Extensions,” Proc. Fourth Symp. Operating Systems Design and
Implementation, Oct. 2000.

[10] R. Ferenc, I. Siket, and T. Gyimothy, “Extracting Facts from Open
Source Software,” Proc. 20th Int’l Conf. Software Maintenance
(ICSM ’04), pp. 60-69, Sept. 2004.

[11] M. Fischer and H. Gall, “Visualizing Feature Evolution of Large-
Scale Software based on Problem and Modification Report Data,”
J. Software Maintenance and Evolution: Research and Practice, vol. 16,
pp. 385-403, Nov./Dec. 2004.

[12] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and Relating Bug
Report Data for Feature Tracking,” Proc. 10th Working Conf. Reverse
Eng. (WCRE ’03), pp. 90-99, Nov. 2003.

[13] D.M. German, “An Empirical Study of Fine-Grained Software
Modifications,” Proc. 20th Int’l Conf. Software Maintenance
(ICSM ’04), pp. 316-325, Sept. 2004.

[14] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[15] A.E. Hassan and R.C. Holt, “Predicting Change Propagation in
Software Systems,” Proc. 20th Int’l Conf. Software Maintenance
(ICSM ’04), pp. 284-293, Sept. 2004.

[16] D.L. Heine and M.S. Lam, “A Practical Flow-Sensitive and
Context-Sensitive C and C++ Memory Leak Detector,” Proc. Conf.
Programming Language Design and Implementation (PLDI ’03), June
2003.

[17] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” Companion of
the 19th Ann. ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’04), Oct. 2004.

[18] S. Johnson, Unix Time Sharing System Programmer’s Manual,
seventh ed. vol. 2A, AT&T Bell Laboratories 1979.

[19] T. Kremeneck and D. Engler, “Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis Approxima-
tions,” Proc. 10th Ann. Int’l Static Analysis Symp. (SAS ’03), pp. 295-
315, June 2003.

[20] T. Matsumura, A. Monden, and K. Matsumoto, “The Detection of
Faulty Code Violating Implicit Coding Rules,” Proc. Int’l Workshop
Principles of Software Evolution (IWPSE ’02), pp. 15-21, May 2002.

[21] T. Menzies, J.S. DiStefano, C. Cunanan, and R. Chapman, “Mining
Repositories to Assist in Project Planning and Resource Alloca-
tion,” Proc. Int’l Workshop Mining Software Repositories (MSR ’04),
May 2004.

[22] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Where the Bugs Are,”
Proc. 2004 ACM SIGSOFT Int’l Symp. Software Testing and Analysis
(ISSTA ’04), July 2004.

[23] R. Purushothaman and D.E. Perry, “Towards Understanding the
Rhetoric of Small Changes,” Proc. Int’l Workshop Mining Software
Repositories (MSR ’04), May 2004.

[24] D. Quinlan, “ROSE: A Preprocessor Generation Tool for Lever-
aging the Semantics of Parallel Object-Oriented Frameworks to
Drive Optimizations via Source Code Transformations,” Proc.
Eighth Int’l Workshop Compilers for Parallel Computers (CPC ’00), Jan.
2000.

[25] RCS, available online at http://www.cs.purdue.edu/homes/
trinkle/RCS/index.html, 2004.

[26] F. Rysselberghe and S. Demeyer, “Mining Version Control
Systems for FACs (Frequently Applied Changes),” Proc. Int’l
Workshop Mining Software Repositories (MSR ’04), May 2004.

[27] R.M. Stallman, Using the GNU Compiler Collection. GNU Press,
2004.

[28] M. Widenius and D. Axmark, MySQL Reference Manual Documen-
tation from the Source. O’Reilly, 2002.

[29] C.C. Williams and J.K. Hollingsworth, “Bug Driven Bug Finders,”
Proc. Int’l Workshop Mining Software Repositories (MSR ’04), May
2004.

[30] Wine, available online at http://www.winehq.org, 2004.
[31] T. Zimmermann and P. Weissgerber, “Preprocessing CVS Data for

Fine-Grained Analysis,” Proc. Int’l Workshop Mining Software
Repositories (MSR ’04), May 2004.

Chadd C. Williams received the BS degree in
computer science from West Virginia University
in 1998 and the MS degree in computer science
from the University of Maryland in 2002. He is a
graduate student in the Computer Science
Department at the University of Maryland,
College Park. His research interests include
software evolution and program comprehension.

Jeffrey K. Hollingsworth received the BS
degree in electrical engineering from the Uni-
versity of California at Berkeley in 1988. He
received the MS and PhD degrees in computer
science from the University of Wisconsin in 1990
and 1994, respectively. He is an associate
professor in the Computer Science Department
at the University of Maryland, College Park, and
affiliated with the Department of Electrical
Engineering and the University of Maryland
Institute for Advanced Computer Studies. His

research interests include instrumentation and measurement tools,
resource aware computing, high-performance distributed computing,
and programmer productivity. Dr. Hollingsworth’s current projects
include the dyninst runtime binary editing tool and harmony—a system
for building adaptable, resource-aware programs. He is a senior
member of IEEE and a member of ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

