
Mining Version Histories to
Guide Software Changes

Thomas Zimmermann, Student Member, IEEE, Peter Weißgerber,

Stephan Diehl, and Andreas Zeller, Member, IEEE Computer Society

Abstract—We apply data mining to version histories in order to guide programmers along related changes: “Programmers who

changed these functions also changed....” Given a set of existing changes, the mined association rules 1) suggest and predict likely

further changes, 2) show up item coupling that is undetectable by program analysis, and 3) can prevent errors due to incomplete

changes. After an initial change, our ROSE prototype can correctly predict further locations to be changed; the best predictive power is

obtained for changes to existing software. In our evaluation based on the history of eight popular open source projects, ROSE’s

topmost three suggestions contained a correct location with a likelihood of more than 70 percent.

Index Terms—Programming environments/construction tools, distribution, maintenance, enhancement, configuration management,

clustering, classification, association rules, data mining.

�

1 INTRODUCTION

SHOPPING for a book at Amazon.com, you may have come

across a section that reads “Customers who bought this

book also bought...,” listing other books that were typically

included in the same purchase. Such information is

gathered by data mining—the automated extraction of

hidden predictive information from large data sets. In this
paper, we apply data mining to version histories: “Program-

mers who changed these functions also changed....” Just like

the Amazon.com feature helps the customer browsing

along related items, our ROSE1 tool guides the programmer

along related changes, with the following aims:

. Suggest and predict likely changes. Suppose a
programmer has just made a change. What else does
she have to change?

. Prevent errors due to incomplete changes. If a

programmer wants to commit changes, but has

missed a related change, ROSE issues a warning.
. Detect coupling undetectable by program analysis.

As ROSE operates exclusively on the version history,
it is able to detect coupling between items that

cannot be detected by program analysis.

All ROSE needs for this task is a version archive, such as

CVS; a simple parser that decomposes files into fine-grained

entities such as classes, functions, or sections is optional.

ROSE is not the first tool to leverage version histories. In

earlier work (Section 8), researchers have used history data

to understand programs and their evolution [3], to detect

evolutionary coupling between files [10] or classes [5], or to

support navigation in the source code [8].
In contrast to this state of the art, the present work

. detects coupling between fine-grained program enti-

ties such as functions or variables (rather than, say,

classes), thus increasing locality and integrating with
program analysis;

. distinguishes between different kinds of changes by
obtaining multidimensional association rules;

. thoroughly evaluates the ability to predict related or

missing changes, thus evaluating the actual usefulness

of our techniques; and
. investigates how the predictive power changes over

the lifetime of a project and is influenced by activities,

releases, and the length of the version history.

The remainder of this paper is organized as follows:

Section 2 introduces evolutionary coupling. Section 3

describes the architecture and usage scenarios of our

ROSE tool; Section 4 applies this to CVS. Section 5

describes the basic approaches to mining these data,

followed by examples in Section 6. In Section 7, we

evaluate ROSE’s ability to predict future changes, based

on earlier history: How often can ROSE suggest further

changes and, if so, how precise is it? Section 8 discusses

related work and Section 9 closes with conclusion and

consequences.

2 EVOLUTIONARY COUPLING

The revision history of a software system conveys im-

portant information about how and why the system

evolved in time. The revision history can also tell us which

parts of the system are coupled by common changes or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005 429

. T. Zimmermann and A. Zeller are with the Department of Computer
Science, Saarland University, Postfach 15 11 50, 66041 Saarbrücken,
Germany. E-mail: zimmerth@cs.uni-sb.de, zeller@acm.org.

. P. Weißgerber and S. Diehl are with the Computer Science Department,
Catholic University Eichstätt, Ostenstr. 14, 85072 Eichstätt, Germany.
E-mail: peter.weissgerber@ku-eichstaett.de, diehl@acm.org.

Manuscript received 22 Oct. 2004; revised 8 Apr. 2005; accepted 19 Apr.
2005; published online 29 June 2005.
Recommended for acceptance by A. Hassan and R. Holt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0221-1004.

1. ROSE is short for Reengineering of Software Evolution.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

cochanges: “Whenever the database schema was changed,

the sqlquery() method was altered, too.” We call such

dependencies evolutionary coupling to reflect that they result

from evolution—in contrast to logical coupling, as deter-

mined by program analysis.
As an example of evolutionary coupling, consider Fig. 1,

visualizing evolutionary coupling within the org.eclip-

se.compare plug-in of the ECLIPSE programming envir-

onment.2 Each pixel represents the coupling between two

files; the darker the pixel, the stronger the coupling. The

files are sorted by the surrounding directory. This high-

lights directories with a tight evolutionary coupling as

blocks along the diagonal, e.g., the public API directory or

the icon directories of the plug-in. This coupling is obtained

from a version archive such as CVS.

Fig. 2 shows a specific coupling within the org.e-

clipse.compare plug-in—the coupling between the files

ComparePreferencePage.java and plugin.proper-

ties. Each file is listed along with the number of changes:

plugin.properties has been changed 69 times, for

instance.

Both files have been changed together 20 times, indicat-

ing some evolutionary coupling. This is not a very strong

coupling, though, since ComparePreferencePage.java

has been changed 40 times overall—that is, it has been

changed 20 times without plugin.properties being

changed at the same time.
To obtain more details, we can increase the granularity

from files to entities and determine the evolutionary
coupling between the individual attributes and functions
defined in ComparePreferencePage.java. This reveals
new couplings—for instance, a coupling between the
fKeys[] attribute and the initDefaults() method as
well as a coupling between the fKeys[] attribute and the
plugin.properties file. Both couplings are strong: In
10 out of 11 times that fKeys[] has been changed,
plugin.properties has been changed, too.

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

2. Such visualizations can be produced with EPOSEE (www.eposoft.org/
eposee), our tool for visual data mining [6].

Fig. 1. Common changes of files in an ECLIPSE plug-in.

Fig. 2. Evolutionary coupling in ECLIPSE.

In the past, researchers have leveraged evolutionary

coupling to provide insights about a software system [12],

[35]. In this work, we use evolutionary coupling to guide

programmers along related changes.

3 ROSE IN A NUTSHELL

Our approach has been realized in the ROSE tool. ROSE

learns from the information stored in version archives to

make recommendations for programmers. These recom-

mendations are useful in two common scenarios.

. The “Improve Navigation” scenario. A major
application for ROSE is to guide users through
source code: The user changes some entity and
ROSE automatically recommends related changes in
a view.

Fig. 3 shows our ROSE tool as a plug-in for the

ECLIPSE programming environment. The program-

mer is inserting a new preference and has added an

element to the fKeys[] array. ROSE now suggests

to consider further changes, as inferred from the

version history. First come the locations with the

highest confidence—that is, the likelihood that further

changes be applied to the given location.
Position 3 on the list is an HTML documentation

file with a confidence of 0.727—suggesting that after

adding the new preference, the documentation

should be updated, too. Such a dependency is

undetectable by program analysis.
. The “Prevent Errors” scenario. Besides supporting

navigation, ROSE should also prevent errors. The

scenario is that when a user decides to commit

changes to the version archive, ROSE checks if there

are related changes with a high confidence that have

not been changed yet. If there are, like the top two

locations in Fig. 3, ROSE issues a pop-up window

with a warning. It also suggests the “missing” item

that should be considered, as in Fig. 4.

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 431

Fig. 3. After the programmer has made some changes to the source (above), ROSE suggests locations (below) where, in similar transactions in the

past, further changes were made.

Fig. 4. ROSE points programmers to locations they have likely missed.

In terms of architecture, ROSE consists of two parts:

. Preprocessing takes a complete version archive as

input. The archive is mirrored in a database (data

collection), changes are mapped to entities and

transactions (data preparation), and, finally, noise,

caused by large transactions, is removed (data

cleaning). Preprocessing ensures a fast access to all

necessary information.
. Mining creates rules from the preprocessed data.

Rules describe implications between software enti-
ties, e.g., “If fKeys[] is changed, then initDe-

faults() is changed, too.” It is possible to mine
for all rules, but, typically, ROSE mines only for
rules with a particular left-hand side. Thus, mining
is sped up and rules are always up-to-date.

More details about preprocessing are described in Section 4

and in [36]. The mining phase is explained in Section 5.

4 FROM CHANGES TO TRANSACTIONS

In order to describe how ROSE works, we need a few

definitions. To represent the syntactic components being

changed, we define the concept of entities. An entity is a

triple ðc; i; pÞ, where c is the syntactic category, i is the

identifier, and p is the parent entity or ? for the root entity.

For example, the entity

ðmethod; initDefaultsðÞ;
ðclass; Comp; ðfile; Comp:java; . . .ÞÞÞ

represents the method initDefaults() of the class Comp

in the file Comp.java. For the syntactic categories, we will

use different granularities as discussed in Section 5.4.

We distinguish different kinds of changes using the

following predicates, each of them represents a different

dimension for the later multidimensional data mining:

. An entity e has been altered: alterðeÞ.

. Some entity has been added into another entity e:
add toðeÞ.

. Some entity has been deleted from another entity e:
del fromðeÞ.

A transaction is the set of changes simultaneously submitted

by a developer to a version archive, e.g.,3

T ¼

alterð method; initDefaultsðÞ; . . .Þ;
alterð field; fKeys½�; . . .Þ;
alterð class; Comp; . . .Þ;
alterð file; Comp:java; . . .Þ;
add toð file; Comp:java; . . .Þ;

..

.

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:

The elements of a transaction are called items—each of them

represents a change—and are the base for later mining:

“I altered (or added) one entity; which other entities should

I typically change?”

Our ROSE tool retrieves changes and transactions as

described above from existing version archives—typically

from CVS [4] archives, which are frequently used for open-

source systems. While CVS is popular, it has some

weaknesses that require special data cleaning [36]:

. Inferring transactions. Most modern version control
systems have a concept of product versioning—that is,
one is able to access transactions as they alter the
entire product. CVS, though, provides only file
versioning. To recover per-product transactions from
CVS archives, we must group the individual per-file
changes into individual transactions. ROSE follows
the classical sliding window approach [9]: Two
subsequent changes by the same author and with
the same log message are part of one transaction if
they are at most 200 seconds apart. The sliding time
window approach is important to capture long
transactions that might be split otherwise [36].

. Branches and merges. The evolution of a product
sometimes branches into different evolution
strands, which may later be merged again. In a
CVS archive, the merge of a branch is not reflected
explicitly; instead, the merge becomes a large
transaction which includes all the changes made
in the branch. In order to detect coupling within
transactions, one must avoid the large merge
transactions. ROSE does so by ignoring all changes
that affect more than 30 entities.

. Getting entities. CVS has no syntactic knowledge
about the files it stores; it manages only files and line
numbers for each change. ROSE thus parses the files
for syntactic entities like classes, functions, fields
within source code, or sections within documenta-
tion. Next, ROSE associates these syntactic entities
with line ranges. As sketched in Fig. 5, ROSE can
thus relate any change (given by file and line) to the
affected components.

5 FROM TRANSACTIONS TO RULES

Given the transactions as described in the previous sections,

the aim of the ROSE tool is to mine rules from these

transactions. Here is an example of such a rule:

alterðfield; fKeys½�; . . .Þf g

)
alterðmethod; initDefaultsðÞ; . . .Þ;
alterðfile; plug:properties; . . .Þ

� �
:

ð1Þ

This rule means that whenever the user alters the field

fKeys[], then she should also alter the method initDe-

faults() and the file plug.properties.

Formally, an association rule r is a pair ðx1; x2Þ of two

disjoint itemsets x1 and x2. In the notation x1) x2, x1 is

called the antecedent and x2 the consequent.

Rules have a probabilistic interpretation based on the

amount of evidence in the transactions they are derived from.

(Hence, the character “) ” is to be read as a possible rather

than an absolute implication.) The amount of evidence is

determined by two measures:

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

3. To save space, we abbreviate all file and class names from Fig. 3 to
their first syllable; for instance, Comp.java stands for ComparePrefer-

encePage.java.

. Support count. The support count determines the

number of transactions the rule has been derived

from. Assume that the field fKeys[] was altered in

11 transactions. Of these 11 transactions, 10 also
included changes of type alter of both the method

initDefaults() and the file plug.properties.

Therefore, the support count for the above rule is 10.
. Confidence. The confidence determines the strength

of the consequence, or the relative amount of the
given consequences across all alternatives for a
given antecedent. In the above example, the con-
sequence of changing initDefaults() and
plug.properties applies in 10 out of the 11
transactions involving fKeys[]. Hence, the con-
fidence for the above rule is 10=11 ¼ 0:909.

Formally, we define

. the (occurrence) frequency of a set x in a set of
transactions D as freqDðxÞ¼ ft j t2D; x� tgj j.

. the support count of a rule x1) x2 by a set of
transactions D as4

countDðx1) x2Þ ¼ freqDðx1 [x2Þ:

. the confidence of a rule x1) x2 in a set of transactions

D as confDðx1) x2Þ ¼ countDðx1)x2Þ
freqDðx1Þ .

The shorthand notation r½s; c�D denotes a rule r with s ¼
countDðrÞ and c ¼ confDðrÞ and a set of transactions D. We
omit the set of transactions D if it is known in the context or
irrelevant.

5.1 Applying Rules

Assume the programmer has performed some changes. We
call the set of items that represent these changes the situation
�. The user can choose if the situation � contains all

changes since the last start of ECLIPSE or since the last
commit operation to CVS. Furthermore, she can clear the
situation manually. The situation is updated every time the
user saves her changes. Once she is finished with her task
and commits all changes to the version control system, the
final situation is added to the set of transactions D.

In Fig. 3, the user has extended the variable fKeys[] in
the file ComparePreferencePage.java. The situation is
thus

� ¼ alterðfield; fKeys½�; . . .Þf g: ð2Þ

Based on the situation, ROSE suggests possible further
changes by applying matching rules. In general, a rule
matches a set of items, e.g., the situation, if this set is equal to
the antecedent of the rule.

How does ROSE compute the suggestions? The set of
suggestions for a situation � and a set of rules R is defined
as the union of the consequents of all matching rules:

applyRð�Þ ¼
[

ð�)x2Þ2R
x2: ð3Þ

In the given situation � from (2) and the rule r from (1),
ROSE thus suggests the consequent of r:

applyfrgð�Þ ¼
alterðmethod; initDefaultsðÞ; . . .Þ;
alterðfile; plug:properties; . . .Þ

� �
:

The entire set R of actually mined rules contains further
rules, though. The actual result of applyRð�Þ is shown in
Fig. 3, ordered by confidence.

Let us assume the user decides to follow the first
recommendation for initDefaults()(with a confidence
of 1.0); it is obvious that a new preference should get a
default value. So, she alters the method initDefaults().
Again, ROSE proposes additional changes, which are, in
this case, the same as before, except that now initDe-

faults() is missing.
Now, the user examines the methods createGener-

alPage() and createTextComparePage() because
they are in the same file as fKeys[] and initDe-

faults(). Each of these two methods creates a window
where preferences can be set. So, she extends the create-

GeneralPage() method, resulting in

� ¼
alterðfield; fKeys½�; . . .Þ;
alterðmethod; initDefaultsðÞ; . . .Þ;
alterðmethod; createGeneralPageðÞ; . . .Þ

8<
:

9=
;:

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 433

Fig. 5. Relating changes to entities.

4. In data mining, the support suppDðx1) x2Þ ¼ countDðx1) x2Þ= Dj jð Þ
is frequently preferred over the support count. ROSE relies on the support
count rather than support for two reasons: 1) Support count is easy to
understand for developers. A support count of 7 clearly indicates the
frequency of a rule in the past. In contrast, it is difficult to assess support
values like 0.000145 without any additional knowledge (such as the total
number of transactions). 2) Support count can be reused for different projects. In
any project, a support count of 10 represents a rather strong evolutionary
coupling. The total number of transactions has only a small impact on this
coupling, since more transactions distribute across more entities (see
Table 1). In practice, one should normalize both support and support count
against a combination of the average transaction size or the average number
of changes per item. However, choosing the right normalization is research
on its own.

Given this new situation, ROSE computes new rules on
the fly as discussed in Section 5.3. Here are the rules that
have a minimum support count of 3 and a minimum
confidence of 0:4:

�) falterðfile; plug:properties; . . .Þg ½7; 1:00�
�) falterðfile; build:html; . . .Þg ½4; 0:57�
�) fadd toðfile; Comp:java; . . .Þg ½4; 0:57�
�) falterðmethod; TextMergeV iewerðÞ; . . .Þg ½3; 0:42�
�) falterðmethod; propertyChangeðÞ; . . .Þg ½3; 0:42�:

ð4Þ

Applying the above rules yields the union of the conse-

quents of all rules because they have the same antecedent.

ROSE will rank the items by their confidence suggesting the

user to alter the file plug.properties next.
The number of rules and, thus, the number of recom-

mendations depends on the support count and confidence

thresholds that are selected by the user. In general, a user

would start with low values like 1 for the support count and

0.1 for the confidence. As a result, she will get all

recommendations, but since ROSE ranks by confidence,

the strongest ones will be on top of the list.

5.2 Multidimensional Rules

The advantage of add to and del from items is that they

abstract from the name of the added or deleted entity to the

name of the surrounding entity. Using such items, ROSE

learns additional, more general rules.

For instance, in (4), the third rule suggests to add

something to the file Comp.java. This is due to the fact that

preferences are identified with constants in ECLIPSE (see

the source code in Fig. 3).

Now, let us assume that the developer started by

adding a new constant FOO to the file Comp.java. In the

case of one-dimensional data, the situation will contain a

single change to FOO; thus, ROSE cannot make any

recommendations since there is no history for the new

constant FOO. In contrast, using multidimensional data

the situation will contain a single add to item; thus, ROSE

uses the surrounding file for mining to make several

recommendations:

add toðfile;Comp:java;...Þf g)falterðfile;plug:properties;...Þg ½10;0:83�
add toðfile;Comp:java;...Þf g)falterðfile;build:html;...Þg ½10;0:83�
add toðfile;Comp:java;...Þf g)fadd toðfile;TextMergeV iewer:java;...Þg ½9;0:75�
add toðfile;Comp:java;...Þf g)falterðmethod;initDefaultsðÞ;...Þg ½8;0:66�:

ð5Þ

We reuse the same mining algorithms (see Section 5.3)

for both one-dimensional and multidimensional mining.

The only difference is the kind of data which is used for

mining: For one-dimensional mining, we use alter items; for

multidimensional mining, we use alter, add to, and

del from items.

5.3 Computing Rules

The classical approach to compute association rules is the

Apriori Algorithm [1]. The Apriori Algorithm takes a

minimum support count (or minimum support) and a

minimum confidence and computes the set of all associa-

tion rules that are above both thresholds.
The straightforward use of the Apriori Algorithm is to

compute all rules beforehand and then search the rule set for

a given situation. However, computing all rules takes

time—several days in our experiments. ROSE uses two

optimizations to compute rules on demand:

. Constrained antecedents. In our specific case, the

antecedent is equal to the situation; hence, we only

mine rules on the fly which match the situation.

Mining with such constrained antecedents [31] takes

only a few seconds. An additional advantage of this
approach is that it is incremental in the sense that it

allows new transactions to be added without

recomputing all rules.
. Single consequents. To speed up the mining

process even more, we have modified the approach

such that it only computes rules with a single item in

their consequent. So, for a situation �, the rules have

the form �) feg. For ROSE, such rules are

sufficient because ROSE computes the union of the

consequents anyway (see Section 5.1).5

These optimizations make mining very efficient: ROSE

needs one database query to find all transactions contain-

ing the current situation (constrained antecedents) and

another one to compute the confidence values of other

items (single consequents). The details of the modified

mining algorithm are discussed in [34]. The average

runtime of a ROSE query is about 0.5s for large version

histories like GCC, measured on a PC with Intel 2.0 GHz

Pentium 4 and 1 GB RAM. The parsing time is not

included (parsing takes only a fraction of a second, since

changed files already reside in memory).

5.4 Granularity

ROSE performs mining on two levels:

. Fine-granular mining. For C, C++, JAVA, and

PYTHON source code and TEX documentation, we

use fine-granular entities, such as fields, functions,

and subsections, for the alter items. For add to and

del from items, we use file entities in any case. All

other files like images or text files are represented

with an alter item for the file entity.
. Coarse-granular mining. Regardless of the file type,

we only use alter items for file entities. Additionally,

we use add to and del from items for directory
entities to capture when a file has been added or

deleted.

Coarse-granular rules have a higher support count and

usually return more results. However, they are less precise

in the location and, thus, only of limited use for guiding

programmers (see Section 7.7).

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

5. For each item e 2 x2 in a consequent of a rule �) x2½s; c�, there exists
a single consequent rule r of the form �) feg½sr; cr� with higher or equal
support count and confidence sr � s and cr � c (because freqð� [fegÞ �
freqð� [x2Þ since � [feg � � [x2).

6 SOME RULE EXAMPLES

Let us now illustrate our approach by a few actual rules.

. Coupling in GCC. GCC has arrays that define the
costs of different assembler operations for INTEL

processors. These have been altered together in

11 transactions. In 9 of these 11 transactions, this

change was triggered by a change in the type:

alterðtype; processor cost; ðfile; i386:h; . . .ÞÞf g

)

alterðvar; i386 cost; ðfile; i386:c; . . .ÞÞ;
alterðvar; i486 cost; ðfile; i386:c; . . .ÞÞ;
alterðvar; k6 cost; ðfile; i386:c; . . .ÞÞ;
alterðvar; pentium cost; ðfile; i386:c; . . .ÞÞ;
alterðvar; pentiumpro cost; ðfile; i386:c; . . .ÞÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

½9; 0:82�:

So, whenever the costs type is altered (e.g., for a

new operation), ROSE suggests to extend the

appropriate cost instances, too. This rule also holds

for the other direction, with the same support

count and (incidentally) the same confidence.
. PYTHON and C files. Our approach is not restricted

to a specific programming language. In fact, we can
detect coupling between program parts written in
different languages (including natural language).
Here is an example, taken from the PYTHON
library:

alterðfunc;GrafObj getattrðÞ;f
ðfile; Qdmodule:c; . . .ÞÞg

) alterðfunc; outputGetattrHookðÞ;f
ðfile; qdsupport:py; . . .ÞÞg

½10; 0:91�:

Whenever the C function GrafObj_getattr() in

file _Qdmodule.c was altered, so was the PYTHON

function outputGetattrHook() in file qdsup-

port.py—a classical coupling between interface

and implementation. It would require cross-lan-

guage program analysis to detect this coupling.
. POSTGRES documentation. Data mining can reveal

coupling between items that are not even programs,
as in the POSTGRES documentation for its com-
mand line tools:

alterðfile; createuser:sgml; . . .Þ;
alterðfile; dropuser:sgml; . . .Þ

� �

)
alterðfile; createdb:sgml; . . .Þ;
alterðfile; dropdb:sgml; . . .Þ

� �

½11; 1:0�:

Whenever both createuser.sgml and dropu-

ser.sgml have been altered, the files cre-

atedb.sgml and dropdb.sgml have been

altered, too. The coupling between these files is

caused by common options of the documented tools

and by examples that have been duplicated.

7 EVALUATION

After these rule examples, let us now give empirical

evidence for the scenarios we described in Section 3.

. Navigation through source code. Given a single
change, can ROSE point programmers to entities that
should typically be changed, too?

. Error prevention. Can ROSE prevent errors? Say, the
programmer has changed many entities but has
missed to change one entity. Does ROSE find the
missing one?

. Closure. Suppose a transaction is finished—the
programmer has made all necessary changes. How
often does ROSE erroneously suggest that a
change is missing in the error prevention scenario?

We evaluated additional questions that are not directly

related to the usage scenarios:

. Granularity. By default, ROSE suggests changes to
functions and other fine-grained entities. What are
the results if ROSE suggests only changes to files
instead?

. Maintenance. Additions and deletions are difficult

to predict. How well does ROSE perform if it is

applied to maintenance tasks which do not add new

functionality to programs? As a heuristic, we classify

transactions that change only existing entities as
maintenance.

. Multiple Dimensions. ROSE tries to predict addi-

tions and deletions with special add to and del from

items. What is the actual benefit of these additional

items?
. History. How much of the version history does

ROSE need at least to produce useful recommenda-

tions? Does the usefulness decrease over time?

Furthermore, does the quality of recommendations

change with development phases and releases?
. Recent Changes. As a system evolves, older changes

may become less and less relevant for determining

related changes. Would focusing on recent changes

improve the quality of recommendations?

7.1 Evaluation Setup

For our evaluation, we analyzed the archives of eight large

open-source projects (Table 1) chosen to cover a wide range

of applications, architectures, and languages. For each

archive, we chose at least one full month as our evaluation

period (Table 2). In this period, we checked for each

transaction T whether its items can be predicted from earlier

history:

1. We created a number of queries for a transaction. A
query q ¼ ðQ;EÞ consists of a situation Q � T and an
expected outcome E ¼ T �Q.

. In the “navigation” scenario, there are jT j
queries per transaction T , whose situations each
consist of a single item e 2 T .

. In the “prevention” scenario, there are jT j
queries per transaction T , whose situations each

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 435

consist of the transaction with one removed
item e—that is, T � feg.

. In the “closure” scenario, there is one query per
transaction, whose situation each consist of the
full transaction T .

2. For each query q ¼ ðQ;EÞ, we take all transactions Ti

that have been completed before timeðT Þ as a training
set and mine a set of rules R from these transactions

with respect to Q. This means R contains only

constrained rules Q) fxg (see Section 5.3).
3. We assume that the user does not work through

endless lists of suggestions. Thus, we consider only
the top 10 single-consequent rules R10 � R ranked by
confidence. In our evaluation, we apply R10 to get
the result of the query Aq ¼ applyR10

ðQÞ. So, the size
of Aq is always less or equal than 10.

4. The result Aq of a query q ¼ ðQ;EÞ consists of two
parts:

. Aq \ E are the items that matched the expected
outcome and, therefore, are considered correct.

. Aq � E are unexpected recommendations which
are wrong.

7.2 Precision, Recall, Likelihood, and Feedback

For the assessment of a result Aq for a query q ¼ ðQ;EÞ, we

use two measures from information retrieval [25]: The

precision Pq describes which fraction of the returned items

was actually expected. The recall Rq indicates the percentage

of expected items that were returned.

Pq ¼
jAq \Ej
jAqj

; Rq ¼
jAq \ Ej

jEj : ð6Þ

In case no items are returned (Aq is empty), we define the

precision as Pq ¼ 1 and, in case no items are expected, we

define the recall as Rq ¼ 1.
Our goal is to achieve high precision and high recall values

(near 1)—that is, to recommend all (recall of 1) and only

expected items (precision of 1). Keep in mind that, if the

expected outcome has more than 10 items, the recall can

never be 1 because even though all answers may be correct,

we only consider the top 10 results.
For each query q, we get a precision-recall pair ðPq;RqÞ.

To get an overall measure for all evaluated queries Z which

are generated from all the transactions in the evaluation

period, we summarize these pairs into a single pair using

the macroevaluation averaging technique from information

retrieval. Macroevaluation simply takes the mean value of

the precision-recall pairs for the queries Z:

Pall
M ¼ 1

Zj j
X
q2Z

Pq ; Rall
M ¼ 1

Zj j
X
q2Z

Rq : ð7Þ

This approach uses the precision and recall which have

been computed for each query. As macroevaluation

determines the predictive strength for queries, it is some-

times referred to as a user-oriented approach.
If ROSE does not return any recommendations for a

query q (that is, Aq ¼ ;), the precision is 1. Taking such

queries into account distorts the average precision. Thus,

unless otherwise noted, we consider only the queries Z�

where Aq is not empty:6

Z� ¼ fq j q ¼ ðQ;EÞ 2 Z; applyR1
ðQÞ 6¼ ;g; ð8Þ

PM ¼ 1

Z�j j
X
q2Z�

Pq ; RM ¼ 1

Z�j j
X
q2Z�

Rq : ð9Þ

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 1
History of Analyzed Projects (Txn = Coarse-Grained Transaction, “�” = Standard Deviation)

TABLE 2
Evaluation Periods (Txn = Coarse-Grained Transaction)

6. Z� is independent from k because applyRk
ðQÞ is nonempty if and only

if applyR1
ðQÞ is nonempty (as applyR1

ðQÞ � applyR2
ðQÞ � . . . holds).

Additionally, we measure the percentage of queries
where ROSE makes at least one recommendation. We refer
to this percentage as the feedback Fb ¼ Z�j j= Zj j.

To assess the actual usefulness for the programmer, we
also check the likelihoodwhether an expected location would
be included in ROSE’s top three navigation suggestions
(assuming that a programmer won’t have too much trouble
judging the first three suggestions). Formally, Lk is the
likelihood that at least one of the top k recommendations
made by ROSE for a query q ¼ ðQ;EÞ is correct:

Lk ¼
fq j q ¼ ðQ;EÞ 2 Z; applyRk

ðQÞ \ E 6¼ ;g
�� ��

fq j q ¼ ðQ;EÞ 2 Z; applyRk
ðQÞ 6¼ ;g

�� �� : ð10Þ

If some change in A results in either B1, B2, or B3 being
changed, ROSE always suggests B1, B2, and B3, the
precision is only 33 percent. Still, the recommendations
are useful for the programmer, thus, L3 ¼ 100 percent

would hold.

7.3 Precision versus Feedback

A major application for ROSE is the “navigation” scenario:
The user changes some entity and ROSE automatically
recommends possible future changes in a view (Fig. 3). We
evaluated the predictive power of ROSE in this situation.

For each transaction T with Tj j � 2 and each item e 2 T , we
considered the situation Q ¼ feg and checked whether
ROSE would predict E ¼ T � feg. For each transaction, we
thus tested Tj j situations, each with one element. Table 3
(column Navigation) breaks down the evaluated transac-
tions and queries.

Fig. 6 plots the precision against the feedback with the

results for the ECLIPSE project. For each combination of

minimum support count and minimum confidence, the

resulting precision-feedback pair ðPM; FbÞ is plotted. For

the plot, we prefer the feedback Fb over the recall RM

(which would consider only the set of queries Z� for which

ROSE made suggestions) to take into account that ROSE

gets more cautious for higher thresholds. Additionally,

values for subsequent confidence thresholds having the

same support count are connected with lines. As a result,

we get three precision-feedback curves, one for each investi-

gated support count. The connecting lines between mea-

sured values are for the sake of clarity and not for

interpolation.
In Fig. 6, ROSE achieves for a support count of 1 and a

confidence of 0.1 a feedback of 0.64 and a precision of 0.30:

. The feedback Fb of 0.64 means that, on average, ROSE
made, in two out of three queries, at least one
suggestion.

. The recall RM of 0.34 (see Table 4, column Navigation)
states that ROSE’s suggestions on average included
34 percent of all changes that were actually carried
out in the given transaction.

. The precision PM of 0.30 means that if ROSE made
recommendations, on average, 30 percent of them
were correct—almost every third suggested change
was actually carried out (and, thus, predicted
correctly by ROSE). The programmer has to check
about three suggestions in order to find a correct
one.

Fig. 6 also shows that increasing the support count

threshold also increases the precision, but decreases the

feedback as ROSE gets more cautious. However, using

the highest possible thresholds does not always yield the

best precision and feedback values: If we increase for a

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 437

Fig. 6. Varying support count and confidence.

TABLE 3
Evaluation for Fine Granularity (Txn = Transaction, “�” = Standard Deviation)

7. We could not use all transactions from Table 2 for fine granularity because some transactions have been empty. For instance, a line that is
inserted between two functions is a coarse-grained change for the surrounding file, but not a fine-grained change for the functions.

support count threshold of three the confidence threshold

above 0.80, both precision and feedback decrease. The

decrease in precision is caused by rules that had a high

confidence during the training, which lowered during the

evaluation. Furthermore, Fig. 6 shows that high support

count and confidence thresholds are required for a high

precision. Still, such values result in a very low

feedback—indicating a trade-off between precise and

numerous suggestions.
In practice, a graph such as the one in Fig. 6 is thus

necessary to select the “best” support count and confidence
values for a specific project. In the remainder of this paper,
though, we have chosen values that are common across all
projects in order to facilitate comparison.

Summary. A well-known trade-off: One can either have
precise suggestions or many suggestions, but not both.

7.4 Results: Navigation through Source Code

We repeated the experiment from Section 7.3 for all eight

projects with a support count threshold of 1 and a

confidence threshold of 0.1—such that, for navigation, the

user gets several recommendations. The results are shown

in Table 4 (column Navigation). For these settings, in

66 percent of all queries, ROSE makes recommendations

for which the average recall is 33 percent and the average

precision is 29 percent. The average likelihood L3 of the

three topmost suggestions predicting a correct location is

70 percent.
While KOFFICE has lower recall, precision, and like-

lihood values, GCC strikes by overall high values. The
reason is that KOFFICE is a project where continuously
many new features are inserted (which cannot be predicted
from history) while GCC is a stable system where the focus
is on maintaining existing features.

Summary. When given one initial item, ROSE makes
predictions in 66 percent of all queries. On average, the
predictions of ROSE contain 33 percent of all items changed
later in the same transaction. For those queries for which

ROSE makes recommendations, in 70 percent of the cases, a

correct location is within ROSE’s topmost three suggestions.

7.5 Results: Error Prevention

Besides supporting navigation, ROSE should also prevent

errors. We determined in how many cases ROSE can predict

such a missing item. For this purpose, we took each

transaction, left out one item, and checked if ROSE could

predict the missing item. In other words, the situation was

the complete transaction without the missing item. So, for

each single transaction T with Tj j � 2 and each item e 2 T ,

we considered the situation Q ¼ T � feg and checked

whether ROSE would predict E ¼ feg. For each transaction,

we thus again ran
��T �� tests. Table 3 (column Prevention)

breaks down the evaluated transactions and queries.
As too many false warnings might undermine ROSE’s

credibility, ROSE is set up to issue warnings only if the high

confidence threshold of 0.9 is exceeded. Still, we wanted to get

as many missing items as possible, resulting in a support

count threshold of 3. The results are shown in Table 4

(column Prevention):

. The feedback is 3 percent and the average recall is

about 75 percent. This means that for only one out of
every 33 missing items (in GCC: every 13 items),

ROSE issues a warning; the percentage of missed

alarms is on average 97 percent. However, for those

cases where ROSE issues a warning, it predicts

75 percent of the items that are actually missing.
. The average precision is above 66 percent. This means

that, on average, two out of three recommendations
of ROSE are correct, or: If a warning occurs and
ROSE recommends further items, the user has to
check at most one false recommendation, on
average, before getting to the correct one.

Summary. In 3 percent of the queries where one item is

missing, ROSE issues a correct warning. An issued warning

predicts on average 75 percent of the items that need to be

considered.

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 4
Results for Fine Granularity (R = recall; P = precision; Fb = feedback; L = likelihood)

7.6 Results: Closure

ROSE is supposed to prevent errors and not to annoy the

user issuing false alarms. Thus, for each complete transaction

T of any size, we considered the situation Q ¼ T and

checked whether ROSE would predict E ¼ ;; we thus had

one test per transaction. Table 3 (column Closure) breaks

down the evaluated transactions and queries.
As the expected outcome is the empty set, the recall is

always 1. Since PM would summarize only queries that

caused a false alarm, the precision would be 0. Thus, we use

the feedback Fb to measure the percentage of queries where

ROSE has issued a warning, i.e., the percentage of false

alarms. 1� Fb is the percentage of queries where ROSE

acted correctly.
The results are shown in Table 4 (column Closure). One

can see that 1� Fb is very high for all projects, usually

around 0.98. This means that ROSE issues a false alarm in

only every 50th transaction.

Summary. ROSE’s warnings about missing items should be

taken seriously: Only 2 percent of all transactions cause a false

alarm. In other words: ROSE does not stand in the way.

7.7 Results: Granularity

By default, ROSE recommends entities at a fine granularity

level, e.g., variables or functions. This results in a low

feedback of the rules for a project as most functions are

rarely altered. Our hypothesis was that if we applied

mining to files rather than to variables or functions, we

would get a higher support count (and, thus, a higher recall

and a higher feedback).

Therefore, we repeated the experiments from Sections 7.4

to 7.6 with a coarse granularity (see Section 5.4). Table 5

contains the breakdown of the evaluated transactions to

queries; the results are shown in Table 6. It turns out that,

for the navigation scenario, the coarse granularity increases

recall and feedback in all cases (sometimes even dramati-

cally, as a factor of almost 2 for the recalls of JEDIT and

KOFFICE shows). For nearly all projects (except JBOSS), the

precision stays at the same level or is increased as well. For

the error prevention scenario, we observed increases in both

recall and precision for some projects (e.g., for PYTHON),

as well as drops for others (e.g., for POSTGRES).

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 439

TABLE 5
Evaluation for Coarse Granularity (Txn = Transaction, “�” = Standard Deviation)

TABLE 6
Results for Coarse Granularity (R = recall; P = precision; Fb = feedback; L = likelihood)

If ROSE thus suggests coarse-grained entities, the
suggestions become more frequent. However, each single
suggestion becomes less useful, as it suggests a less specific
location—namely, only a file rather than a precise entity.
This is a general trade-off: If all entities were contained
within one file, then any suggestion regarding this one file
would yield a precision of 100 percent and a recall of
100 percent—and be totally useless at the same time. At the
coarse-grained level add to and del from, suggestions are
useful only if they refer to a directory with specific content
(such as icons/ or tests/).

A possible consequence of this result is to have ROSE
start with rather vague suggestions (say, regarding files or
packages), which become more and more specific as the
user progresses. We plan to apply and extend generalized
association rules [30] such that ROSE can suggest the finest
granularity wherever possible.

Summary. When given one altered, added, or deleted file,
ROSE can suggest further locations in 82 percent of all
queries; these recommendations predict, on average, 25 percent
of the locations actually modified in the same transaction. For
those queries for which ROSE makes recommendations, in 72
percent of the cases, a correct location is within ROSE’s
topmost three suggestions.

7.8 Results: Maintenance

We investigated whether ROSE performs better for transac-

tions that consist solely of alter items. We refer to such

transactions as maintenance transactions. In contrast, non-

maintenance transactions contain at least one add to or

del from item. Table 7 breaks down the transactions into

maintenance and nonmaintenance.
We repeated the experiments from Section 7.4 for both

groups. Table 8 shows the results for the navigation

scenario. It turns out that, for maintenance tasks, the

recall and feedback are higher in all cases (sometimes

even doubled, as the recalls for ECLIPSE, GCC, or GIMP

show). The precision stays virtually unchanged in most

cases while the likelihood that the first ten suggestions

contain a correct entity increases for some projects (e.g.,

for ECLIPSE by 8 percent), but decreases for others (e.g.,

for GCC by 7 percent, for GIMP by 10 percent, and for

JEDIT by 9 percent).

Summary. ROSE has its best predictive power for changes to

existing entities. The average recall almost doubles to 44 percent

while the precision remains roughly unchanged.

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 7
Evaluation for Maintenance (Txn = Transaction, “�” = Standard Deviation)

TABLE 8
Results for Maintenance (R = recall; P = precision; Fb = feedback; L = likelihood)

7.9 Results: Multiple Dimensions

By default, ROSE considers alter, add to, and del from
items for its recommendations (Section 5.2). To measure the
benefit of the additional dimensions, we repeated the
experiments for nonmaintenance from Section 7.8 with a
modified version of ROSE that only recommends alter
items.

The results are shown in Table 9. Recommending all
dimensions increases the recall for all projects. The
precision improves slightly or remains unchanged.

Summary. Considering additional dimensions, like additions
and deletions, improves the predictive power of ROSE for
nonmaintenance tasks. The average recall increases from 19
percent to 25 percent while the precision remains roughly
unchanged.

7.10 Results: History

The previous experiments concerned the predictive power
of ROSE based on a fixed evaluation period for each project.
In addition, we investigated how the predictive power
changes over time: How long does it take until ROSE makes

useful suggestions and, as the project evolves, does the
quality of the suggestions degrade at some point? To
answer these questions, we repeated our experiments for
the navigation scenario for the projects ECLIPSE and GCC
using the full history as evaluation period.

For each day, we computed the recall, precision, feed-
back, and the likelihood that the top 10 suggestions contain
at least one correct item, based on all transactions before this
day, as well as the moving average of these measures based
on the transactions of the last 42 days. We chose 42 days
because, in the ECLIPSE project, this is the duration of the
development cycle for one release. The results are illu-
strated in Fig. 7 for ECLIPSE and in Fig. 8 for GCC,
respectively.

Startup. For both ECLIPSE and GCC, the values for each
measure increase very quickly. For ECLIPSE, it takes less
than a month until recall and precision get close to their
maximal values, and even feedback reaches 40 percent after
the first month.

Saturation. ROSE learns from all transactions since the
beginning of the version history. For GCC, the moving
averages indicate that the actual predictive power of ROSE
saturates around release 2.95.3 and even decreases after
release 3.0 (Fig. 8). The reason for this is that ROSE has
much outdated knowledge—which suggests that ROSE
should not learn from too old transactions. This decrease is
not (yet?) visible for ECLIPSE (Fig. 7).

Peaks. Fig. 7 shows peaks of the moving averages shortly
after major releases like 2.0, 2.1, and 3.0 of ECLIPSE. As the
moving average lags 42=2 ¼ 21 days behind the trend, the
peaks actually correlate with the release dates. Similar
peaks are visible for GCC in Fig. 8, however, not as clearly
as for ECLIPSE.

A possible explanation of this phenomenon is that
shortly before releases, features are frozen and only existing
parts are changed, so we have mostly maintenance
transactions (see Section 7.8). As a consequence, the
predictive power of ROSE increases at this point. After
the actual release, new features are introduced which
temporarily decrease the predictive power of ROSE.

Summary. ROSE learns quickly: A few weeks after a project
starts, ROSE makes already useful suggestions.

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 441

TABLE 9
Results for Multidimensional Data Mining

(R = recall; P = precision)

Fig. 7. Predictive power for ECLIPSE related to time (2001-04-28 to

2004-09-14) and releases.

Fig. 8. Predictive power for GCC related to time (1997-08-11 to

2004-08-23) and releases.

7.11 Results: Recent Changes

So far, all changes to an item contribute equally to the

support count and confidence, independently of when they

occurred. Intuitively, recent changes are more likely to be

relevant than older changes as they reflect the current state

of the system or the current strategies in the project. As an

example, consider renaming: If a method is renamed from m

to m0, the older changes to m are no longer relevant for new

and future changes to m0.

Thus, we investigated whether we would improve recall

and precision of the top 10 suggestions by ranking methods

that take the age of changes into account. We explored two

methods:

. Last 180 days. We computed the support count of

an entity based on the last 180 days only and took

this as ranking criterion. Thus, the position of an

item in the list depends on how often it has been

changed in the context of the situation within the

last half year.
. Linear weighting. As an alternative, we used a

linear increasing weighting function that assigns 0 to

the oldest and 1 to the most recent transaction for a
situation. As ranking criterion we took the sum of

the weights for all transactions that support a

suggestion.

As the ECLIPSE project is known to undergo frequent

restructurings and renamings, we have focused on this

particular project. Fig. 9 shows the evaluation results for

ECLIPSE over time. We considered only queries for which

ROSE returned more than 10 items because for the other

queries, changing the ranking has no impact on recall and

precision. The initial ranking criterion (confidence) yielded

a recall of about 0.24. The “last 180 days” method improves

the recall to 0.27; linear weighting enlarges the recall further

to 0.28. Both ranking methods also increased the precision

in similar fashion.

Weighting changes by age does not always improve

results, though. We repeated the experiment with GCC and

found precision and recall almost unchanged. This again

can be attributed to the maturity and stability of GCC: If

new changes are very similar to old changes, then assigning

a higher weight to new changes will not make much

difference.

To get a feeling for how much potential is covered at all

by improving ranking, we computed the recall we would

reach with perfect ranking—that is, the recall we can reach

within the top 10 suggestions if all correct items are ranked

to the top of ROSE’s recommendations. In Fig. 9, we see

that, for ECLIPSE, the difference between the recall reached

with ranking by confidence and the recall for the perfect

ranking is about 0.11; for GCC, we observed a similar room

for improvement. This highlights the remaining potential,

but also the limits of recommending related entities.

Summary. For projects that are frequently restructured,
assigning a higher weight to recent changes can increase precision
and recall.

7.12 Threats to Validity

We have studied more than 100,000 transactions of eight

large open-source programs. Although the programs

themselves are very different, we cannot claim that their

version histories would be representative for all kinds of

software projects. In particular, enforcing a strict change

management would result in changes that are more

logically separated; in ROSE, this yields a higher precision

and higher recall—and, hence, a better predictability.

Transactions do not record the order of the individual

changes involved because they have been committed

simultaneously to the version archive. Hence, our evalua-

tion cannot take the order into account the changes were

made—and treats all changes equal. In practice, we expect

specific orderings of changes to be more frequent than

others, which may affect results for navigation and

prevention.

We have made no attempt to assess the quality of

transactions—ROSE learned from past transactions, regard-

less of whether they may be desired or not. Consequently,

the rules learned and evaluated may reflect good practices

as well as bad practices. However, we believe that

competent programmers make more “good” transactions

than “bad” transactions and, thus, there is more good than

bad to learn from history.

We have examined the predictive power of ROSE and

assumed that suggesting a change, narrowed down to a

single file or even a single item, would be useful. However,

it may well be that missing related changes could be

detected during compilation or tests (in which case ROSE’s

suggestions would not harm), or may be known by trained

programmers anyway (who may find ROSE’s suggestions

correct, but distracting). Eventually, usefulness for the

programmer can only be determined by studies with real

users, which we intend to accomplish in the future.

8 RELATED WORK

Independently from us, Ying et al. developed an approach

that also uses association rule mining on CVS version

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Fig. 9. Different ranking techniques for ECLIPSE (2003-03-28 to

2004-09-14).

archives [33]. They especially evaluated the usefulness of

the results, considering a recommendation most valuable or

“surprising” if it could not be determined by program

analysis, and found several such recommendations in the

MOZILLA and ECLIPSE projects. In contrast to ROSE,

though, Ying’s tool can only suggest files, not finer-grained

entities, and does not support mining-on-the-fly.

Xing and Stroulia [32] used association rule mining on

versions of UML diagrams to detect class coevolution. Their

approach yielded promising initial results, but has not yet

been evaluated on a large scale.
Hassan and Holt investigated several heuristics to

predict change propagation for fine-granular entities [16].

The heuristics have been based on historical cochange and

static dependencies. Hassan and Holt did not consider

association rules.

Change data has been used by various researchers for

quantitative analyses. Word frequency analysis and key-

word classification of log messages can identify the

purpose of changes and relate it to change size and time

between changes [22]. Various researchers computed

metrics on the module or file level [3], [11], [14], [15] or

orthogonal to these per feature [23] and investigated the

change of these metrics over time, i.e., for different releases

or versions of a system.
Gall et al. were the first to use release data to detect

logical coupling between modules [10]. The CVS history

allows to detect more fine-grained logical coupling

between classes [12], files, and functions [35]. None of

these works on logical coupling did address its predictive

power. Sayyad-Shirabad et al. used inductive learning to

learn different concepts of relevance between logically

coupled files [26], [27], [28]. A concept is a relevance

relation, for example, whether two files have been

updated simultaneously. Instances of concepts are de-

scribed in terms of attributes such as file name, extension,

and simple metrics like number of routines defined.

Sayyad-Shirabad et al. thoroughly evaluated the predictive

power of the concepts found.

Michail used data mining on the source code of

programming libraries to detect reuse patterns in form of

association [20] or generalized association rules [21]. The

latter take inheritance relations into account. The items in

these rules are (re)use relationships like method invocation,

inheritance, instantiation, or overriding. Both papers lack an

evaluation of the quality of the patterns found. However,

Michail mines a single version, while ROSE uses the

changes between different versions.

To guide programmers, a number of tools have exploited

textual similarity of log messages [7] or program code [2].

HIPIKAT [8] improves on this by taking also other sources

like mail archives and online documentation into account.

All these tools focus on high recall (in contrast to ROSE,

which focuses on high precision) and leverage relationships

between files or classes (rather than between fine-grained

entities).

9 CONCLUSION AND CONSEQUENCES

ROSE can be a helpful tool in suggesting further changes to

be made and in warning about missing changes. But the

more there is to learn from history, the more and better

suggestions can be made:

. For stable systems like GCC, ROSE gives many and

precise suggestions. In 63 percent of all transactions,

ROSE makes a recommendation. These contain
45 percent of the related items, with a precision of

more than 30 percent. In 90 percent of all recom-

mendations, the three topmost suggestions contain a

correct entity.
. For rapidly evolving systems like KOFFICE, ROSE’s

most useful suggestions are at the file level. Overall,

this is not surprising, as ROSE would have to predict

new functions—which is probably out of reach for

any approach.
. The predictive power of ROSE increases quickly at

the start of a project; it is best during maintenance
phases.

. In about 2-7 percent of all erroneous transactions,

ROSE correctly detects the missing change. If such a

warning occurs, it should be taken seriously, as only

2 percent of all transactions cause false alarms.

What have we learned from history, and what are our

suggestions? Here are our plans for future work:

. Taxonomies. Every change in a method implies a

change in the enclosing class, which again implies

changes in the enclosing files or packages. We

want to exploit such taxonomies to identify patterns
such as “this change implies a change in this

package” (rather than “in this method”) that may

be less precise in the location, but provide higher

confidence.
. Sequence rules. Right now, we are only relating

changes that occur in the same transaction. In the

future, we also want to detect rules across multiple

transactions: “The system is always tested before

being released” (as indicated by appropriate
changes).

. Further data sources. Archived changes contain
more than just author, date, and location. One could

scan log messages (including the one of the change to

be committed) to determine the concern the change

is more likely to be related to (say, “Fix” versus

“New feature”). Furthermore, one can link changes

to bug databases to identify fix-inducing changes [29].

Since such changes are later undone in a fix, ROSE

should not use them for learning.
. Refactorings. Right now, ROSE does not recognize

renamings of functions or files. We plan to integrate
a detection of such refactorings [13] into ROSE that

will result in additional rules for entities that have

been renamed.
. Program analysis. Another yet unused data source

is program analysis; although our approach can

detect coupling between items that are not even

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 443

programs, knowing about the semantics of programs
could help separating related changes into likely and

unlikely. Furthermore, coupling that can be found

via program analysis [33] need not be repeated in

ROSE’s suggestions.
. Rule presentation. The rules as detected by ROSE

describe the factual software process—which may
or may not be the intended process. Consequently,
these rules can and should be made explicit. In
previous work [35], we used visual mining to
detect regularities and irregularities of logically
coupled items. Such visualizations could further
explain the recommendations to programmers and
managers.

ROSE is publicly available as a plug-in for ECLIPSE. For

detailed information on download and installation, see

http://www.st.cs.uni-sb.de/softevo/.

ACKNOWLEDGMENTS

This project is funded by the Deutsche Forschungsge-

meinschaft, grant Ze 509/1-1. The development of ROSE as

an ECLIPSE plug-in was made possible by an IBM ECLIPSE

innovation grant. Holger Cleve, Carsten Görg, Christian

Lindig, Stephan Neuhaus, Stefan Siersdorfer, and the

anonymous reviewers gave helpful comments on earlier

revisions of this paper.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Very Large Data Bases Conf. (VLDB),
pp. 487-499, 1994.

[2] D.L. Atkins, “Version Sensitive Editing: Change History as a
Programming Tool,” Proc. Conf. System Configuration Management
(SCM ’98), 1998.

[3] T. Ball, J.-M. Kim, A.A. Porter, and H.P. Siy, “If Your Version
Control System Could Talk,” Proc. ICSE Workshop Process
Modelling and Empirical Studies of Software Eng., 1997.

[4] B. Berliner, “CVS II: Parallelizing Software Development,” Proc.
Winter 1990 USENIX Conf., pp. 341-352, Jan. 1990.

[5] J.M. Bieman, A.A. Andrews, and H.J. Yang, “Understanding
Change-Proneness In OO Software through Visualization,” Proc.
11th Int’l Workshop Program Comprehension, pp. 44-53, May 2003.

[6] M. Burch, S. Diehl, and P. Weißgerber, “Visual Data Mining in
Software Archives,” Proc. ACM Symp. Software Visualization
(SOFTVIS), 2005.

[7] A. Chen, E. Chou, J. Wong, A.Y. Yao, Q. Zhang, S. Zhang, and A.
Michail, “CVSSearch: Searching through Source Code Using CVS
Comments,” Proc. Int’l Conf. Software Methods, pp. 364-374, 2001.

[8] D. �CCubrani�cc and G.C. Murphy, “Hipikat: Recommending Perti-
nent Software Development Artifacts,” Proc. Int’l Conf. Software
Eng., pp. 408-418, 2003.

[9] K. Fogel and M. O’Neill, “cvs2cl.pl: CVS-Log-Message-to-Chan-
geLog Conversion Script,” http://www.red-bean.com/cvs2cl/,
Sept. 2002.

[10] H. Gall, K. Hajek, and M. Jazayeri, “Detection of Logical Coupling
Based on Product Release History,” Proc. Int’l Conf. Software
Maintenance (ICSM ’98), pp. 190-198, Nov. 1998.

[11] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth, “Software
Evolution Observations Based on Product Release History,” Proc.
Int’l Conf. Software Maintenance (ICSM ’97), pp. 160-196, 1997.

[12] H. Gall, M. Jazayeri, and J. Krajewski, “CVS Release History Data
for Detecting Logical Couplings,” Proc. Int’l Workshop Principles of
Software Evolution, pp. 13-23, 2003.

[13] C. Görg and P. Weißgerber, “Detecting and Visualizing Refactor-
ings from Software Archives,” Proc. 13th Int’l Workshop Program
Comprehension (IWPC), 2005.

[14] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, July 2000.

[15] A.E. Hassan and R.C. Holt, “The Chaos of Software Develop-
ment,” Proc. Int’l Workshop Principles of Software Evolution, 2003.

[16] A.E. Hassan and R.C. Holt, “Predicting Change Propagation in
Software Systems,” Proc. Int’l Conf. Software Maintenance (ICSM
2004), Sept. 2004.

[17] Proc. 25th Int’l Conf. Software Eng. (ICSE), May 2003.
[18] Proc. Int’l Conf. Software Maintenance (ICSM 2001), Nov. 2001.
[19] Proc. Int’l Workshop Principles of Software Evolution (IWPSE 2003),

Sept. 2003.
[20] A. Michail, “Data Mining Library Reuse Patterns in User-Selected

Applications,” Proc. 14th Int’l Conf. Automated Software Eng. (ASE
’99), pp. 24-33, Oct. 1999.

[21] A. Michail, “Data Mining Library Reuse Patterns Using General-
ized Association Rules,” Proc. Int’l Conf. Software Eng., pp. 167-176,
2000.

[22] A. Mockus and L.G. Votta, “Identifying Reasons for Software
Changes Using Historic Databases,” Proc. Int’l Conf. Software
Maintenance (ICSM 2000), pp. 120-130, Oct. 2000.

[23] A. Mockus, D.M. Weiss, and P. Zhang, “Understanding and
Predicting Effort in Software Projects,” Proc. Int’l Conf. Software
Eng., pp. 274-284, 2003.

[24] Proc. Int’l Workshop Mining Software Repositories (MSR 2004), May
2004.

[25] C.J.V. Rijsbergen, Information Retrieval, second ed. London: Butter-
worths, 1979.

[26] J. Sayyad-Shirabad, T.C. Lethbridge, and S. Matwin, “Supporting
Maintainance of Legacy Software with Data Mining Techniques,”
Proc. Int’l Conf. Software Methods, pp. 22-31, 2001.

[27] J. Sayyad-Shirabad, T.C. Lethbridge, and S. Matwin, “Mining the
Maintenance History of a Legacy Software System,” Proc. Int’l
Conf. Software Maintenance (ICSM 2003), Sept. 2003.

[28] J. Sayyad-Shirabad, T.C. Lethbridge, and S. Matwin, “Mining the
Software Change Repository of a Legacy Telephony System,” Proc.
Int’l Workshop Mining Software Repositories (MSR 2004), pp. 53-57,
2004.

[29] J. �SSliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes? On Fridays,” Proc. Int’l Workshop Mining Software
Repositories (MSR), May 2005.

[30] R. Srikant and R. Agrawal, “Mining Generalized Association
Rules,” Proc. 21st Very Large Data Bases Conf. (VLDB), pp. 407-419,
1995.

[31] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules
with Item Constraints,” Proc. Third Int’l Conf. KDD and Data
Mining (KDD ’97), Aug. 1997.

[32] Z. Xing and E. Stroulia, “Data-Mining in Support of Detecting
Class Co-Evolution,” Proc. 16th Int’l Conf. Software Eng. and
Knowledge Eng. (SEKE ’04), June 2004.

[33] A.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll, “Predict-
ing Source Code Changes by Mining Change History,” IEEE
Trans. Software Eng., vol. 30, no. 9, pp. 574-586, Sept. 2004.

[34] T. Zimmermann, “Mining Version Archives to Guide Software
Changes,” Master’s thesis, Universität Passau, Germany, June
2004.

[35] T. Zimmermann, S. Diehl, and A. Zeller, “How History Justifies
System Architecture (or Not),” Proc. Int’l Workshop Principles on
Software Evolution, pp. 73-83, 2003.

[36] T. Zimmermann and P. Weißgerber, “Preprocessing CVS Data For
Fine-Grained Analysis,” Proc. Mining Software Repositories, pp. 2-6,
2004.

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Thomas Zimmermann received the diploma
degree in computer science from the University
of Passau in 2004. His diploma thesis involved
the development of ROSE, which is presented in
this paper. He is currently a PhD student at the
Saarland University in Saarbrücken, supported
by a scholarship from the DFG research training
group on “Quality Guarantees for Computer
Systems.” His research interests are in software
evolution, source code analysis, and data

mining. He is student member of the IEEE and the IEEE Computer
Society.

Peter Weißgerber received a diploma in com-
puter science at Saarland University Saarbrück-
en in 2004. He is currently a PhD student and
works as a research assistant in Prof. Stephan
Diehl’s reseach group at Catholic University
Eichstätt. His main research interest is software
evolution: How does software evolve over time
and what can be learned from the past for the
future? He is also interested in software visua-
lization, especially in making the results of his

research available to programmers.

Stephan Diehl received the PhD degree from
Saarland University as a scholar of the German
Research Foundation (DFG) working in the
group of Prof. Reinhard Wilhelm. He is a
professor of computer science at Catholic
University Eichstätt. He studied computer
science and computational linguistics at Saar-
land University and as a Fulbright scholar at
Worcester Polytechnic Institute, Massachusetts.
His research interests include programming

languages and compiler design, Web technologies, and visualization,
in particular, software visualization.

Andreas Zeller received the PhD degree at TU
Braunschweig in 1997 and has been a tenured
professor since 2001. He is a software engineer-
ing professor at Saarland University, Germany.
He works on the analysis of large software
systems and their history, especially the analysis
of why these systems fail to work as they should.
He is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 445

