
 A Tale of Two Projects

Dewayne E Perry
Advanced Research in Software Engineering (ARiSE)

Electrical and Computer Engineering)
The University of Texas at Austin

perry@ece.utexas.edu

Abstract— The structure of an organization, the processes, and
technologies used have a significant effect on software
developments. The hypotheses explored here are that 1) an
organization is not independent of process, and 2) process is not
independent of technology. The two projects described
remarkably display the same strong trends even though they
were done in very different parts of the business, in different
kinds of software developments, and in different geographic
locations. Both projects had an organizational structure of
strongly empowered teams, understood the technical problems
and their solutions at a fundamental level (a good match of core
competencies and expert knowledge of problem), and used some
innovative software engineering technology.

Index Terms—Project Organization, Process Improvement.

I. INTRODUCTION
AT&T found itself in a world that is much more dynamic in

its demands than had been true in the past. The
communications marketplace had become a highly competitive
one with both demands from customers and pressures from
alternative suppliers. There are two important problems that
arose in this situation: 1) how do you change a well-established
project structure, and 2) what do you change it to?

To gain an understanding of these problems, we
investigated how two experimental development projects, in
very different environments and organizations within the same
company, dramatically improved time to market, and slightly
improved cost and quality. Our analysis leads us to conclude
that these experimental projects were successful because they
recognized that organizational structure, process, and
technology are interdependent and must all be manipulated to
optimize time to market, cost, and quality.

In the following introductory sections, we describe a model
of software projects, delineate our hypotheses, and discuss the
project selection criteria and project variables. We then discuss
two projects in two sections each: first, we give an overview of
the standard process and organizational structure; and second,
we discuss the experimental project structure, its rational and
the results. Finally, we summarize what we consider to be the
important aspects of these two experimental projects and how
they support our hypotheses.

A. Models of Software Projects
Traditionally, software projects have been viewed in terms

of the waterfall model [6]. This model provides a standard

structure for the software artifacts and a standard sequence of
activities for the project. More recently, software projects have
been considered in terms of the spiral model [2]. This model is
particularly effective in providing a structure for incrementally
reducing various risks in building software systems, especially
large and complex ones.

In both of these models the emphasis is primarily on the
software process with little attention to organizational or
technological issues. It is our contention that these issues are
equally important and that they have not been given sufficient
attention. We therefore propose a model of software
development projects that has three components:

• Organization,
• Process, and
• Technology.
The organization component defines the management and

organizational structure of the project. The process component
defines activities, transformations, dependencies and
interactions that take place in producing the software artifacts.
The technology component defines the technical aspects of the
artifacts and the tools that are applied to them.

B. Hypotheses
We have two hypotheses that we want to demonstrate in

this study:
• Organization is not independent of process, and
• Process is not independent of technology.
Clearly, one can imagine cases where one might consider

organizational issues separately from process issues. We
believe, however, that in the default case, the two are coupled
together and should be considered as interrelated and
interdependent. Similarly, there are levels of abstraction where
aspects of process are independent of particular technologies.
In general, however, the two are coupled and should also be
considered as interrelated and interdependent.

We show the validity of our claims in the discussions of the
two experiments below.

C. Project Selection Criteria
We have selected these two projects for the following

reasons:
• They have executed a complete cycle of development.
• They have well-documented post mortems of their

experience.

• They have quantitative data about interval, quality and
cost.

Despite the richness of the experiments, we advise some
caution for the following reasons: these are not controlled
experiments and some of the results could be partially due to
the well-known “change effects” or “being watched effects”.

D. Project Variables
There are three interrelated, macroscopic variables by

which we measure product development projects: cost, quality,
and time interval. There are a wide variety of ways in which
these variables can be optimized in any particular development
project. We will not discuss this general problem, but instead
focus on only one aspect for the purposes of this analysis –
namely, time interval.

The time interval is a function of how you view the artifact
and break it up into pieces of work, how long it takes for each
piece of work to get done, and the ability to proceed
concurrently on different pieces of work.

There are four reasons why focusing on the time interval
variable is sufficient. First, reduction in the interval enables a
project to give a faster response to customer needs. Second, in
any established process that has evolved over time, there are
inefficiencies that have accumulated in that process. Pushing
on the time interval is a useful way of uncovering those
inefficiencies. 1 Third, while there are parts of the process that
are necessarily independent of the particular value added to the
customer, there are some aspects which provide no such value.
Finally, a reduced interval by definition has less partially
worked inventory and thus reduced carrying costs.

E. General Analysis Methodology
In our analysis, we emphasize the contrast between the

prevailing development methodology and the one implemented
in each of the case studies. As previously stated, we feel much
is lost by trying to exclude the "adopted organizational
structure" which has become the operating standard. Therefore,
we characterize each organization as well.

II. THE Y0 PACKET FEATURE DEVELOPMENT
The Y0 Packet Features Development (Y0FD) is composed

of four features:
• ISDN Packet Business Group (IPBG)
• Conditional Notification & Channel Selection (CNCS)
• Packet Trunk Interface Standard (PTIS)
• Packet Multi Line Hunt Group (MLHG)
We have summarized in Table 1 the size of these features

both by source code developed and technical head count years
of effort expended (THCY) [5]. These numbers are estimates

1 It is considered common wisdom that reducing production
intervals is always a good thing to do. Certainly the Boston
Consulting Group would have you believe this to be true [7].
However, there is no experimental basis for their position;
interval reduction is argued on a priori grounds. We note that
there is mounting evidence that sometimes short term gains
will not outweigh long term costs [8].

created during the initial development planning. The numbers
are well within 5ESS norms.

The challenge to the development team was to reduce the
development interval from 16 months to 12 months, while
maintaining or slightly improving the quality of the product.
The fault density, as delivered to the first customer (Q2), is the
measure of the product quality. The goal for this development
was .23 faults/KNCSL.

Table 1 – Size of Y0 Packet Features

All code sizes are thousands of noncommentary source lines
(KNCSL). The staff is in technical head count years (THC)
and is the effort integrated over time from Q10 through Q2.
Faults remaining are the number at delivery to the first
customer.

A. Standard Development
The 5ESS software development process is an adaptation of

the standard waterfall model (see Colson and Prell's paper on
5ESS projects [3]). We present a frame of reference by
describing the relationship between process, organization, and
product. Further, we identify the crucial dynamics of the
current process: many formal handoffs2 and quantized monthly
intervals. 3

Table 2 – Standard Development

We have listed the standard 5ESS development
template of development milestone labels, definition,
and typical interval in months. For historical reasons
Q4 and Q3 are milestones tracking internal System
Verification/First Office Application (SV/FOA) events
and are not relevant here.

The standard development results from an assembly line
like approach to developing software. At each stage a major

2 A handoff is defined as propagation of a deliverable between
individuals
3 The minimum unit of time that any task duration estimate
can be given in.

KNCSL THC Faults/Q2

IPBG 12.8 9.3 3

CNCS 19.1 13.9 4

PTIS 14 10.2 3

MLHG 8.8 10.2 2

Total 54.6 39.7 12

Milestones Definition time (Ms)
Q10 FSD Complete
Q9 Requirements DS 3
Q8 Design DS 3
Q7 DU DS. Coding, DU Test 4 to 6
Q6 Capability Test Pass 2 to 3
Q5 Fot Test Pass 3
Q2 SV/FOA Complete 4 to 5

milestone is defined (see Table 2). Historically, as the 5ESS
project's process and product matured, the throughput was
increased by making one organization responsible for each
stage. This can maximize throughput, but at the cost of many
handoffs which are costly in time and difficult to coordinate.
The cost of handoffs is the result of many different groups
having to relearn some detail information before they can start
their work. The coordination cost results directly from different
pieces of the organization having to wait because of
unexpected delays and their inability to efficiently schedule
around them.

The other key idea is the need to have a basic, standard
planning time unit for task duration. In 5ESS this unit is one
month. The need for the standard unit is a direct result of the
tight coordination required to control interval with many
organizational handoffs.

The unit is determined by competing forces that are
complex. The first force is the minimum task or subtask time
interval on the assembly line. The second force is the
minimum interval management seeks to have controlled.
Opposing the desire for management to be infinitely precise is
the third force--the cost of tracking these tasks and subtasks.
The smaller the unit of time, the more sampling, hence, the
higher the cost of tracking. These forces balance at roughly 1
month for 5ESS.

Figure 1 – Standard Development

This figure depicts the value added by the different
organizations as the product is built, starting as a business
case and completing as a product. The vertical axis portrays
time – so as the developing product is built it moves forward
(down) in time and across (left to right) through different
organizations. The grayed squares inside the different
organizational rectangles crudely show the critical path of the
product development cycle.

B. Y0 Development
The Y0 development process alters two of these factors: 1)

the many formal handoffs and 2) quantized monthly intervals.
Instead of a functional organization approach, a team approach
is used to minimize handoffs. This solution mitigates the
monthly intervals, as well, because the team does not need as
much formal review so management can reallocate resources.
The milestones can be more naturally matched to the structure
of the Y0 features and the team's talents.

Matching team milestones to the feature allows the team to
exploit characteristics of the problem making the entire

development less prone to fault insertion. For instance, in the
Y0 feature development many difficult fault recovery scenarios
of all the features are designed by the same expert. A direct
result of exploiting the structure of the organization, process,
and software engineering.

Figures 1 and 2 summarize the differences between
standard and Y0 development. The interested reader is directed
to [5] for further details of the Y0 feature development.

Figure 2 – Y0 Development

In contrast to Figure 1, we see the benefit of a shorten time
interval since there are fewer hand offs between
organizations. Glass and Sanders in their AT&T Technical
Journal [4] in 1992 article observed the same phenomena for
hardware development processes.

III. THE FNMS-R3 SOFTWARE DEVELOPMENT
The FNMS-R3 software development [9] was an enhanced

release of approximately 45 thousand non-commentary source
lines (KNCSL) written in C++ on a base of around 140KNCSL
undertaken by about 25 people. This enhancement consisted of
three major features and a number of minor features.

The previous release (FNMS-R2) took about 16 months to
complete. In general, the process was too unresponsive to
customer needs and the products were too unstable in the field.

The goal of the new development process was to enable the
team to shrink the overall cycle time, to improve the overall
quality by removing defects early in the process, and to
decouple the features from each other so that high priority
features could be delivered as early as possible.

A. Standard Development
Prior to the current experimental process, there was no

formal process in place for the development of features. The
development was pretty much schedule-driven. That is, a
development schedule was mapped out and used as the
management plan directing the development process. The
general intent of the schedule-driven process was to support
incremental development (five major releases were planned,
but the actual number of releases was much higher, primarily
due to fixing problems, etc.). The system was cutover two
months late.

Except for a one day high level design review and an
external architecture review of the FNMS-R1 architecture,
there were no design reviews or code inspections. Moreover,
there was no formal unit testing and only minimal integration

testing (with no clear exit criteria). Documentation was done
after the fact – while the product was being soaked at a field
site.

The development was organized along functional lines:
systems engineering, development, and system test. Problems
that arose from the separation of these functions included:

• interface problems between systems engineering and
development;

• lack of support in reviewing requirements (which were
late and constantly changing) in a timely manner;

• an inactive MR review board – status meetings were
reduced to fighting fires and managing crises.

B. FNMS-R3 Development
The FNMS-R3 development process altered three things in

order to achieve their goals. First, they added some standard
quality gate techniques: design reviews, code inspections, etc.
Second, they decreased interval time by decoupling features
that could be developed in parallel and by changing from a
functional organization to an interdisciplinary team
organization. In order to make them responsive and able to
deliver their products as quickly as possible, the teams were
empowered to be responsible for their feature from feature
specification through integration of these features into the
existing system. Third, within the individual feature
developments, team members were encouraged to do as much
in parallel as possible.

The results of these changes were as follows:
• The cycle time was reduced by about 25% to 12 months

(despite the learning curve associated with installing a
new process).

• Decoupling features enabled short features to be
implemented and delivered very quickly. One of the
major features was delivered three months ahead of the
other two features.

• Defects were removed earlier with very few problems
encountered after integration testing.

• The team organization increased the effectiveness of the
development process with team members assuming
various roles that were previously in different functions.
Moreover, the team approach significantly increased the
effectiveness of communication among team members.

Thus, both the development interval and the product quality
were increased by effectively exploiting the structure of the
organization and product, and introducing sound software
engineering techniques.

IV. OBSERVATIONS & CONCLUSIONS
A thorough reading of the case studies and referenced

material should draw the reader to the same observations that
we have made. Both projects remarkably display the same
strong trends even though they were done in very different
parts of the business, in different kinds of software
developments, and in different geographic locations. Both
projects had an organizational structure of strongly empowered
teams, understood the technical problems and their solutions at

a fundamental level (a good match of core competencies and
expert knowledge of problem), and used some innovative
software engineering technology.

Further, we note that both projects displayed strong
conviction in execution fundamentals. What they said they
were doing, they were doing. It is hard enough to improve a
process, much less trying to do it when the state is unknown.

A final caution is in order. All good ideas can be applied in
such a way as to not provide the expected result. We note that
fundamentals are important and should be emphasized and that
many of these steps discussed in the preceding paragraphs are
intimately related to each other. Although it is difficult to prove
in a mathematical sense, we believe that organization is an
integral part of process and cannot be separated from process.
Moreover, we believe that attempts by organizations to apply
the development map ideas described here without consciously
adopting the required organizational structures will lead to
failure.

REFERENCES
[1] Thomas J. Allen and Oscar Hauptman. “The Influence of

Communication Technologies on Organizational
Structure”, Communication Research 14:5 (October 1987),
pp 575-587.

[2] Barry Boehm. “A Spiral Model of Software Development
and Enhancement”, IEEE Computer, 21 (May 1988), pp
61-72.

[3] Joseph S. Colson, Jr., and Edward M. Prell. “Total Quality
Management for a Large Software Project”, AT&T
Technical Journal, 71:3 (May/June 1992), pp 48-56.

[4] Kathleen K. Glass and Lucinda M. Sanders, “Managing
Organizational Handoffs with Empowered Teams”,
AT&T Technical Journal, 71:3 (May/June 1992), pp 22-
30.

[5] J. D. Huang, T. E. MacGregor, K. A. Radtke, and D. J.
Rajkarne. “Software Development Process for Y0 -
Packet Features”, Memorandum for File, 15 August 1991.

[6] Winston Royce. Managing the Development of Large
Software Systems”, IEEE WESCON Proceedings, August
1970, pp 1-9. Reprinted in Proceedings of the 9th
International Conference on Software Engineering,
Monterey CA, March 1987, pp 328-338.

[7] George Stalk, Jr. and Thomas Hout. Competing Against
Time: How Time-Based Competition is Reshaping Global
Markets. New York: The Free Press, 1990.

[8] George Stalk, Jr. and Alan M. Weber. “Japan's Dark Side
of Time”, Harvard Business Review, July-August 1993,
pp 93-102.

[9] H. T. Yeh. “Re-Engineering a Software Development
Process for Fast Delivery - Approach & Experiences'”,
Proceedings of the First International Conference on the
Software Process: Manufacturing Complex Processes,
Redondo Beach, CA, October 1991, pp106-111

	I. Introduction
	A. Models of Software Projects
	B. Hypotheses
	C. Project Selection Criteria
	D. Project Variables
	E. General Analysis Methodology

	II. The Y0 Packet Feature Development
	A. Standard Development
	B. Y0 Development

	III. The FNMS-R3 software development
	A. Standard Development
	B. FNMS-R3 Development

	IV. Observations & Conclusions
	References

