
1

Introduction to Software Engineering

© 2005-present, Dewayne E Perry

Lecture 1

Introduction to Software Engineering

Dewayne E Perry
Office: ACE 5.124 – Hours MW 11-12:00

Phone: +1.512.471.2050
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/SE-Intro/

2

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

You Just Made the Wrong Choice

3

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Sometimes

4

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Course Information
 www.ece.utexas.edu/~perry/education/SE-Intro

Syllabus –
 Lists papers to be read in preparation for each lecture
 Online: at www.ece.utexas.edu/perry/education/
 All papers are there to be downloaded

Class is discussion!
 Preparation: read the papers
Will provide study/thought questions to consider while reading
 In class excercises

Grades: weekly (possibly more) quizzes; 2 exams (no final exam)
 At the beginning of class for that day’s readings
 NO make-up quizzes – will drop lowest two scores
 NO make-up exams except under dire circumstances
 90%, 80%, 70%, 60%, 50% grade structure
 Grad students – project with incremental schedule

Concepts and principles are the point in this course
 Details are there to help understand the concepts and principles –

will not hold you to remembering all the details
 See the handout on how to read papers

Sample test there to give you an idea for quizzes & exams
Standard ECE and UT no cheating policies

5

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Other Matters
 Class attendance

Do not take attendance – BUT will call on you to answer
questions

BUT weekly (or more) quizzes and two (1st half; 2nd half)
exams

Generally, no PPT slides – class will be devoted to discussion
 Missing quizzes and exams

You are expected to be here for tests
IF you are going to miss, get to me first

Has to be a significant reason
There are phones with answer machines (office: 471-2050)
There is email (perry @ ece.utexas.edu)
And there is personal contact (I am usually around mornings)

The only excuse for not getting to me ahead of time is a
death in the family – yours!

Interviews for jobs are not sufficient excuses. Your class
comes first!!

 You will get out of this as much as you put into it!

6

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

To Help You Do Well
 Improve comprehension

WSJ: report on studies for improving comprehension
Look at ART –

 Go visit the Blanton Museum
Take an art class

Stimulates the part of the brain related to comprehension
 Improve retention

WSJ: report on study for improving retention
Writing longhand notes versus typing (eg on you laptop)

Writing longhand exercises that part of the brain associated
with retention

Typing does not.

 If all else fails, eat dark chocolate
See proof on next slide

7

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Proof of Dark Chocolate

8

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Reading Assignments
 Classic and seminal papers

The underlying concepts and principles are critical!
You will be thankful when you go to interview for a software

position – your interviewers will like what you can say about
engineering software systems

 I am going to be a CE/EE – why is SE relevant?
Software is invading every aspect of our lives
For CE (and even EE) you will build software systems
The concepts and principles are just as relevant for CE/EE

All engineering is about design, measurement and evaluation etc

 Building software systems is Fun!
One of the most creative and intellectually challenging fields

today
The papers provide examples and lessons

9

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

The Joys and Sorrows
 Joys

Sheer joy of making things
Delight in working in a hackable medium

Thought stuff
 Limits: imagination, logic and complexity

Fashioning complex puzzle-like objects
Creativity – grand concepts
Always learning new things
Making things useful for/to other people

 Sorrows
Other people often set the objectives and boundaries
Has to work perfectly

 Finding bugs is hard work
Debugging has linear convergence, or worse
Make progress by finding our silly and not so silly mistakes

What we build may be obsolete before completed

10

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

The Gospel according to BC

We are here to learn about software engineering
We have a book and papers for basic understanding
 There are libraries, internet sites, colleagues, and

me to supplement your basic knowledge

11

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Overview of Course
 Overview of Software Engineering
 Life-Cycle Phases – ½ semesster

Requirements
Architecture & design
Construction
Deployment & Maintenance

 Integral Activities – ¼ semester
Documentation
Measurement & evaluation
Management of objects
Teamwork
Evolution

 Process Life-Cycle & Integral activities – ¼ semester
 Project Management – week before 2nd exam

12

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

SE Life-Cycle

Requirements

Architecture & Design

Construction

Deployment & Maintenance

D
ocum

entation

M
easurem

ent
& Evaluation

M
anage O

bjects

Team
work

Evolution

Integral to all phases Phases

Product

13

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Software Engineering (SE)
 Software Engineering is about building, maintaining and evolving

software systems
Fundamentally, SE is a set of problem solving skills, methods,

techniques and technology applied in a variety of domains to create
& evolve useful software systems that solve practical problems

Programming is just one of these basic problem solving skills
 Brooks: “Software entities are more complex for their size than

perhaps any other human construct”
 Wulf & Shaw: “Large programs, even not so large programs, are

among the most complex creations of the human mind”
 Why?

Need more memory? Add more memory cards – replicate
In SE, add new distinct components, generally little replication.

 Basic Job of a Software Engineer
Discover, create, build and evolve

 abstractions, behaviors and representations
Effectively evaluate and decide among alternative solutions

14

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

SE and Other Engineering Disciplines
 Two major components in engineering systems

Design
Manufacture

 Engineering is applied to both design and manufacture
Significant part of an engineering discipline is the

manufacturing process
Have mathematics, for example, for optimization of processes
 Engineer manufacturing and fabrication equipment

 SE: engineering is applied to both as well, BUT
Manufacture is

Trivial (by comparison – sometimes complex and time-consuming)
Mundane
Automated

Much larger emphasis on engineering applied to DESIGN
 Building a software product is a DESIGN process
 General design approaches/principles applied to diverse domains

15

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Essential Characteristics of Software Systems

 Main Message of Brooks’ No Silver Bullet paper:
 . . . no single development, in either technology or

management technique, that by itself promises even an order
of magnitude improvement in productivity, reliability or
simplicity !

 Brooks distinguishes between
Essential characteristics
Accidental characteristics

 Basic fact (and first important lesson):
 Building software systems is just plain hard
 Essence of software systems

A construct of interlocking constructs: data sets, relations
between/among data, algorithms and invocations

Abstract

16

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Essential Characteristics of Software Systems

 Essential characteristics
Complexity
Conformity
Changeability
Invisible
Implicit
Evolution

 Accidental Characteristics
Inadequate modes/means of expressions
Inadequate abstractions
Inadequate support
Resource limitations

17

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Dilbert & Brooks

18

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Essential Characteristics of Software Systems

 Complexity
Basic issues

No two parts alike - ie, all parts distinct
Scale up by addition, not replication
 Very large number of states – hard to conceive, understand

2 kinds of complexity
 Intricacy

Particularly true of algorithms
Like a Bach 4 voice fugue

• Horizontal and vertical relationships
• Hard to change one note without severe repercussions

Wealth of detail
Nothing very deep, just masses of details
Like a Strauss tone poem, or Mahler symphony

• Massive number of notes on a page – provide texture
• Missing one would hardly be noticed

Makes very hard to comprehend the entire system (eg, 10M lines)

19

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Complexity: Intricacy (Bach)

20

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Complexity: Wealth of Detail (Strauss)

21

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Essential Characteristics of Software Systems

 Conformity
There are complex objects in physics

 BUT they have uniformity
Not so in software systems – eg, interfaces

Often arbitrary complexity

 Changeability
Thought stuff infinitely malleable
Hence, soft

 Invisible
Not inherently embedded in space
No inherent geometric representation
Multi-dimensional relationships

22

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Essential Characteristics of Software Systems

 Implicit
Explicit part

 Code – a desiccated relic of a long intellectual process
Very large design space

Narrow to code thru large number of design decisions
 Various architectural, design and implementation decisions
Numerous and various trade-offs

Syntax represents gross and obvious dependencies
BUT, not the logical or semantic dependencies

 Evolution
Not a matter of “getting it right the first time”

Though sometimes that needs to be done
Changes in the world forces evolution

 Context
Use
Technology

23

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Accidental Characteristics of Software Systems

 Inadequate modes/means of expression
Languages are important:

Wittgenstein: “the limits of my language are the limits of my
world”

 Johnson: “language is the dress of thought”
High Level Languages

 Frees us from accidental complexity
 Provides useful abstractions that can be automatically checked

Eg, Ada
Modularity, abstraction, concurrency
 BUT, still just an incremental improvement

Eg, OO
Abstract data types + hierarchical types with inheritance
 Reduces syntactic stuff with no information content
 BUT, type underbrush is not 9/10ths of the work we do

24

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Accidental Characteristics of Software Systems

 Inadequate abstractions
AI heuristics

 rules of thumbs
 But much doesn’t apply

Graphical programming – not convincing
An exception: Kramer & Magee’s state simplification work

Helps to find faults and reduces accidental complexity
Automatic programming: higher level language + generator

Need well understood domain
 Relatively few parameters
 Known methods for alternatives
 Explicit rules for selecting solution techniques

Program verification: verify instead of test
No magic – hard work
 Programming hard, Specifications harder, proofs harder yet

Very hard to debug the specifications
Virtually all published proofs of programs have bugs

25

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Accidental Characteristics of Software Systems

 Inadequate support
Programming environments

 Libraries, structures, standard formats
Eg, language oriented editors

Never did make it
Useful: integrated data base for impact details

 Resource limitations
Time-sharing systems

 Immediacy, availability, continuity
Workstations

Think time still dominant
Cloud – just servers on steroids

 Expands availability
 But still possible connection problems

26

Introduction to Software Engineering Lecture 1

© 2005-present, Dewayne E Perry

Brooks’ Recommendations

 Buy not build
Will see later there are “flaws in the ointment”

 Requirements, refinement, prototypes
 Incremental development

Grow, don’t build, software systems
 Use great designers

Good design practices good designs
 Can be taught

Great designs need great designers
 Creative (the difference between Salieri and Mozart)
Achieve conceptual integrity

The right mix of simplicity and functionality

	Introduction to Software Engineering
	You Just Made the Wrong Choice
	Sometimes
	Course Information
	Other Matters
	To Help You Do Well
	Proof of Dark Chocolate
	Reading Assignments
	The Joys and Sorrows
	The Gospel according to BC
	Overview of Course
	SE Life-Cycle
	Software Engineering (SE)
	SE and Other Engineering Disciplines
	Essential Characteristics of Software Systems
	Essential Characteristics of Software Systems
	Dilbert & Brooks
	Essential Characteristics of Software Systems
	Complexity: Intricacy (Bach)
	Complexity: Wealth of Detail (Strauss)
	Essential Characteristics of Software Systems
	Essential Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Accidental Characteristics of Software Systems
	Brooks’ Recommendations

