
1

Introduction to Software Engineering

© 2005-present, Dewayne E Perry

Lecture 2

Different Views of the Process of
Engineering SW Systems

Dewayne E Perry
Office: ACE 5.124 – Hours M/W 11-12:00

Phone: +1.512.471.2050
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/

2

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Dilbert meets Fred Brooks 

3

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

SW versus HW Systems
 Hardware Systems

Deterioration with age
Wear and tear, corrosion, pollution etc

Improvement: major redesign, retooling and construction
 Software Systems

Good news
Software “ingrades” incrementally and continuously
 Improve correctness correct faults corrective
 Improve usefulness add new features adaptive
 Improve characteristics eg, performance perfective

Bad news
 Introduce new faults, more complexity
 Context can change and reduce usefulness and expose faults

Called “soft” for good reasons
Malleable, with a low cost of change
 BUT, cost equation has changed

Past: hardware expensive, people cheap
Now: people expensive and hardware cheap

4

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

50k View of Software Engineering
 Two critical concepts

Problem space – ie, the world
 The world has lots of things in great variety
 Information, objects, processes, etc

Solution space – ie, the machine (the entire system)
 Solution languages, structures, representations
 Eg, GUIs, DBs, middleware, protocols, components, etc

 We define a problem we want to solve in the world
Problems are often ill-defined, ill-understood
Begin by focusing on various artifacts and processes

 Select – choose some, ignore others
 Abstract – generalize across similarities

 From selection/abstraction process, we begin to create a theory
(we call them requirements)
Iterate and improve our understanding of the problem
Improve our understanding of the elements in the world
May create multiple sub-theories – consistency a problem
May formally describe, analyze, and reason about our theory

5

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

50k View of Software Engineering
 Then reify the theory into an executable model

Ie, create a solution to the problem in the solution space
 We create the model (the software system) in stages

Architecture – basic concepts, structures and critical constraints
Design – abstractions, data structures and algorithms
Code – representations and detailed logical steps
Automatic generation to executable model

 Compilation, linking, etc into an executable system

 Then we introduce it into the world
Often significantly disturbing the world
Certainly changing the world

 Flaws in the ointment
The world changes: uses, technologies, desires, facts, etc
Things left out often become irritants
Initial theory insufficient or inadequate
Model may not be good enough of a variety of reasons

6

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Summary: Theories and Models
 Requirements are the theory for the system we

create from the real world
There may additional domain theory that provides

supplementary information to clarify the requirements
 The software system is the model of that theory
 The specification of the “model” is derived from the

“theory” and is reified into an operational system.
We build that model in stages

Architecture, Design, Code, Construction & Deployment
 There are, further, theories of how to proceed from

a theory for the system to its model
 The models for those theories are sets of processes

(some of which we will discuss in this course)

7

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Another Useful View of our Models
 A critical distinction to keep in mind about reasoning

about correctness etc
 2 views

Programs as calculations
Small neat problems
 Eg, scientific systems
 Can be well-founded theory for reasoning
Mathematical
 Calculi for constructing such programs
 Calculi for reasoning about such programs

Programs as behaviors
 Large messy problems
 Eg, editors, word processors, internet sales, etc
Does not have neat mathematical basis
Have to reason differently
 Logic and domain specific characteristics are critical
 Patterns, guidelines, hints, etc for constructing such programs

	Different Views of the Process of Engineering SW Systems
	Dilbert meets Fred Brooks 
	SW versus HW Systems
	50k View of Software Engineering
	50k View of Software Engineering
	Summary: Theories and Models
	Another Useful View of our Models

