
1

Introduction to Software Engineering

© 2005-present, Dewayne E Perry

Lecture 2

Different Views of the Process of
Engineering SW Systems

Dewayne E Perry
Office: ACE 5.124 – Hours M/W 11-12:00

Phone: +1.512.471.2050
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/

2

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Dilbert meets Fred Brooks

3

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

SW versus HW Systems
 Hardware Systems

Deterioration with age
Wear and tear, corrosion, pollution etc

Improvement: major redesign, retooling and construction
 Software Systems

Good news
Software “ingrades” incrementally and continuously
 Improve correctness correct faults corrective
 Improve usefulness add new features adaptive
 Improve characteristics eg, performance perfective

Bad news
 Introduce new faults, more complexity
 Context can change and reduce usefulness and expose faults

Called “soft” for good reasons
Malleable, with a low cost of change
 BUT, cost equation has changed

Past: hardware expensive, people cheap
Now: people expensive and hardware cheap

4

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

50k View of Software Engineering
 Two critical concepts

Problem space – ie, the world
 The world has lots of things in great variety
 Information, objects, processes, etc

Solution space – ie, the machine (the entire system)
 Solution languages, structures, representations
 Eg, GUIs, DBs, middleware, protocols, components, etc

 We define a problem we want to solve in the world
Problems are often ill-defined, ill-understood
Begin by focusing on various artifacts and processes

 Select – choose some, ignore others
 Abstract – generalize across similarities

 From selection/abstraction process, we begin to create a theory
(we call them requirements)
Iterate and improve our understanding of the problem
Improve our understanding of the elements in the world
May create multiple sub-theories – consistency a problem
May formally describe, analyze, and reason about our theory

5

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

50k View of Software Engineering
 Then reify the theory into an executable model

Ie, create a solution to the problem in the solution space
 We create the model (the software system) in stages

Architecture – basic concepts, structures and critical constraints
Design – abstractions, data structures and algorithms
Code – representations and detailed logical steps
Automatic generation to executable model

 Compilation, linking, etc into an executable system

 Then we introduce it into the world
Often significantly disturbing the world
Certainly changing the world

 Flaws in the ointment
The world changes: uses, technologies, desires, facts, etc
Things left out often become irritants
Initial theory insufficient or inadequate
Model may not be good enough of a variety of reasons

6

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Summary: Theories and Models
 Requirements are the theory for the system we

create from the real world
There may additional domain theory that provides

supplementary information to clarify the requirements
 The software system is the model of that theory
 The specification of the “model” is derived from the

“theory” and is reified into an operational system.
We build that model in stages

Architecture, Design, Code, Construction & Deployment
 There are, further, theories of how to proceed from

a theory for the system to its model
 The models for those theories are sets of processes

(some of which we will discuss in this course)

7

Introduction to Software Engineering Lecture 2

© 2005- present, Dewayne E Perry

Another Useful View of our Models
 A critical distinction to keep in mind about reasoning

about correctness etc
 2 views

Programs as calculations
Small neat problems
 Eg, scientific systems
 Can be well-founded theory for reasoning
Mathematical
 Calculi for constructing such programs
 Calculi for reasoning about such programs

Programs as behaviors
 Large messy problems
 Eg, editors, word processors, internet sales, etc
Does not have neat mathematical basis
Have to reason differently
 Logic and domain specific characteristics are critical
 Patterns, guidelines, hints, etc for constructing such programs

	Different Views of the Process of Engineering SW Systems
	Dilbert meets Fred Brooks
	SW versus HW Systems
	50k View of Software Engineering
	50k View of Software Engineering
	Summary: Theories and Models
	Another Useful View of our Models

