
1

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Product Line
 Begin with product instances

legacy based
use architecture recovery processes

 Focus on appropriate business domain
use domain specific architectural processes
map from recovered to domain architecture

 Abstract/Generalize to Product Line Architecture
Product Line Reference Architecture
Product Line Processes
Asset Base
Supporting Technology
Organizational Issues

2

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Product Line

Product Line
Reference Architecture

Product Line
Processes

Asset Base Products

3

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Product Line –
 Reference Architecture

Domain-specific prescription or description
Parameterized architectural components
Refinement into sub-architectures
Style descriptions for

 critical architectural aspects
 orthogonal aspects - eg, initialization, fault recovery, etc

 Product Line Processes
Create/evolve the reference architecture
Create/evolve architectural instances

 instantiate and provision
 configure and generate

Create/evolve asset base
 shared components
 specialized components

Use asset base for architectural instance/impl

4

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Product Line
 Asset Base

Design component descriptions
 common interfaces
 common implementations
 product-specific implementations

Various supporting platforms
Product specific components

 Supporting Technology
Architecture

Analysis - sufficiency, satisfaction
 Instantiating, provisioning, customization
 Generation/configuration

Design/Implementation
Architecture satisfaction analysis
 Component composition/analysis
 Connector optimization
 Run-time generation

5

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Product Lines
 Organizational Considerations

Architecture/Asset base
 across product lines
 product line specific
 product specific

Supporting technology
 global to the company

Processes - support multiple product lines

6

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Styles
 An incomplete architectural prescription
 Focuses on certain aspects of the architecture

architectural elements
formal characteristics
constraints on architectural elements
constraints on formal characteristics

 Problem: Restrict the architectural structure
for example, strict layering of the architecture

 Solution: layered architecture style
constrain the interactions

 any interaction at elements on the same level
 no interactions at more than one level away
 level below: initiate interactions only
 level above: react interactions only

7

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Styles
 Problem: multi-dimensional organization

Select one as primary, others as secondary
 Solution: Styles for the secondary dimensions

primary dimension: architectural elements
secondary dimensions then distributed over primary
styles define the characteristics of the distributed

dimensions
 Useful rule of thumb: a style for a domain
 Problem: multiple domains in any significant

architecture
 Challenge: integrating the styles consistently

8

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Connectors
 Primarily thought of means of communication

procedure call, remote procedure call
message passing with various levels of service
constraints on structure and directions - pipes
constraints on quality of service - persistence

 Extremely useful in this context
separates computation from interaction
can change some non-functional characteristics by changing

connectors
 from prototype to embedded system via connectors (Tracz)
 improve performance via connector optimization

9

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Connectors
 Can be used as means of mediation

govern access to share data structures
provide synchronization, exclusion

 critical sections
monitors

determine what is allowed and when
 readers/writers policies
 path expressions

 Extremely useful in this context
separates mediation control from computation

 localizes synchronization and exclusion control
 localizes operational policies

separate mediation from communication
compose communication and mediation connectors

10

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Connectors
 Can be used a means of coordination

determine control of computation
 elements of control in communication
 elements of control in mediation

control loci of execution
control delivery of data

 Extremely useful in this context
separate aspects of control from computation
instrumented connectors (Balzer)

mutual invocation - like co-routines
 coordination of computation results and data delivery

fault tolerance
 separate exception handling as a plane of control
 becomes compositional not integral

11

Introduction to Software Engineering Supplementary - 6

© 2005-present, Dewayne E Perry

Dynamics
 Allowed dynamic changes

creation/destruction of components and connectors (Kramer &
Magee)

to respond to dynamic system requirements
 Appropriate support for

distribution independence
dynamic linking, registration (Taylor et al)

	Product Line
	Product Line
	Product Line –
	Product Line
	Product Lines
	Styles
	Styles
	Connectors
	Connectors
	Connectors
	Dynamics

