
1 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Design Evaluation according to Dilbert 



2 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Common Problems 
 Remember 

Systems will change and evolve 
Not because not done right the first time 

Though sometimes we don’t 
But because of change in the world and use of the system 

 Misleading wisdom from Mathematics 
Prove a more general theorem to satisfy several related 

problems 
Often too general and hence too expensive 
Push for reuse tends to argue for more generalized 

components 
Useful solution: limit the domain but extend beyond single 

use 



3 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Common Problems 
 Problem with typical CS view relative to programs 

Have a specific, unique problem 
Specify THE task to be performed by THE program 
Unique problem solved by one program 

 Not a useful or productive view of what needs to be 
done – often have: 
Different HW, OS, platforms 
Different data formats 
Different data structures, algorithms due to difference 

resources 
Different size input data sets, frequency of events 
Different reliability/performance/security constraints 
Different standards for different customers (eg, telephony) 



4 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Common Problems 
 Often want to do the following but cannot: 

Deliver a subset of functionality 
 But cannot because everything has to be there to work at all 

Add a capability 
 But cannot without completely rewriting the entire system 

Remove a capability 
 But cannot with out significantly rewriting the system 

Want to tailor for specific customers 
 But cannot because the system isn’t flexible enough 



5 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Common Problems 
 How monolith programs/systems come about 

Excessive information distribution 
Dependency on whether or not a given feature is present or not 

Eg, an OS supporting three languages 
Add a 4th  large amount of code change 
Difficult to reduce to 2 languages 

A chain of data transforming components 
 Intermediate data formats 

Eg, remove one intermediate component  incompatible data formats 
Eg, data unsorted then gets sorted 

Components that perform more than one function 
 Common to combine several functions into one unit 

Eg, runtime checking at call time 
Loops in “use” relation 

Often duplicated common functions 
 Problems with program usage: nothing works till everything does 
Have to worry about dependencies 
 Eg, OS where scheduler depends on the file system 



6 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Design 
 Intellectual tools to manage complexity 

Modularization 
Encapsulation 
Abstraction 
Virtual machine 

 Modularization 
Decompose into manageable pieces 
Basic building blocks 

 Bases for composition into higher level modules 
General strategy: do one thing well 
Practical strategy: module per page 

 Easily readable and understandable 

 Encapsulation 
Localizes related data, functions etc 
Useful strategy: localize things expected to change 

 



7 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Design 
 Abstraction 

Basic form: function/procedure with parameters 
Information hiding 

 Provide logical interface 
Changes infrequently 

 Hide implementation details 
 Isolates changeable parts 

 Facade pattern 
Abstract object 

 Abstract interface 
 Encapsulated object 
 Eg, the abstract syntax tree in the parallel compiler example 

Abstract type 
 Abstract interface 
 Separate implementation 
 Can declare objects of the abstract type 

Forms of abstraction 
 Data abstraction (ie value) – parameters 
 Type abstraction (ie structure) – abstract data types 
 Procedural abstraction (ie, processing) – parameters, generics 



8 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Design 
 Virtual machines 

Don’t think of programs as components that correspond to 
steps in processing 

Think of a system as layers of functionality 
 Like an onion 
Separates levels of concerns 

Begin with basic machine (eg, OS + programming language) 
 Basic abstractions, basic vocabulary for developing the system 

Build layers of abstractions 
 Each layer provides a higher level of abstraction 

Concepts and constructs appropriate to that level 
A higher level language 

 Each layer provides just the right abstractions for an easy 
implementation of the next layer 

Can then change implementation details of lower layers 
without affecting the upper layers 

Eg, array, vector, binary tree, heap, priority queue 



9 

Introduction to Software Engineering Supplemental - 7 

© 2005-present, Dewayne E Perry 

Design 
 Fundamental design trade-off 

Generality 
Don’t need to change 
 Generally larger components 
Often more complex 

Flexibility 
 Easy to change 
 Generally, small building blocks 
Often simpler 

 Basic design goals 
Finding useful and appropriate data structures 
Finding useful and appropriate algorithms 
Finding useful and appropriate modularizations, encapsulations 

and abstractions to provide 
 Ease of maintenance and evolution 
Simplicity and correctness 
 understandability 


	Design Evaluation according to Dilbert
	Common Problems
	Common Problems
	Common Problems
	Common Problems
	Design
	Design
	Design
	Design

