
1

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Assume coding as a basic skill
 Problem: how to assemble systems

Statically
Dynamically

 Basic issue:
linking component references to components
This is typically too big a job for a compiler to handle

 Static assembly: build facility
Create a dependency graph
Determine what in the system has changed (interfaces)
Determine what depends on changed (interfaces)
Recompile dependencies
Link components
Check for incompatibilities
Resolve incompatibilities – change components
Cycle until no more incompatibilities

2

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Build Roles

Build owner – coordinates the process
Developers – responsible for the components
Build administrator – does build according to the guide book
Build assistants – problem hackers

 Most automated part of building systems
Still need tool support
Still human intensive

 Reality
In really large systems, can take days, weeks
Large number of builds of the same system

Different purposes: local use, system test, etc
 Faults discovered at build time

Large amount of time to eliminate faults
 Isolate fault, determine responsibility, negotiate solution

Often lack sufficient resources

3

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Dynamic assembly

Typical structure: indirection (late binding)
 (name, link) (link, component)
Name link structure component
Update by replacing link

Name

4

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

OMG CORBA
 OMG CORBA

Common object request broker architecture
Extends build/link problem to include

 Components build in different languages
 Components running on different platforms
 In distributed systems

Provides basic wiring – ie,
 a standard connector for arbitrary components

Goal: open interconnection
 Provide high level protocols as standards
 CORBA compliant: adhering to these standards
 Problem: costly, not as efficient as “binary” interconnections

Ie, shoving bits back and forth as in COM

5

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 CORBA’s structure: 3 parts

Set of invocation interfaces
The object request broker (ORB)
Set of object adapters

ORB
Marshalling Unmarshalling

Worries about Language,
Implementation and Platform

Component
called with
arguments

Component
called with
arguments

6

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 Method invocations and object adapters

Various degrees of “late binding”
Component called with arguments
Data “marshalled” and sent to the ORB
ORB worries about language, implementation and platform

issues
Data “unmarshalled” at appropriate place
Desired component called with appropriate arguments

 Internal details
Use IDL (intermediate definition language) as intermediary
Generate stubs and skeletons

Stub looks like local object, forwards to real object
Skeleton gets data and invokes target object

Works well with standard method invocations

7

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 Registration

Server programs register with the ORB
ORB then knows how to invoke and where

Pure applications do not register
Not startable by the ORB

 Beyond basic wiring
Naming – white pages
Security
Object trader services – yellow pages
Transactions – OTS

One of the most important services
Maintains a current transaction context
Objects must have/implement an interface TransactionObject

Begin, commit, rollback
 Resources have to implement interface Resource (2 phase

commit)

8

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA: Fine Grain Services
 Change management services – versioning
 Concurrency services – locks
 Event notification
 Externalization
 Licensing
 Life cycle
 Objects collection (of standard library objects)
 Object query service (OQL & SQL)
 Persistent object services
 Properties services
 Relationship services
 Time service

9

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 OLE + Active X
 A binary standard

Specifies nothing about how a particular programming
language may be bound to it

Just shoves bits from one place to another
 Fundamental entity: Interface

A pointer to an interface node
Interface node points to a table of procedure variables
Hence, uses double indirection
Methods need notion of self or this
Can have multiple interfaces implemented by the same set of

objects

10

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM

INT

INT

Object

Object

Object

Object

Object

var

var

11

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 How does a client learn about other interfaces?
 How does one compare the identity of COM objects?

QUERY_INTEFACE
 checks for named interfaces
 Gets a unique ID

IUNKNOWN
Used to identify the entire COM object

 Objects are reference counted to keep track of
referring interfaces

12

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 2 forms of composition supported
 Containment

One object has exclusive reference to another
Outer object conceptually contains the inner object
Inner object transparent to client
Enables reuse of components contained in the outer

implementation
 Aggregation

Use case hierarchies and forward are expensive
Exports aggregated interfaces so directly callable
Problems

 If need filtering, interpretation etc
Dependencies on specific object
 Lose transparency of containment

Requires inner objects to collaborate
Can be used to construct efficient generic wrappers

13

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 Interfaces and “polymorphism”

Actually overloading
Distinct implementations for each signature (ie parameters)
Different on the basis of the argument types

Polymorphism
One single implementation
 Language handles distinct types of arguments

 Other COM services
Distribution – requires proxies and stubs
Uniform data transfer
Dispatch interfaces
Outgoing interfaces and connectable objects
COM+ - provides transactional services

14

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Side Note on the Deployment Paper
 ACM SIGSOFT Impact Award
 To be awarded at ACM SIGSOFT FSE
 A Design Framework for Internet- scale Event

Observation and Notification by David Rosenblum
(UCL) and Alexander Wolf (ICL) – ESEC/FSE 1997
 This widely cited paper has been very influential in promoting

the publish/subscribe coordination paradigm for large,
Internet-scale distributed systems. Publish/subscribe
middleware can provide the necessary run-time support to
evolvable and adaptable architectures, which are becoming
more and more important to support modern service-based
applications.

 Extension of the work we will talk about today
 Mentored both at Bell Labs
 Alex co-author on the SW Architecture paper

	System Construction
	System Construction
	System Construction
	OMG CORBA
	CORBA
	CORBA
	CORBA
	CORBA: Fine Grain Services
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Side Note on the Deployment Paper

