
1

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Assume coding as a basic skill
 Problem: how to assemble systems

Statically
Dynamically

 Basic issue:
linking component references to components
This is typically too big a job for a compiler to handle

 Static assembly: build facility
Create a dependency graph
Determine what in the system has changed (interfaces)
Determine what depends on changed (interfaces)
Recompile dependencies
Link components
Check for incompatibilities
Resolve incompatibilities – change components
Cycle until no more incompatibilities

2

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Build Roles

Build owner – coordinates the process
Developers – responsible for the components
Build administrator – does build according to the guide book
Build assistants – problem hackers

 Most automated part of building systems
Still need tool support
Still human intensive

 Reality
In really large systems, can take days, weeks
Large number of builds of the same system

Different purposes: local use, system test, etc
 Faults discovered at build time

Large amount of time to eliminate faults
 Isolate fault, determine responsibility, negotiate solution

Often lack sufficient resources

3

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

System Construction
 Dynamic assembly

Typical structure: indirection (late binding)
 (name, link) (link, component)
Name  link structure  component
Update by replacing link

Name

4

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

OMG CORBA
 OMG CORBA

Common object request broker architecture
Extends build/link problem to include

 Components build in different languages
 Components running on different platforms
 In distributed systems

Provides basic wiring – ie,
 a standard connector for arbitrary components

Goal: open interconnection
 Provide high level protocols as standards
 CORBA compliant: adhering to these standards
 Problem: costly, not as efficient as “binary” interconnections

Ie, shoving bits back and forth as in COM

5

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 CORBA’s structure: 3 parts

Set of invocation interfaces
The object request broker (ORB)
Set of object adapters

ORB
Marshalling Unmarshalling

Worries about Language,
Implementation and Platform

Component
called with
arguments

Component
called with
arguments

6

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 Method invocations and object adapters

Various degrees of “late binding”
Component called with arguments
Data “marshalled” and sent to the ORB
ORB worries about language, implementation and platform

issues
Data “unmarshalled” at appropriate place
Desired component called with appropriate arguments

 Internal details
Use IDL (intermediate definition language) as intermediary
Generate stubs and skeletons

Stub looks like local object, forwards to real object
Skeleton gets data and invokes target object

Works well with standard method invocations

7

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA
 Registration

Server programs register with the ORB
ORB then knows how to invoke and where

Pure applications do not register
Not startable by the ORB

 Beyond basic wiring
Naming – white pages
Security
Object trader services – yellow pages
Transactions – OTS

One of the most important services
Maintains a current transaction context
Objects must have/implement an interface TransactionObject

Begin, commit, rollback
 Resources have to implement interface Resource (2 phase

commit)

8

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

CORBA: Fine Grain Services
 Change management services – versioning
 Concurrency services – locks
 Event notification
 Externalization
 Licensing
 Life cycle
 Objects collection (of standard library objects)
 Object query service (OQL & SQL)
 Persistent object services
 Properties services
 Relationship services
 Time service

9

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 OLE + Active X
 A binary standard

Specifies nothing about how a particular programming
language may be bound to it

Just shoves bits from one place to another
 Fundamental entity: Interface

A pointer to an interface node
Interface node points to a table of procedure variables
Hence, uses double indirection
Methods need notion of self or this
Can have multiple interfaces implemented by the same set of

objects

10

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM

INT

INT

Object

Object

Object

Object

Object

var

var

11

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 How does a client learn about other interfaces?
 How does one compare the identity of COM objects?

QUERY_INTEFACE
 checks for named interfaces
 Gets a unique ID

IUNKNOWN
Used to identify the entire COM object

 Objects are reference counted to keep track of
referring interfaces

12

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 2 forms of composition supported
 Containment

One object has exclusive reference to another
Outer object conceptually contains the inner object
Inner object transparent to client
Enables reuse of components contained in the outer

implementation
 Aggregation

Use case hierarchies and forward are expensive
Exports aggregated interfaces so directly callable
Problems

 If need filtering, interpretation etc
Dependencies on specific object
 Lose transparency of containment

Requires inner objects to collaborate
Can be used to construct efficient generic wrappers

13

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Microsoft COM
 Interfaces and “polymorphism”

Actually overloading
Distinct implementations for each signature (ie parameters)
Different on the basis of the argument types

Polymorphism
One single implementation
 Language handles distinct types of arguments

 Other COM services
Distribution – requires proxies and stubs
Uniform data transfer
Dispatch interfaces
Outgoing interfaces and connectable objects
COM+ - provides transactional services

14

Introduction to Software Engineering Supplement - 10

© 2005-present, Dewayne E Perry

Side Note on the Deployment Paper
 ACM SIGSOFT Impact Award
 To be awarded at ACM SIGSOFT FSE
 A Design Framework for Internet- scale Event

Observation and Notification by David Rosenblum
(UCL) and Alexander Wolf (ICL) – ESEC/FSE 1997
 This widely cited paper has been very influential in promoting

the publish/subscribe coordination paradigm for large,
Internet-scale distributed systems. Publish/subscribe
middleware can provide the necessary run-time support to
evolvable and adaptable architectures, which are becoming
more and more important to support modern service-based
applications.

 Extension of the work we will talk about today
 Mentored both at Bell Labs
 Alex co-author on the SW Architecture paper

	System Construction
	System Construction
	System Construction
	OMG CORBA
	CORBA
	CORBA
	CORBA
	CORBA: Fine Grain Services
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Microsoft COM
	Side Note on the Deployment Paper

