
1

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Empirical Software Engineering Studies
 Individual programmer studies have credibility due

to well understood techniques from psychology and
statistics.

 Large software development studies with the addition
of large population social factors are not well
established or credible.

 Establish a spectrum of empirical techniques that are
robust to large variances from social factors present.

2

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Reconciling Theory with Reality
 True State

of Nature

induction modify
hypothesis

raw
data
other

data

consequences deduction

design

hypothesis

refine hypothesis

noise

3

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Definitions
 An empirical study is a study reconciling theory and

reality.
 Anecdotal and case studies are empirical studies that

investigate phenomena in the context of a current
theory in its real-life context.

 An experiment is an empirical study that shows a
mechanism by directly manipulating the independent
factors to elicit a dependent factors’ predicted (from
theory) responses.

4

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Validity
 In empirical work, worried about similar kinds of

evaluations that we use on our products
 Are we testing what we mean to test
 Are the results due solely to our manipulations
 Are our conclusions justified
What are the results applicable to

 The questions correspond to different validity
concerns

 Concerned with the logic of demonstrating causal
connections, about the logic of evidence

 4 primary types of validity
 Construct Validity
 Internal Validity
 Statistical Conclusion
 External Validity

5

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Construct Validity
 Are we measuring what we intend to measure

 Akin to the requirements problem: are we building the right
system

 If we don’t get this right, the rest doesn’t matter
 Constructs: abstract concepts

 Theoretical constructions
Must be operationalized in the experiment

 Necessary condition for successful experiment
 Divide construct validity into three parts:

 Intentional Validity
 Representation Validity
Observation Validity

6

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Construct Validity
 Intentional Validity

 Do the constructs we chose adequately represent what we
intend to study

 Akin to the requirements problem where our intent is fair
scheduling but out requirement is FIFO

 Are our constructs specific enough
 Do they focus in the right direction
 Eg, is it intelligence or cunningness

7

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Construct Validity
 Representation Validity

How well do the constructs or abstractions translate into
observable measures

Two primary questions:
Do the sub-constructs properly define the constructs
Do the observations properly interpret, measure or test the

constructs
2 ways to argue for representation validity

 Face validity
Claim: on the face of it, seems like a good translation
Very weak argument
Strengthened by consensus of experts

 Content validity
Check the operationalization against the domain for the construct
The extent to which the tests measure the content of the domain

being tested - ie, cover the domain
The more it covers the relevant areas, the more content valid

 Both are nonquantitative judgments

8

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Construct Validity
 Observation Validity

How good are the measures themselves
Different aspects illuminated by

 Predictive validity
 Criterion validity
 Concurrent validity
 Convergent validity
Discriminant validity

Predictive Validity
Observed measure predicts what it should predict and nothing

else
 Eg, college aptitude tests are assessed for their ability to

predict success in college
Criterion Validity

Degree to which the results of a measure agree with those of
an independent standard

 Eg, for college aptitude, GPA or successful first year

9

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Construct Validity
 Concurrent Validity

The observed measure correlates highly with an established set
of measures

 Eg, shorter forms of tests against longer forms
 Convergent Validity

Observed measure correlates highly with other observable
measures for the same construct

Utility is not that it duplicates a measure but is a new way of
distinguishing a particular trait while correlating with similar
measures

 Discriminant Validity
The observable measure distinguishes between two groups that

differ on the trait in question
 Lack of divergence argues for poor discriminant validity

10

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Internal Validity
 Are the values of the dependent variables solely the

result of the manipulations of the independent
variables

 Have we ruled out rival hypotheses
 Have we eliminated confounding variables

 Participant variables
 Experimenter variables
 Stimulus, procedural and situational variables
 Instrumentation
Nuisance variables

11

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Statistical Conclusion Validity
 Are the presumed causal variable X and its effect Y

statistically related
 Ie, do they covary
 If unrelated then the one cannot be the cause of the other

 3 questions (sequentially dependent)
 Is the study sufficiently sensitive
What is the evidence that they covary
 How strongly do they covary

12

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

External Validity
 Two positions

 The generalizability of the causal relationship beyond that
studied/observed
 Eg, do studies of very large reliable real-time systems

generalize to small .COM companies
 The extent to which the results support the claims of

generalizability
 Eg, do the studies of 5ESS support the claim that they are

representative of real-time ultra reliable systems

14

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Other Considerations
 Ethics

Typically about privacy
Good news: nothing life threatening

 Retrospective versus Prospective
Archival versus gathering data
Archival: no control of the quantity or quality of data
Gathering: various kinds of problems

 In Vivo versus In Vitro
In a real context versus in the lab
Lab conditions hard to make realistic

 less expensive
Students freely available

Research preference for professional developers
Difficult to get

15

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Analysis Methods: Quantitative vs. Qualitative

 “In many instances, both forms of data are
necessary--not quantitative used to test qualitative,
but both used as supplements, as mutual verification
and, most important for us, as different forms of
data on the same subject, ...”

From Glasser & Strauss’ the “Discovery of Grounded Theory:
strategies for qualitative research”, p. 18.

16

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Significance & Hypothesis Testing
 Neyman-Pearson Hypothesis Testing Theory
 State H0 and H1.
 Set level of significance, a.

Determine which observations are consistent with H0.
Calculate a probability measure to reflect this set.

 Use observations to accept or reject H0.
 Errors

Type 1: rejecting H0 when H0 is true.
Type 2: failing to reject H0 when H0 is false.

17

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Power of an Experiment

Standard Deviations About mu0

P
ro

ba
bi

lit
y

of
 R

ej
ec

tin
g

H
0:

m
u

=
m

u0

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 10
N = 20
N = 50
N = 100

18

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Grounded Theory (Qualitative Analysis)
 Grounded theory is a set of methods to generate

theories from systematically obtained and analyzed
data.

 Process iterates between collecting and analyzing
data.
Comparative analysis
Theoretical sampling
Constructing formal theory
Clarifying and assessing comparative studies

19

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

Drawing Conclusions
 Fundamentals

credible interpretation
repeatability
understand validity limits
identify underlying

mechanisms
practical significance

 Non-fundamentals
Quantitative Analysis
Qualitative Analysis
Identical Results
Correlation Studies
Opportunistic Studies

20

Introduction to Software Engineering Supplement - 16

© 2005-present, Dewayne E Perry

How do we make progress?
 Better empirical studies

Answers an important question
Establishes principles
Enables generating and refining hypotheses
Cost effective
Repeatable

 Credible interpretations
Construct, internal, and external validity
Test hypotheses
Removal of alternative explanations
Adequate precision
Available to public

NOTE: use this template in reading the papers and
evaluating them for the next class

	Empirical Software Engineering Studies
	Reconciling Theory with Reality
	Definitions
	Validity
	Construct Validity
	Construct Validity
	Construct Validity
	Construct Validity
	Construct Validity
	Internal Validity
	Statistical Conclusion Validity
	External Validity
	Other Considerations
	Analysis Methods: Quantitative vs. Qualitative
	Significance & Hypothesis Testing
	Power of an Experiment
	Grounded Theory (Qualitative Analysis)
	Drawing Conclusions
	How do we make progress?

