
1

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

A Common Problem

2

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Review Papers
 Software Fault Study
Perry and Steig, “Software Faults in Evolving a Large Real-

Time System: A Case Study”, ESEC93, Sept. 1993.
 Time Study
Bradac, et al., “Prototyping a Process Monitoring

Experiment”, IEEE TSE, Sept. 1994.
 Longitudinal study of a single developer, single development

Perry, et al., “People, Organizations, and Process
Improvement”, IEEE Software, July 1994.
Self-reporting study of multiple developers/developments
Direct observation of a subset of those developers

3

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Experimental Site
 Large-scale, real-time software system
 C Programming language, with some domain specific

languages
 UNIX development environment
 Feature is the unit of development
 All changes via Change Management System (CMS)

4

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults
 Research Context
Error studies have usually been done in context of initial and

not evolutionary development
Interface errors studies of Perry/Evangelist showed the

importance of interface problems in evolutionary development.
 Research Questions
Were application specific faults the critical problems in a

particularly faulty release?
What classes of faults were there and when were they

found?
How hard were they to find and fix?
What were their underlying causes?
What means could be applied to either prevent or alleviate

them?

5

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Experimental Design
 Two phase study
Investigate the entire set of faults
Investigate the largest subset (design and implementation)

 Data capture from owners of faults when closed
Members of development part of team to design the survey
Development volunteers to review/pre-test the instruments

 Management imposed limitations:
Strictly voluntary participation
Complete anonymity of responses
Completely non-intrusive

6

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults
 Phase 1 Results
Response rate of 68%
34% development
 requirements (5%), design (11%) and coding (18%)

25% testing
 testing(6%) and environment (19%) problems

30% overhead
 duplicates (14%) and no problems (16%)

11% other
 Phase 1 Summary
Requirements, design and coding faults were found throughout

all testing phases
Majority of faults were found in system test and late in the

testing process
The evolution of large, complex software systems involves a

large overhead

7

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Analyses
 Test for pair-wise independence
Chi-Square test:
 if observed is the pairwise product, then the variables are

independent
 if observed is not the pairwise product, then they are not

behaviorally independent
Example - using find and fix data (assume 1000 responses)

fix (e+m, d+vd) 784 216
find (e+m, d+vd) 909 e:713 o:725 e:196 o:184
 91 e:71 o:59 e:20 o:32

None of the relationships were independent
means of prevention and ease of finding had least significant

dependence
 root causes and means of prevention had most significant

dependence

8

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Analyses
 On the basis of the Chi-Square test, we concluded

the following were correlated:
costs and faults
costs and underlying causes
costs and means of prevention
underlying causes and means of prevention
interface and implementation faults

9

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Results
 Response rate of 68%
 The variables were not independent of each other
 Lack of information tended to dominate the

underlying causes
 Knowledge intensive activities tended to dominate the

means of prevention
 Informal means of prevention were preferred over

formal means
 Interface faults were harder to fix than

implementation faults

10

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Evaluation
 Better empirical studies
Answers an important question
 Yes: What are the significant development problems

Establishes principles
 Yes: Knowledge issues are fundamental problems

Enables generating and refining hypotheses
 Exposes a number of interesting problems

Cost effective
 Inexpensive design/implementation
 Expensive analysis (people intensive)

Repeatable
 useful design; expect similar correlations, not same results

11

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Evaluation
 Credible interpretations –
Strengths in construct, internal and external validity
 CV: Important variables
 IV: Instrument created by developers themselves
 IV: Random trial with developers
 IV: Data from people who owned the fault solutions
 EV: Release similar to other releases
 EV: Commonly used language and environment
 EV: Response rate of 68%

Limits/Weaknesses in construct, internal and external validity
 CV: Find, Fix interpretation not identical
 CV: Fault categories poorly structured (too many faults, etc)
 IV: No post survey validation - only pre-survey
 IV: Up to a year lapse between problem resolution and survey
 IV: Analysis weakened by find/fix problem
 IV: Interface/Implementation division not clean
 IV: Effect of 32% not returned
 EV: Single case study, single system
 EV: Single domain

12

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Evaluation
 Credible interpretations - continued
Test hypotheses
 Yes - refuted the hypothesis that application specific faults

were the critical faults
Adequate precision
Over two thirds results - significant set of responses
Three place precision is justified by the response volume
 dependence/independence analysis
 correlations of fault factors
 comparison of interface and implementation faults

Available to public
 Lack of absolute numbers
 Basic data is not provided in paper, only summaries of analysis

13

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Software Faults - Summary
 Useful case study - answers important questions
 Done within limitations of management constraints
 Significant effect on internal development process
 Important for research implications
Weaknesses in the survey instrument
 Questions about generalizability

14

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies
 Research Context
Single programmer studies usually in context of simple

problems
Few studies of programmers in the context of team
Few studies of programmers in the context of teams in

large-scale software development
 Research Question (Hypothesis)
How does a developer spend his or her time in the context of

a team development as part of a large system development?
What effects do inter-team/personal dependencies have?
How much time is spent in communication?
How much time is spent in the relevant processes? Where?
How much time is lost for various reasons?

15

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 1
 Specific null hypothesis:
A person is 100% effective (ie, race time = lapse time) in

the context of teams in large scale software development
 Experimental Design
Longitudinal study
Retrospective reconstruction of 32 month development from

project notebooks and personal diaries.
Categorized time spent in the specific process activity:
 working, documentation, rework, reworking documentation

Categorized how time was spent when not in process:
 waiting on lab, expert, review, hardware, software,

documentation, other

16

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 1 Results
 Race time / lapse time = .4
 Blocking significant
long significant periods early in the process
short periods in the middle - least blocking here
short periods, large amounts of blocking late in the process

 Process phenomenology
waterfallish early
iterative later

 Provides an important basis for iteration to delve
deeper into the question of how developers spend
their time.

17

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 2
 Research Context
Refines phase 1
Vertical slice of multiple developers and developments

 Research Questions (in addition to initial questions)
How significant was the Phase 1 study and where does its

significance lie?
How representative was the subject used in longitudinal

study?
Is blocking as significant a factor as in the initial study?

 Experimental Design
Self-reporting instrument - finer resolution
Activity and state of work for each process step in

half/hours

18

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 2 Results
 Confirmed race time / lapse time = .4
 Longitudinal study congruent with self-reporting

study
 Blocked = context switching
 Clarifies our understanding of how developers spend

their time
 Raises questions about variance of self-reporting

19

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 3
 Research Context
Self-reporting follow-on
A more detailed look at what developers do with their time

 Research Questions (Hypothesis)
How valid was self-reporting
What are the variances in self-reporting?
How close is the correspondence between perception and reality

What is there that happens at a finer time resolution than
1/2 hour?

 Experimental Design
Series of arranged full-day observations
Comparison of the observations with the self-reports

20

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Phase 3 Results
 Delineates reliability of self-reporting
Self consistent but not uniform
20% variance between observed and report

 Clarifies further our understanding of the how
developers spend their time
Significant amount of unplanned interruptions
75 minutes average per day in informal communication
importance of oral communication, avoidance of written

 Importance of informal communications in
development processes

21

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Summary
 Race time / elapse time = .4
 Blocking / context switching significant
 Developers consistent, but not uniform, in self-

reporting
 Significant number of, and time spent in, informal

interactions

22

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Evaluation
 Better empirical studies
Answers an important question
 Yes: how developers spend their time

Establishes principles
 Yes: race/lapse time, informal interactions

Enables generating and refining hypotheses
 Exposes a number of interesting problems

Cost effective
 Varying costs - dependent on resolution desired
 Effective for the results desired

Repeatable
 useful design; expect similar correlations, not same results

23

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Evaluation
 Credible Interpretations
Strengths in construct, internal and external validity
 CV: Complete data source over complete development
 CV: Well-defined retrospective, self-reporting and observational

structures
 CV: Established process vs state in process
 IV: Congruency of results
 IV: Established self-report consistency and range of variance
 IV: Varying degrees of resolution
 EV: People in team context in large-scale software development
 EV: Entire life-cycle
 EV: Common language and development environment

24

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies - Evaluation
 Credible Interpretations – continued
Limits/Weaknesses
 CV: Blocked, context switching ambiguity
 IV: Loss of details due to time passed
 IV: Inaccuracy of self-reporting
 IV: Observations effects
 EV: Representativeness of application domain
 EV: Cultural representativeness

Test hypotheses
 Yes - refuted the hypothesis

Removal of alternative explanations
 Exposed where critical problems were

Adequate precision
Differing degrees of resolution as needed

Available to public
Data in various useful forms or presentation

25

Introduction to Software Engineering Supplement - 17

© 2005-present, Dewayne E Perry

Time Studies- Evaluation Summary
 Useful set of case studies - answers important

questions
 Confirmed project managers fudge factor: 2.5
 Important Principles:

race vs elapse times
Blocking and context switching
Significant number of, and time spent in, short, unplanned

interactions
 Large amount of informal interaction critical to the

project! That has implications in formalizing
processes

 Triangulation provides well rounded view of time in
different granularities

 Reasonably strong validity – some minor weaknesses

	A Common Problem
	Review Papers
	Experimental Site
	Software Faults
	Software Faults - Experimental Design
	Software Faults
	Software Faults - Analyses
	Software Faults - Analyses
	Software Faults - Results
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Summary
	Time Studies
	Time Studies - Phase 1
	Time Studies - Phase 1 Results
	Time Studies - Phase 2
	Time Studies - Phase 2 Results
	Time Studies - Phase 3
	Time Studies - Phase 3 Results
	Time Studies - Summary
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies- Evaluation Summary

