Introduction to Software Engineering Supplement - 17

A Common Problem

NOBODY TELLS ANDP I WISH THAT'S OKAY, |
ME WHAT THEY WOULP!| (JON. NOBOPY
TO PO! I HAVE NO POES
IDEA WHAT g
0 :
{ . :
! : i
i g i
g g »
i 2 1
1 5 -
T o ITM DAVES 105 Z

© 2005-present, Dewayne E Perry 1

Introduction to Software Engineering Supplement - 17

Review Papers

> Software Fault Study

Y Perry and Steig, "Software Faults in Evolving a Large Real-
Time System: A Case Study”, ESEC93, Sept. 1993.

> Time Study
Y Bradac, et al., "Prototyping a Process Monitoring
Experiment”, TEEE TSE, Sept. 1994.
> Longitudinal study of a single developer, single development
YPerry, et al., "People, Organizations, and Process
Improvement”, TEEE Software, July 1994.
> Self-reporting study of multiple developers/developments
> Direct observation of a subset of those developers

© 2005-present, Dewayne E Perry 2

Introduction to Software Engineering Supplement - 17

Experimental Site

o Large-scale, real-time software system
> C Programming language, with some domain specific

languages

> UNIX development environment
> Feature is the unit of development
> All changes via Change Management System (CMS)

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Supplement - 17

Software Faults

> Research Context
S Error studies have usually been done in context of initial and
not evolutionary development
Y Interface errors studies of Perry/Evangelist showed the
importance of interface problems in evolutionary development.

> Research Questions

Y Were application specific faults the critical problems in a
particularly faulty release?

Y What classes of faults were there and when were they
found?

Y How hard were they to find and fix?

Y What were their underlying causes?

Y What means could be applied to either prevent or alleviate
them?

© 2005-present, Dewayne E Perry 4

Introduction to Software Engineering Supplement - 17

Software Faults - Experimental Design

> Two phase study
L Investigate the entire set of faults
Y Investigate the largest subset (design and implementation)

> Data capture from owners of faults when closed
Y Members of development part of team to design the survey
Y, Development volunteers to review/pre-test the instruments

o Management imposed limitations:
L Strictly voluntary participation
L, Complete anonymity of responses
Y, Completely non-intrusive

© 2005-present, Dewayne E Perry 5

Introduction to Software Engineering Supplement - 17

Software Faults

> Phase 1 Results
Y Response rate of 68%

%, 34% development
> requirements (5%), design (11%) and coding (18%)

%, 25% testing

> testing(6%) and environment (19%) problems

%, 30% overhead

> duplicates (14%) and no problems (16%)

“,11% other

o Phase 1 Summary
Y Requirements, design and coding faults were found throughout
all testing phases
Y Majority of faults were found in system test and late in the

testing process

Y The evolution of large, complex software systems involves a

large overhead

© 2005-present, Dewayne E Perry

Introduction to Software Engineering Supplement - 17

Software Faults - Analyses

o Test for pair-wise independence

% Chi-Square test:
> if observed is the pairwise product, then the variables are
independent
> if observed is not the pairwise product, then they are not
behaviorally independent

Y Example - using find and fix data (assume 1000 responses)

fix (e+m, d+vd) 784 216
find (e+m, d+vd) 909 e:713 0:725 e:196 0:184
91 e:71 0:59 e:20 o0:32

Y, None of the relationships were independent
> means of prevention and ease of finding had least significant
dependence
> root causes and means of prevention had most significant
dependence

© 2005-present, Dewayne E Perry 7

Introduction to Software Engineering Supplement - 17

Software Faults - Analyses

> On the basis of the Chi-Square test, we concluded

the following were correlated:
Y costs and faults
Y costs and underlying causes
L costs and means of prevention
Yunderlying causes and means of prevention
Linterface and implementation faults

© 2005-present, Dewayne E Perry 8

Introduction to Software Engineering Supplement - 17

Software Faults - Results

> Response rate of 68%
> The variables were not independent of each other

o Lack of information tended to dominate the
underlying causes

> Knowledge intensive activities tended to dominate the
means of prevention

> Informal means of prevention were preferred over
formal means

o Interface faults were harder to fix than
implementation faults

© 2005-present, Dewayne E Perry 9

Introduction to Software Engineering Supplement - 17

Software Faults - Evaluation

> Better empirical studies
Y, Answers an important question
> Yes: What are the significant development problems
L Establishes principles
> Yes: Knowledge issues are fundamental problems
Y Enables generating and refining hypotheses
> Exposes a number of interesting problems
L Cost effective
> Inexpensive design/implementation
> Expensive analysis (people intensive)
Y Repeatable
> useful design; expect similar correlations, not same results

© 2005-present, Dewayne E Perry 10

Introduction to Software Engineering Supplement - 17

> CV:
> IV:
> IV:
> IV:
> EV:
> EV:
> EV:

> CV:
> CV:
> IV:
> IV:
> IV:
> IV:
> IV:
> EV:
> EV:

Software Faults - Evaluation

> Credible interpretations -
& Strengths in construct, internal and external validity

Important variables

Instrument created by developers themselves
Random trial with developers

Data from people who owned the fault solutions
Release similar to other releases

Commonly used language and environment
Response rate of 68%

Y Limits/Weaknesses in construct, internal and external validity

Find, Fix interpretation not identical

Fault categories poorly structured (too many faults, etc)
No post survey validation - only pre-survey

Up to a year lapse between problem resolution and survey
Analysis weakened by find/fix problem
Interface/Implementation division not clean

Effect of 32% not returned

Single case study, single system

Single domain

© 2005-present, Dewayne E Perry 11

Introduction to Software Engineering Supplement - 17

Software Faults - Evaluation

> Credible interpretations - continued

L Test hypotheses
> Yes - refuted the hypothesis that application specific faults
were the critical faults
Y, Adequate precision
» Over two thirds results - significant set of responses
> Three place precision is justified by the response volume
> dependence/independence analysis
> correlations of fault factors
» comparison of interface and implementation faults
% Available to public
> Lack of absolute numbers
> Basic data is not provided in paper, only summaries of analysis

© 2005-present, Dewayne E Perry

12

Introduction to Software Engineering Supplement - 17

Software Faults - Summary

o Useful case study - answers important questions
> Done within limitations of management constraints
> Significant effect on internal development process
> Important for research implications

> Weaknesses in the survey instrument

> Questions about generalizability

© 2005-present, Dewayne E Perry 13

Introduction to Software Engineering Supplement - 17

Time Studies

> Research Context
% Single programmer studies usually in context of simple
problems
Y Few studies of programmers in the context of team
Y Few studies of programmers in the context of teams in
large-scale software development

> Research Question (Hypothesis)
Y How does a developer spend his or her time in the context of
a team development as part of a large system development?
Y What effects do inter-team/personal dependencies have?
Y How much time is spent in communication?
Y How much time is spent in the relevant processes? Where?
Y How much time is lost for various reasons?

© 2005-present, Dewayne E Perry 14

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 1

> Specific null hypothesis:
% A person is 100% effective (ie, race time = lapse time) in
the context of teams in large scale software development

o Experimental Design
% Longitudinal study
Y Retrospective reconstruction of 32 month development from
project notebooks and personal diaries.
Y Categorized time spent in the specific process activity:
> working, documentation, rework, reworking documentation
& Categorized how time was spent when not in process:

> waiting on lab, expert, review, hardware, software,
documentation, other

© 2005-present, Dewayne E Perry 15

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 1 Results

> Race time / lapse time = .4

> Blocking significant
G long significant periods early in the process
L short periods in the middle - least blocking here
Y short periods, large amounts of blocking late in the process

> Process phenomenology
Y waterfallish early
Giterative later

> Provides an important basis for iteration to delve
deeper into the question of how developers spend
their time.

© 2005-present, Dewayne E Perry 16

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 2

> Research Context
Y Refines phase 1
Y Vertical slice of multiple developers and developments

> Research Questions (in addition to initial questions)
Y How significant was the Phase 1 study and where does its
significance lie?
Y How representative was the subject used in longitudinal
study?
b Is blocking as significant a factor as in the initial study?

o Experimental Design
L Self -reporting instrument - finer resolution

L Activity and state of work for each process step in
half/hours

© 2005-present, Dewayne E Perry 17

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 2 Results

o Confirmed race time / lapse time = .4

o Longitudinal study congruent with self-reporting
study

> Blocked = context switching

> Clarifies our understanding of how developers spend
their time

> Raises questions about variance of self-reporting

© 2005-present, Dewayne E Perry 18

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 3

> Research Context
% Self -reporting follow-on
% A more detailed look at what developers do with their time

> Research Questions (Hypothesis)

% How valid was self-reporting
» What are the variances in self-reporting?
» How close is the correspondence between perception and reality

YWhat is there that happens at a finer time resolution than
1/2 hour?

o Experimental Design
L Series of arranged full-day observations
Y Comparison of the observations with the self-reports

© 2005-present, Dewayne E Perry 19

Introduction to Software Engineering Supplement - 17

Time Studies - Phase 3 Results

> Delineates reliability of self-reporting
L Self consistent but not uniform
4, 20% variance between observed and report

S Clarifies further our understanding of the how

developers spend their time

L Significant amount of unplanned interruptions

%75 minutes average per day in informal communication
% importance of oral communication, avoidance of written

> Importance of informal communications in
development processes

© 2005-present, Dewayne E Perry 20

Introduction to Software Engineering Supplement - 17

Time Studies - Summary

> Race time / elapse time = .4
> Blocking / context switching significant

> Developers consistent, but not uniform, in self-
reporting

> Significant number of, and time spent in, informal
inferactions

© 2005-present, Dewayne E Perry 21

Introduction to Software Engineering Supplement - 17

Time Studies - Evaluation

> Better empirical studies

Y, Answers an important question
> Yes: how developers spend their time

L Establishes principles
> Yes: race/lapse time, informal interactions

Y Enables generating and refining hypotheses
> Exposes a number of interesting problems

L Cost effective
> Varying costs - dependent on resolution desired
> Effective for the results desired

Y Repeatable
> useful design; expect similar correlations, not same results

© 2005-present, Dewayne E Perry 22

Introduction to Software Engineering Supplement - 17

Time Studies - Evaluation

> Credible Interpretations

Y Strengths in construct, internal and external validity
» CV: Complete data source over complete development
> CV: Well-defined retrospective, self-reporting and observational
structures
» CV: Established process vs state in process
> IV: Congruency of results
> IV: Established self-report consistency and range of variance
> IV: Varying degrees of resolution
> EV: People in team context in large-scale software development
> EV: Entire life-cycle
» EV: Common language and development environment

© 2005-present, Dewayne E Perry 23

Introduction to Software Engineering Supplement - 17

Time Studies - Evaluation

o Credible Interpretations - continued

L Limits/Weaknesses
> CV: Blocked, context switching ambiguity
> IV: Loss of details due to time passed
> IV: Inaccuracy of self-reporting
» IV: Observations effects
> EV: Representativeness of application domain
> EV: Cultural representativeness
L Test hypotheses
> Yes - refuted the hypothesis
' Removal of alternative explanations
> Exposed where critical problems were
Y, Adequate precision
> Differing degrees of resolution as needed
% Available to public
> Data in various useful forms or presentation

© 2005-present, Dewayne E Perry 24

Introduction to Software Engineering Supplement - 17

Time Studies- Evaluation Summary

o Useful set of case studies - answers important
questions

> Confirmed project managers fudge factor: 2.5

> Important Principles:
Yrace vs elapse times
% Blocking and context switching
% Significant number of, and time spent in, short, unplanned
interactions
> Large amount of informal interaction critical to the
project! That has implications in formalizing
processes

> Triangulation provides well rounded view of time in
different granularities

> Reasonably strong validity - some minor weaknesses

© 2005-present, Dewayne E Perry 25

	A Common Problem
	Review Papers
	Experimental Site
	Software Faults
	Software Faults - Experimental Design
	Software Faults
	Software Faults - Analyses
	Software Faults - Analyses
	Software Faults - Results
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Summary
	Time Studies
	Time Studies - Phase 1
	Time Studies - Phase 1 Results
	Time Studies - Phase 2
	Time Studies - Phase 2 Results
	Time Studies - Phase 3
	Time Studies - Phase 3 Results
	Time Studies - Summary
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies- Evaluation Summary

