
1

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Student vs Software Engineer
 As a Student

New classes each semester
Work alone
Your work must be your own
Plagiarism is forbidden, quotes and citations are good
Some collaboration

 As a Software Engineer
Projects last for years
Work in teams, in projects, in departments, in . . .
Some work your own, often with or by someone else
Reuse is good

Saves time
Usually tested and debugged
 Citation usually not expected but giving credit is good
So what are the limits? When does it become unethical/illegal?

Virtually all collaborative

2

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Professional Codes of Ethics
 A context and discipline specific set of concrete guidelines

about the use of specialized skills for the benefit of both
individuals, companies and society

 Limitations:
Difficult to enforce
Often a minimal standard
Multiplicity of standards and codes, eg

 One for the discipline, university, funding agencies, etc
 Basic issues (ACM/IEEE SE Code of Ethics)

Act in the public interest
Act in the best interests of client and employer
Ensure products meet the highest professional standards
Maintain integrity and independence in judgment
Subscribe to and promote ethical management
Advance integrity and reputation of the profession
Be fair to and supportive of your colleagues
Participate in lifelong learning, and promote ethical behavior, in

practice

3

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

General Issues
 Resources

Company resources
Conflicts of interest

 Intellectual Property
Privacy
Ownership
Patents
Licenses
Plagiarism
Reverse Engineering

 Risk
Reliability
Safety
Security

4

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Company Resources
 Typical policy:

Only use company resources for company work
UT has such a policy for example

 Examples
Time, phone, xerox, printers, internet, etc

 Purist response
Only use company resources for company business

 Pragmatist response
Some personal use ok as long as do not abuse it
Often justified by:

 I do company work at home using my own resources
Hence, comes out about even in the end

 Abuse response
Hey, I don’t get paid enough

 so just augmenting my salary to where it ought to be, etc
And as long as I don’t get caught . . .

5

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Conflicts of Interest
 Example: Reviewing papers

Strict guidelines
Always in conflict MS or PHD students
 In conflict with members of same department
 In conflict for 5 years with a co-author

Downsides
Those in conflict may be the best able to review
 Leaves those with negative conflicts (dislike work, person etc)

Gray area
 Good friends
 Larger organizational structures of company – eg,

Labs with departments, colleges/schools, divisions, etc

 Examples in workplace
What good is nepotism if it cant help your relatives
Merit reviews
Judgments about project viability
Hiring, especially when slots are scarce

6

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Privacy
 Fundamental: Do employees have a right to electronic privacy?
 Public versus private availability (eg, computer files)

Aggressive: what ever I can get to, even without permission
 Typical among many students and hackers

Conservative: only what is explicitly public is allowed
 Metaphor:

What is on the bookshelf, on the desk is accessible
What is behind doors, in drawers in the desk is not, even if not locked

 Email
Company resources/assets, hence company rights to look at

employees email
How private is your email anyway from snoopers, ISP providers,

company email systems, etc ?
Email privacy protection: PGP encryption

 Project state (your part of a project)
Anytime access vs explicit reporting
What are the pros and cons?

7

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Ownership
 Your company will own all your work

Typically part of your agreement to work for the company
 Problem areas

IP created prior to working for a company
 Fairly safe – but companies tend to think all your time is theirs

IP unrelated to your company’s domain
Tricky –

Clear it with the company’s management and legal team
Get everything in writing to protect yourself later

 Example –
Y obtained a patent while working for company X but totally unrelated

to the X’s products
Y told his management and checked with the company lawyers, but did

not get it in writing
Now part of a patent suit – problems establishing who owns the patent

8

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Patents
 Patent: confers the owner the sole right to exclude others from

making, using or selling the patented invention for a specific number of
years.

 Patent system there to “promote the advance of science” by granting
inventors exclusive rights for a limited time

 Often used (eg, IBM) to reach mutually beneficial partnerships
 Software patents

 Debated topic – some want to get rid of software patents
 Have to provide enough information so that one of ordinary skill in the art

would be able to build the invention
 Basic issues:

 Prior Art – must go beyond what already exists
Obviousness – to one of ordinary skill in the art

 Eg, automate an existing manual process
 Combining two existing patented ideas
 Hard problem: was it obvious before; often (always?) obvious after

 Problems
 Unimplemented patents – no attempt to create a viable product
 Patent trolls – buy patents for the sole purpose of suing
 Broadening the patent claims to include more than originally allowed

 Ethical/Legal problem: infringement

9

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Licenses
 Landscape: open source, free SW, proprietary SW
 Some argue that its an ethical issue that software

should be free, not owned by anyone (eg, Gnu*)
 Basic problem: use of SW in commercial systems

The use of proprietary SW in building proprietary SW
The use of open source SW in proprietary SW

 Is this issue akin to quotations and citations?
 Shrink-wrap Licenses/End-User License Agreements

Often come with digital rights management mechanisms
Problems: multiple usage, copying, piracy, etc

 Ethical issues
Vendor has legal rights to his IP
Average consumer not a legal expert – usually don’t see the

license until after purchase
Company licenses, however, usually well understood

10

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Plagiarism
 Plagiarism vs Reuse – the one bad, the other good
 Textbook algorithms and data structures

Eg, Knuth’s series, standard algorithms and data structures
Useful source for reuse
Good manners to provide citation

 Libraries and frameworks
Often need licenses or purchase agreements
Use them typically, not copy them

 Suppose you bring software source from another
company?
Your own – is that plagiarism?
Someone else’s software – plagiarism?

 Downloading from the web?

11

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP – Reverse Engineering
 Reverse Engineering (RE):

discovering the design of a SW system by a variety of
means on the basis of its function and operation – usually
with the intent of recreating the product

 Independent design vs Using someone else’s design
Fundamental questions:

 how many different ways are there to design a system?
Does the process matter how you design the system?
Are there good uses of reverse engineering?

 Example:
Product licensed to company X – created via hard work by Y

 RE prohibited in the license
Licensed to be used solely in a production context
Using the licensed system, created their own via RE

Used licensed system as the perfect testing oracle
Result: theft of IP and the effort to produce it
How could this have been done properly?

12

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Reliability
 Basic Fact: no fault-free software system exists
 Basic questions:

how do you make software as reliable as possible
Under normal circumstances; under abnormal circumstances

 Ethical issues:
Negligence in design

 Poor processes – often lack of experience
 Inadequate software engineers – often cost related
 Deliberate – often due to management decisions

Deliberate misrepresentation
 Example

Company X represents software system ready for primetime
Company Y has throughput demands far above current usage

 Y held to throughput deadline constraints – fines if not met
X’s quality assurance team internally forewarned failure months

ahead
 Inadequate load testing, no beta testing

X deliberately with-held this information from Y
Complete disaster when Y went live with X’s system
Why did X deliberately proceed without warning Y?
What should X have done?

13

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Safety
 Growing class of safety critical systems

Lives depend on the proper functioning of the systems
 Eg, medical devices, computerized automotive systems, etc

Significant accident risks if not done extremely well
 Software driven airplanes (eg, Boeing 757)
 Air traffic control system

 Three kinds of issues:
The software NOT doing something
The software DOING something it should NOT do
Instability in the software system or environment

 Cause: not knowing all the normal and/or abnormal conditions
 Solutions:

Increased depth of domain specific knowledge
Increased depth of software engineering fundamentals

 Requirements, architecture, design and implementation
Resources, process and staff beyond ordinary
Appropriate reasoning, analysis and testing tools

14

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Security
 Physical security

relatively straightforward and well understood
 Information Security

Well-understood classification schemes
Unclassified vs classified
 Levels of classification and need to know

Vulnerable to software system security issues
 Software system security - Primary causes:

Interconnectivity – network security
 Various network threats
Wireless is open broadcasting

Software faults that can be exploited
 Enable spybots, viruses, worms etc
 Enable unauthorized access

User irresponsibility
Allowing ready access: not locking the system when unused, etc
 Poor security practices: easily breakable passwords, etc
Unauthorized sharing

15

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Conclusions
 A lot of pro-active large impact unethical behavior

IP theft in various forms
 A lot of small impact unethical behavior

Misuse of resources, licenses, etc
 A lot of passive/unintended behaviors that enable the

unethical behavior of others
Poor development practices

Methods, techniques, processes, technologies, use of tools, etc
Poor management decisions
Poor personal decisions

 A significant lack of professionalism
Lack of proper training and education
Lack of integrity and caring
Lack of commitment to the best we can do

	Student vs Software Engineer
	Professional Codes of Ethics
	General Issues
	Company Resources
	Conflicts of Interest
	IP - Privacy
	IP - Ownership
	IP - Patents
	IP - Licenses
	IP - Plagiarism
	IP – Reverse Engineering
	Risk - Reliability
	Risk - Safety
	Risk - Security
	Conclusions

