
1

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Student vs Software Engineer
 As a Student

New classes each semester
Work alone
Your work must be your own
Plagiarism is forbidden, quotes and citations are good
Some collaboration

 As a Software Engineer
Projects last for years
Work in teams, in projects, in departments, in . . .
Some work your own, often with or by someone else
Reuse is good

Saves time
Usually tested and debugged
 Citation usually not expected but giving credit is good
So what are the limits? When does it become unethical/illegal?

Virtually all collaborative

2

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Professional Codes of Ethics
 A context and discipline specific set of concrete guidelines

about the use of specialized skills for the benefit of both
individuals, companies and society

 Limitations:
Difficult to enforce
Often a minimal standard
Multiplicity of standards and codes, eg

 One for the discipline, university, funding agencies, etc
 Basic issues (ACM/IEEE SE Code of Ethics)

Act in the public interest
Act in the best interests of client and employer
Ensure products meet the highest professional standards
Maintain integrity and independence in judgment
Subscribe to and promote ethical management
Advance integrity and reputation of the profession
Be fair to and supportive of your colleagues
Participate in lifelong learning, and promote ethical behavior, in

practice

3

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

General Issues
 Resources

Company resources
Conflicts of interest

 Intellectual Property
Privacy
Ownership
Patents
Licenses
Plagiarism
Reverse Engineering

 Risk
Reliability
Safety
Security

4

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Company Resources
 Typical policy:

Only use company resources for company work
UT has such a policy for example

 Examples
Time, phone, xerox, printers, internet, etc

 Purist response
Only use company resources for company business

 Pragmatist response
Some personal use ok as long as do not abuse it
Often justified by:

 I do company work at home using my own resources
Hence, comes out about even in the end

 Abuse response
Hey, I don’t get paid enough

 so just augmenting my salary to where it ought to be, etc
And as long as I don’t get caught . . .

5

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Conflicts of Interest
 Example: Reviewing papers

Strict guidelines
Always in conflict MS or PHD students
 In conflict with members of same department
 In conflict for 5 years with a co-author

Downsides
Those in conflict may be the best able to review
 Leaves those with negative conflicts (dislike work, person etc)

Gray area
 Good friends
 Larger organizational structures of company – eg,

Labs with departments, colleges/schools, divisions, etc

 Examples in workplace
What good is nepotism if it cant help your relatives 
Merit reviews
Judgments about project viability
Hiring, especially when slots are scarce

6

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Privacy
 Fundamental: Do employees have a right to electronic privacy?
 Public versus private availability (eg, computer files)

Aggressive: what ever I can get to, even without permission
 Typical among many students and hackers

Conservative: only what is explicitly public is allowed
 Metaphor:

What is on the bookshelf, on the desk is accessible
What is behind doors, in drawers in the desk is not, even if not locked

 Email
Company resources/assets, hence company rights to look at

employees email
How private is your email anyway from snoopers, ISP providers,

company email systems, etc ?
Email privacy protection: PGP encryption

 Project state (your part of a project)
Anytime access vs explicit reporting
What are the pros and cons?

7

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Ownership
 Your company will own all your work

Typically part of your agreement to work for the company
 Problem areas

IP created prior to working for a company
 Fairly safe – but companies tend to think all your time is theirs

IP unrelated to your company’s domain
Tricky –

Clear it with the company’s management and legal team
Get everything in writing to protect yourself later

 Example –
Y obtained a patent while working for company X but totally unrelated

to the X’s products
Y told his management and checked with the company lawyers, but did

not get it in writing
Now part of a patent suit – problems establishing who owns the patent

8

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Patents
 Patent: confers the owner the sole right to exclude others from

making, using or selling the patented invention for a specific number of
years.

 Patent system there to “promote the advance of science” by granting
inventors exclusive rights for a limited time

 Often used (eg, IBM) to reach mutually beneficial partnerships
 Software patents

 Debated topic – some want to get rid of software patents
 Have to provide enough information so that one of ordinary skill in the art

would be able to build the invention
 Basic issues:

 Prior Art – must go beyond what already exists
Obviousness – to one of ordinary skill in the art

 Eg, automate an existing manual process
 Combining two existing patented ideas
 Hard problem: was it obvious before; often (always?) obvious after

 Problems
 Unimplemented patents – no attempt to create a viable product
 Patent trolls – buy patents for the sole purpose of suing
 Broadening the patent claims to include more than originally allowed

 Ethical/Legal problem: infringement

9

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Licenses
 Landscape: open source, free SW, proprietary SW
 Some argue that its an ethical issue that software

should be free, not owned by anyone (eg, Gnu*)
 Basic problem: use of SW in commercial systems

The use of proprietary SW in building proprietary SW
The use of open source SW in proprietary SW

 Is this issue akin to quotations and citations?
 Shrink-wrap Licenses/End-User License Agreements

Often come with digital rights management mechanisms
Problems: multiple usage, copying, piracy, etc

 Ethical issues
Vendor has legal rights to his IP
Average consumer not a legal expert – usually don’t see the

license until after purchase
Company licenses, however, usually well understood

10

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP - Plagiarism
 Plagiarism vs Reuse – the one bad, the other good
 Textbook algorithms and data structures

Eg, Knuth’s series, standard algorithms and data structures
Useful source for reuse
Good manners to provide citation

 Libraries and frameworks
Often need licenses or purchase agreements
Use them typically, not copy them

 Suppose you bring software source from another
company?
Your own – is that plagiarism?
Someone else’s software – plagiarism?

 Downloading from the web?

11

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

IP – Reverse Engineering
 Reverse Engineering (RE):

discovering the design of a SW system by a variety of
means on the basis of its function and operation – usually
with the intent of recreating the product

 Independent design vs Using someone else’s design
Fundamental questions:

 how many different ways are there to design a system?
Does the process matter how you design the system?
Are there good uses of reverse engineering?

 Example:
Product licensed to company X – created via hard work by Y

 RE prohibited in the license
Licensed to be used solely in a production context
Using the licensed system, created their own via RE

Used licensed system as the perfect testing oracle
Result: theft of IP and the effort to produce it
How could this have been done properly?

12

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Reliability
 Basic Fact: no fault-free software system exists
 Basic questions:

how do you make software as reliable as possible
Under normal circumstances; under abnormal circumstances

 Ethical issues:
Negligence in design

 Poor processes – often lack of experience
 Inadequate software engineers – often cost related
 Deliberate – often due to management decisions

Deliberate misrepresentation
 Example

Company X represents software system ready for primetime
Company Y has throughput demands far above current usage

 Y held to throughput deadline constraints – fines if not met
X’s quality assurance team internally forewarned failure months

ahead
 Inadequate load testing, no beta testing

X deliberately with-held this information from Y
Complete disaster when Y went live with X’s system
Why did X deliberately proceed without warning Y?
What should X have done?

13

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Safety
 Growing class of safety critical systems

Lives depend on the proper functioning of the systems
 Eg, medical devices, computerized automotive systems, etc

Significant accident risks if not done extremely well
 Software driven airplanes (eg, Boeing 757)
 Air traffic control system

 Three kinds of issues:
The software NOT doing something
The software DOING something it should NOT do
Instability in the software system or environment

 Cause: not knowing all the normal and/or abnormal conditions
 Solutions:

Increased depth of domain specific knowledge
Increased depth of software engineering fundamentals

 Requirements, architecture, design and implementation
Resources, process and staff beyond ordinary
Appropriate reasoning, analysis and testing tools

14

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Risk - Security
 Physical security

relatively straightforward and well understood
 Information Security

Well-understood classification schemes
Unclassified vs classified
 Levels of classification and need to know

Vulnerable to software system security issues
 Software system security - Primary causes:

Interconnectivity – network security
 Various network threats
Wireless is open broadcasting

Software faults that can be exploited
 Enable spybots, viruses, worms etc
 Enable unauthorized access

User irresponsibility
Allowing ready access: not locking the system when unused, etc
 Poor security practices: easily breakable passwords, etc
Unauthorized sharing

15

Introduction to Software Engineering Supplement - 24

© 2005, Dewayne E Perry EE 360F

Conclusions
 A lot of pro-active large impact unethical behavior

IP theft in various forms
 A lot of small impact unethical behavior

Misuse of resources, licenses, etc
 A lot of passive/unintended behaviors that enable the

unethical behavior of others
Poor development practices

Methods, techniques, processes, technologies, use of tools, etc
Poor management decisions
Poor personal decisions

 A significant lack of professionalism
Lack of proper training and education
Lack of integrity and caring
Lack of commitment to the best we can do

	Student vs Software Engineer
	Professional Codes of Ethics
	General Issues
	Company Resources
	Conflicts of Interest
	IP - Privacy
	IP - Ownership
	IP - Patents
	IP - Licenses
	IP - Plagiarism
	IP – Reverse Engineering
	Risk - Reliability
	Risk - Safety
	Risk - Security
	Conclusions

