
Dimensions of Software Evolution

Dewayne E. Perry

Software and Systems Research Center
AT&T Bell Laboratories

Murray Hill NJ 07974
dep@research.att.com

Abstract

Software evolution is usually considered in terms of
corrections, improvements and enhancements. While
helpful, this approach does not take into account the
fundamental dimensions of well-engineered software
systems (the domains, experience, and process) and how
they themselves evolve and affect the evolution of
systems for which they are the context. I discuss each
dimension, provide examples to illustrate its various
aspects and summarize how evolution in that dimension
affects system evolution. Only by taking this wholistic
approach to evolution can we understand evolution and
effectively manage it.

1. Introduction

We usually think about the evolution of software systems
in terms of the kinds of changes that are made. While the
overall motivation of evolution is adaptation, we usually
partition these changes into three general classes:
corrections, improvements and enhancements.
Corrections tend to be fixes of coding errors, but may
also range over design, architecture and requirements
errors. Improvements tend to be things like increases in
performance, usability, maintainability and so forth.
Enhancements are new features or functions that are
generally visible to the users of the system.

I think that this approach is too limiting and does not
consider important sources of evolution that affect how
our systems evolve. To understand software evolution
properly, we need to take a wholistic view — that is,
consider everything that is involved in well-engineered
software systems. I claim that three interrelated
ingredients are required to for well-(software)-engineered
systems:

• the domains,

• experience, and

• process.

Moreover, these three ingredients are the sources, or
dimensions, of software evolution. The critical issue is
that each of these dimensions evolves, sometimes
independently, sometimes synergistically with other
dimensions. It is only by understanding these
dimensions and how they evolve that we can reach a
deep understanding of software system evolution. With
this understanding, we can then manage the evolution of
our systems more effectively.

In the subsequent sections I will discuss each of these
dimensions in turn. While I will not give precise
definitions of these dimensions, I will provide a number
of examples for each to illustrate their various aspects.
Finally, I will summarize what I consider to be the
important lessons to be learned from each dimension
about software evolution.

2. The Domains

In building and evolving software systems there are a
number of domains that are pertinent: the ‘‘real world’’
which provides the context domain for our model and
specification of the system, and various theoretical
subdomains which provide foundational underpinnings
for the system.

In the subsequent subsections I will discuss the real
world, our model of the real world, the specification of
the system we derive from our model, and foundational
theories and algorithms. I will also discuss how these
interact with each other and how each of these elements
evolves and affects of the evolution of the software
system.



2.1 The Real World and Its Model

The real world is of primary importance in any software
system. It is, ultimately, the originating point of the
system. Our first attempts to introduce software systems
are such that the systems usually imitate what already
exists in the real world. This imitation is the starting
point from which the system evolves.

In the real world we have objects and processes. From
this basis, we derive our model of the application domain
for our system complete with the selected objects and
their associated theories. It is this model that is the
abstraction basis for our system specification which then
becomes reified into an operational system [Lehman84].

Thus, we have both the real world and our model of it,
with the latter obviously tied closely to the former. It is
at this point that we note the following sources of
evolution: changes in the real world and changes in our
model.

By its very nature, our model is an abstraction of the real
world. The real world provides an uncountable number
of observations — that is, we can always make more
observations. We use a subset of these observations as
the basis for our model. Over time, we make further
observations of the world and as a result often change
what we consider to be relevant. These changes provide
some of the stimulus to change our model.

The real world also provides a richer set of objects than
we want to use for our model. To keep our model within
some reasonable bounds, we must select objects in the
world for inclusion in the model and, hence, leave some
objects out of the model. It is these excluded objects that
become bottlenecks and irritants in the operational
system, and thus cause the model to change (Lehman’s
6th Law [Lehman91])

The real world evolves in two important distinct ways:
independently of the system and as a consequence of the
system being operational in that real world. In the first
case, these changes may affect our model or even affect
our operational system. If our system model has an
object ‘‘bus conductor’’ and its associated theory of
behavior, and that object in the real world changes (that
is, bus conductors behave differently), then our theory
much change to mirror the change in the real world. If
our system depends on parts of the real world as its
context and they change (as for example hardware often
does), then our system evolves as well.

The more fundamental of the two kinds of real world
evolution is that set of changes which happen in the real
world as a result of introducing the operational system
into it. This introduction inherently perturbs the world
and changes it, so that our model of the world is now out
of step with the actual world [LB80]. By its very nature,
our model must include a model of the system itself as
part of the world. This is inherently unstable and is an
intrinsic source of evolution. This closed-loop source of
evolution is more interesting than the open-loop (that is,
independent changes) source and more difficult to
understand and manage.

The real world and our abstracted application model of
the real world are fundamental sources of system
evolution because they are intrinsically evolving
themselves.

2.2 The Model and The Derived Specification

From our model of the real world, we use abstraction to
initially derive the specification of the system we wish to
build. This specification is then reified through our
software development processes into an operational
system which then becomes part of the real world
[Lehman84]. We have discussed above how this cycle is
an intrinsic source of evolution both in the real world and
in our model of that world.

Given the intrinsic evolutionary nature of the model that
is the source of our system specification, it will come as
no surprise that the specification will evolve as well. The
various objects and their behavior which evolve in the
model will have to evolve in the specification.

Equally obvious is the fact that the operational system
must evolve to accommodate the evolving specification,
since the fundamental relationship between the
operational system and the specification is one of correct
implementation. It is not a matter at this point of
whether the theory of the system — the specification —
is right or wrong, but whether the operational system
implements that theory.

The relationship between the specification and the
implementation is the best understood of the various
ingredients that I discuss in this paper: when the
specification evolves, the system must evolve as well.

2.3 Theory

In the reification of the specification into an operational
system, we appeal to a number of different theoretical



domains that are relevant either because of the domain of
the real world or because of the various architectural and
design domains used to reify the specification. It is
likely that these underlying theories will evolve
independently throughout the life of the system.

Some theories are stable — that is, they have reached a
point where they are well understood and defined. For
example, the language theory used as the basis of
programming language parsing [HU79] is well
understood and our understanding of how to use that
theory is well-established [AU72]. We have parser
generators of various sorts (for example yak) to
automatically produce parsers from a language
specification. Hence, we no longer worry about how to
produce the front-ends of compilers.

However, some theories are not as well-established and
are much less stable. For example, the theory of machine
representation is not so well-understood. We do have the
beginnings of such a theory and have used it as the basis
of generating compiler back-ends [PQCC80]. The
introduction of this kind of theory had the initial effect of
evolving the standard architecture of a compiler as well
as evolving the way we both think about, describe and
build compilers.

More practical examples of theory stability and evolution
are those of structured programming [DDH72] and
process improvement [Humphrey89]. The theory of
structured programming is now well understood. It has
been stable for more than a decade (though,
unfortunately, there still seem to be many that do not
understand the theory or its practice). Still in its
evolutionary phase is the theory of process improvement.
We have only the beginnings of this theory and have
much yet to discover and establish.

There is yet a third category of theoretical underpinnings:
those aspects of the model or system for which we have
only very weak theory or no theory at all. Many of the
real world domains have, at best, only weak theories and
many have none other than what is established in the
specification. It is in this category that we experience
substantial, and seemingly arbitrary, changes. We have
very little to guide us and so we cast about as best we can
to find suitable theories to serve in the implementation
and evolution of the operational system.

Closely allied to our theories are the algorithms that
perform various transformations on the domains or
determine various facts about those domains. As with

their attendant theories, some of these algorithms are
stable. For example, we have a well established set of
sorting algorithms [Knuth73] that have well-known
properties so that they can be used both efficiently and
appropriately in our systems. Alternatively, we have
algorithms that are know to be optimal. In either case,
there is no need for improvement, and hence, no need for
evolution.

Analogous to theories that are still evolving, are
algorithms that are evolving as well. This usually means
that the complexity bounds are improving either by
reducing that complexity in the worst case or in the
average case [HS78].

In some cases, we have domains which are very hard and
must be satisfied with algorithms that are at best
approximations [HS78]. In other cases, problems are
inherently undecidable as in, for example, various forms
of logic. For these problems we have algorithms that
may not terminate — that is, they may not find a
solution. Or in the cases where have little or no theory,
such as in banking, we make some approximations and
see how well they work [Turski81]. In all of these cases,
we constantly look for circumstances in which we can
improve the performance of our algorithms or in which
we can move from approximate to definitive algorithms.

Thus, independent of the real world and our
specification, we have theories and algorithms which
evolve and which we use to reify the specification into an
operational system. The benefits of this evolution are
germane to our system.

3. Experience

Of fundamental and critical importance in the enterprise
of building and evolving a software system is judgment.
While some aspects of the abstraction and reification
process proceed from logical necessity, most of this
process depends on judgment. Unfortunately, good
judgment is only gained by insight into a rich set of
experience.

We gain experience in a number of different ways: some
through various forms of feedback, some from various
forms of experimentation, and some from the
accumulation of knowledge about various aspects
relevant to the system. I discuss each of these forms of
experience in turn.



3.1 Feedback

Feedback is, of course, one of the primary results of
introducing the software system into the real world.
There is an immediate response to the system from those
affected by it. However, we have various other
important forms of feedback as well, both internal and
external, and planned and unplanned.

A major form of unplanned feedback is gotten from the
modelers, specifiers and reifyers of the system. For
example, in the process of evolving the model by
abstracting essential objects and behaviors from the real
world, there are various paths of feedback between the
people evolving that model. This is the interaction
typical of group design efforts. Similarly these
interacting feedback loops exist when defining the
specification and reifying that specification into an
operational system.

At the various transformation points from one
representation to another there are various paths of
feedback from one group of people to another, For
example, in going from the model to the specification,
there is feedback about both the abstractions and the
abstraction process from those trying to understand the
specification. In going from the specification to the
operational system, there is feedback about both the
specification and the specification process.

At the various validation points of the system we have
explicitly planned feedback paths. That is the purpose of
the validations: to provide specific feedback about the
validated portion of the system representation (model,
specification, or reification).

Prior to delivering the operational system into general
use, we plan carefully controlled use to provide user
feedback. Typically, we control the feedback loop by
limiting the number of people exposed to the system.
For example, we do alpha and beta testing of the system
for this reason. In both tests we limit the population to
‘‘friendly’’ users to optimize the amount of useful
positive feedback — that is, feedback that will result in
useful comments — and minimize the amount of
negative feedback — that is, feedback that is essentially
noise.

The difference between alpha and beta testing is the
number of users involved. The focus of the alpha test is
to removal of as many of the remaining problems as
possible by means of a small population of users. The

focus of the beta testing is the removal of a much smaller
set of problems that usually require a much larger set of
users to find. Once a certain threshold has been reach,
the system is then provided to the complete set of users.

Thus, feedback provides a major source of experience
about modeling, specifying and reifying software
systems. Some of that feedback is immediate, some of it
is delayed. In all cases, this set of feedback is one of the
major source of corrections, improvements, and
enhancements to the system.

Feedback also provides us with experience about the
system evolution process itself. Not only do we learn
facts about various artifacts in evolving the operational
system, we learn facts about the methods and techniques
we use in evolving those artifacts.

3.2 Experimentation

Where feedback provides information as a byproduct of
our normal work, experimentation seeks to provide
information by focusing on specific aspects of either the
system or the process. The purpose of experimentation is
to create information of the sake of understanding,
insight, and judgment. The purpose of feedback is to
provide corrective action. They both are concerned
about understanding and corrective action, but their
emphases are complimentary.

We divide experiments into three classes: scientific
experiments, statistical experiments, and engineering
experiments. Each has a different set of goals and each
provides us with a different class of experience.

In scientific experiments we have well-designed
experiments in which we have a specific set of
hypotheses to test and a set of variables to control. The
time and motion studies of Perry, Staudenmayer, and
Votta [PSV94] and the design studies of Guindon
[Guindon90] are examples of these kinds of experiments.
These approaches exemplify basic experimental science.
We increase our understanding by means of the
experiment and generate new hypotheses because of that
increased experience and understanding.

In statistical experiments, we have a set of data about
which we make assumptions. We then test those
assumptions by means of statistical analysis. In these
cases, we are experimenting with ideas — that is, we
perform conceptual experiments. Votta’s work on
inspections [Votta93], Perry and Evangelist’s work on
interface errors [PE85, PE87], and Lehman and Belady’s



work on evolution [LB85] are example of these kinds of
experiments. We increase our knowledge by analyzing
existing sets of data and extracting useful information
from them.

In engineering experiments, we generally build
something to see how useful it is or whether it exhibits a
desired property. We often call this form of experiment
‘‘prototyping’’. In a real sense, it is a miniature version
of the full evolution process or operational system,
depending on whether we are experimenting with aspects
of the process or the system. For example, the database
community has been making effective use of this
approach over the past decade or so in the realization of
relational databases as practical systems. Here we have
an interesting interaction between theory and experiment.
Codd [Codd70] initially defined relational theory. While
clean and elegant, it was the general wisdom that it
would never be practical. However, a decade of
engineering experimentation in storage and retrieval
structures [GR93] in conjunction with advances in
theories of query optimization have resulted in practical
relational databases in more or less ubiquitous use today.

Thus, our various forms of experimentation provide us
with focused knowledge about both software processes
and software systems. The evolution of this knowledge
is a source of evolution for both our software systems
and our software processes.

3.3 Understanding

We have discussed a number of important ways in which
we expand our knowledge by means of experience: of
our knowledge of the real world and our model of it, of
the supporting theoretical domains, of the system
specification, of the software systems, its structure and
representation, and of the software evolution process (see
also the section on process below).

However, knowledge itself is valueless without
understanding. While our knowledge expands, it is our
understanding that evolves. It is the combination of our
experience and our understanding of that experience that
forms the basis of judgment and rejudgment. It is
judgment that is the source of both the assumptions and
the choices that we make in building and evolving our
software systems. And, as our understanding evolves,
we may invalidate some of those assumptions and
choices.

Thus, the evolution of our understanding and judgment is
a fundamental source of evolution of our software
systems and processes.

4. Process

Process, in a general sense, is composed of three
interrelated and interacting ingredients: methods,
technologies and organizations. Methods embody the
wisdom of theory and experience. Technology provides
automation of various parts of the process, of process
fragments. And, organizations bound, support and
hinder effective processes. In some sense this a virtual
decomposition, as it becomes very hard to separate
organizational culture, or practices, from methods.
Technology is somewhat easier to separate, though what
is done manually in one organization may be automated
in another.

4.1 Methods

Some of our methods find their basis in experience. For
example, in Leveson’s method for designing safety
critical systems [Leveson94], the principle ‘‘always fail
with the systems off’’ is derived from various disasters
where the failure occurred with the systems on. We learn
as much from how we do things when they turn out to be
wrong as when they turn out to be right.

Some of our methods are the result of theoretical
concerns. For example, on the Inscape Environment
[Perry89], the underlying principle is that once you have
constructed the interface of a code fragment, you need
not worry about the internal structure of that fragment.
The interfaces have the property of referential
transparency — that is, you only need to know what is
reported at the interface boundaries.

A serious problem arises when trying to maintain this
principle in the presence of assignment. Assignment is
destructive — that is, assignment does not maintain
referential transparency. Knowledge is lost when
assignment occurs: the properties the assignee had before
the assignment are lost after the assignment. Thus, if
multiple assignments are made to the same variable,
knowledge is lost that is important if that variable is
visible at the code fragment interface. If multiple
assignment is allowed, the fundamental principle upon
Inscape rests cannot be maintained. For example, in the
following case we lose some facts about the variable a.



a := b;
a := a + c;
a := a * q

The first statement does not cause any problems as we
only have to maintain that we lose no information at the
interface boundaries. Here a assumes a new value that
would be visible at the interface. However, with the
second and third statements, a assumes a new value and
the properties of the previous assignments are lost — and
so is the referential transparency that is required by
Inscape.

The solution to this problem is provided by a method that
requires the use of distinct variables for each assignment.
Thus the previous example should use another variable
name for the first and second assignment since it is the
value of the third assignment that is to be seen at the
interface.

v1 := b;
v2 := v1 + c;
a := v2 * q

In this way, referential transparency is preserved: there
are no intermediate facts hidden from the interface that
might interfere with the propagation of preconditions,
postconditions or obligations in the context in which the
code fragment interface is used.

Thus our methods evolve, not only as a result of
experience and of theoretical considerations, but also
because of technology and organizations. In any of these
cases, their evolution affects how we evolve our software
systems.

4.2 Technology

The tools that we use embody fragments of process
within them and because of this induce some processes
and inhibit others. Because of this fact, it is important
that the tools and technology we use are congruent with
our prescribed processes.

For example, the tools used for compiling and linking C
programs requires that all names be resolved at linking
time. This induces a particular coding and debugging
process that is quite different from that possible within
the Multics environment.

In the UNIX environment, the name resolution
requirement means that every name referenced in a
program has to have a resolvable reference for the
linking process to complete, and hence for the user to be

able to debug a program. That means you have to have
the program completely coded, or you have to have stubs
for those parts that have not been completed. Thus,
while debugging incomplete programs is possible, it
requires extra scaffolding that must be built and
ultimately thrown away.

In the Multics environment, because segmentation faults
are used to resolve name references, one may
incrementally debug incomplete programs as long as the
part that is does not yet exist is not referenced. This is a
much more flexible and easier way to incrementally build
and debug programs.

New tools and changes in the environment all cause
changes in the processes by which we build and evolve
our software and hence may affect the way that the
software itself evolves.

4.3 Organization

Organizations provide the structure and culture within
which we execute our processes and evolve our software
systems. The organizational culture establishes an
implicit bias towards certain classes of processes and
modes of work. However, the organizational culture
does not remain static, but evolves albeit relatively
slowly. This evolution too affects the way we evolve our
systems by changing the implicit biases, and eventually,
our processes and products.

Not only do organizations establish an overall structure,
they establish the structure of our projects, the structure
of our processes, and, inevitably, the structure of our
products. Given that there is such a direct influence on
these structures, it is disturbing that organizations seem
to be in such a constant state of flux. This organizational
chaos can only have adverse affects on the evolution of
the software system.

Someone at IBM stated that ‘‘The structure of OS360 is
the structure of IBM’’ [LB85]. This is not an
observation only about IBM but is true of large projects
everywhere. (It is also true of the software processes
used: the process structure reflects the structure of the
organization.) Moreover, as a system ages, inertia sets in
and the system can no longer adapt. When this happens,
the system and the organization get out of step and the
system can no longer adapt to needs of the organization.
This happened with OS360: the system could no longer
adapt to the organization and it fractured along
geographical lines into VS1 and VS2 for the US and



Europe, respectively [LB85].

Not only does the way an organization evolves affect the
way software systems evolve, but the way that
organizations and systems interact has serious
consequences for the way that a system may evolve.

5. Summary

To understand the evolution of software systems
properly, we must look at the dimensions of the context
in which we evolve these systems: the domains that are
relevant to these system, the experience we gain from
building, evolving and using these systems, and the
processes we use in building and evolving these systems.
Taking this wholistic view, we gain insight into sources
of evolution not only of the software systems themselves,
but of their software evolution processes as well.

The domains needed to build software systems are a
fundamental and direct source of system evolution. They
are the subject matter of the system. Changes to the
domains often require corresponding changes to the
software system.

• The real world intrinsically evolves as a result of
introducing and evolving the software system. The
context of the system in the real world also changes
independently.

• The application model of the real world evolves first
because it is inherently unstable (because it must
contain a model of itself) and second because our
assumptions and judgments about the real world
change over time.

• As the model changes, the specification changes and
forces changes in its reification (the operational
system).

• While some of the supporting theory may be stable,
many of the subdomains have either evolving theory,
weak theory, or no theory at all (apart from that
embodied in the model and specification).
Improvements in the supporting theories offer
improvements in our systems.

Experience is also a fundamental source of system
evolution, not because of changes in the subject matter,
but because of changes it brings to our understanding of
the software system and its related domains. This
experience provides an evolving basis for our judgment.

• Feedback provides us insight into the modeling,
specification, and reification of the operational
system. It is a major source of corrections,
improvements, and enhancements.

• Scientific, statistical, and engineering experiments
supply focused knowledge about various aspects of
our software systems and processes. The resulting
insights enable us to improve and enhance our
systems

• The accumulation of knowledge by means of
feedback, experimentation, and learning is of little
use if it does not evolve our understanding of the
system. This evolution of understanding and
judgment is a critical element in the evolution of
software systems.

Experience is also a major source of process evolution.
It provides insight and understanding into the processes
— the methods, techniques, and tools — by which we
build and evolve our systems. These processes offer an
indirect source of system evolution: as our process
evolve they change the way we think about building and
evolving software systems. This change in thinking
results in changes in the systems themselves — changes
in processes bring about a second order source of system
evolution.

• Whether the evolution of the methods and techniques
we use in building and evolving our systems are
based on experience or theory, they change the way
we think about and evolve our systems. They shape
our perception about the system and about ways in
which it may evolve.

• Tools and software development environments
embody process within themselves. As in methods
and techniques, they both limit and amplify the way
we do things and thus the way we evolve software
systems. As they evolve, the way they limit and
amplify evolves as well.

• Organizations provide the contextual culture and
structure for software systems and processes. While
one tends to think of them as providing third order
effects on evolution, they do have direct,
fundamental, and pervasive effects both on the
evolution of the systems and on the evolution of the
processes.

These three dimensions of evolution provide a wide
variety of sources of evolution for software systems.



They are interrelated in various ways and interact with
each other in a number of surprising ways as well. Not
only do they provide first order sources of evolution, but
second and third order sources as well.

We will be able to effectively understand and manage the
evolutions of our systems only when we have a deep
understanding of these dimensions, the ways in which
they interact with each other, and the ways in which they
influence and direct system evolution.

Acknowledgements

This paper would not be possible without the
foundational work of Professor Manny Lehman.
Moreover, much in the current paper is a result of
discussions with Manny in the context of the FEAST
project.

References

[AU72] Alfred V. Aho and Jeffrey D. Ullman, The
Theory of Parsing, Translation and Compiling, 2
Volumes, Prentice-Hall, 1972.

[Codd70] E. F. Codd, ‘‘A relational model for large
shared data banks’’, Communications of the CAM, 13:6,
pp 337-387.

[DDH72] O-J. Dahl, E. W. Dijkstra and C. A. R. Hoare,
Structured Programming, Academic Press, 1972.

[GR93] Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan
Kauffman, 1993.

[Guindon90] R. Guindon, ‘‘Designing the Design
Process: Exploiting Opportunistic Thoughts’’, Human-
Computer Interaction, Vol 5, 1990, pp. 305-344.

[HU79] John E. Hopcroft and Jeffrey D. Ullman,
Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[HS78] Ellis Horowitz and Sartaj Sahni, Fundamentals
of Computer Algorithms, Computer Science Press, 1978.

[Humphrey89] Watts S. Humphrey. Managing the
Software Process, Addison-Wesley, 1989.

[Knuth73] Donald E. Knuth, The Art of Computer
Programming: Sorting and Searching, Volume 3,
Addison-Wesley, 1973.

[LB80] M. M. Lehman and L. A. Belady, ‘‘Programs,
Life Cycles and Laws of Software Evolution’’
Proceedings of the IEEE, 68:9 (September 1980), pp.
1060-1076. Reprinted in [LB85].

[LB85] M. M. Lehman and L. A. Belady, Program
Evolution. Process of Software Change, Academic Press,
1985.

[Lehman84] M. M. Lehman, ‘‘A Further Model of
Coherent Programming Processes’’, Proceedings of the
Software Process Workshop, Surrey UK, February 1984,
pp 27-33.

[Lehman91] M. M. Lehman, ‘‘Software Engineering,
The Software Process and their Support’’, The Software
Engineering Journal, September 1991, pp 243-258.

[Leveson94] Nancy Leveson, Safeware: System Safety
for Computer-Based Systems, Addison-Wesley, to appear
end of 1994.

[Perry89] Dewayne E. Perry. ‘‘The Inscape
Environment’’. The Proceedings of the Eleventh
International Conference on Software Engineering, May
1989, Pittsburgh, PA.

[PE85] Dewayne E. Perry and W. Michael Evangelist.
‘‘An Empirical Study of Software Interface Errors’’,
Proceedings of the International Symposium on New
Directions in Computing, IEEE Computer Society,
August 1985, Trondheim, Norway, pages 32-38.

[PE87] Dewayne E. Perry and W. Michael Evangelist.
‘‘An Empirical Study of Software Interface Faults — An
Update’’, Proceedings of the Twentieth Annual Hawaii
International Conference on Systems Sciences, January
1987, Volume II, pages 113-126.

[PSV94] Dewayne E. Perry, Nancy A. Staudenmayer,
and Lawrence G. Votta, ‘‘People, Organizations, and
Process Improvement’’, IEEE Software, 11:4 (July
1994), pp 36-45.

[PQCC80] Bruce W. Leverett, Roderic G.G. Cattell,
Steven O. Hobbs, Joseph M. Newcomer, Andrew H.
Reiner, Bruce R. Schatz, William A. Wulf, ‘‘An
Overview of the Production-Quality Compiler-Compiler
Project’’, Computer, August 1980, pp 38-49.

[Turski81] W. M. Turski, ‘‘Specification as a theory with
models in the computer world and in the real world’’,
Info Tech State of the Art Report, 1981, 9:6, pp 363-377.

[Votta93] Lawrence G. Votta, ‘‘Does Every Inspection
Need a Meeting’’, Foundations of Software Engineering,
December 1993, Redondo Beach, CA. ACM SIGSOFT
Software Engineering Notes, December 1993.


