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1. Introduction

Brooks, in his paper ‘‘No Silver Bullet: Essence and Accidents of Software Engineering’’

[3], states:

Many students of the art hold out more hope for object-oriented programming than

for any of the other technical fads of the day. I am among them.

We are among them as well. However, we have uncovered a flaw in the general wisdom

about object-oriented languages — that ‘‘proven’’ (that is, well-understood, well-tested

and well-used) classes can be reused as superclasses without retesting the inherited code.

On the contrary, inherited methods must be retested in most contexts of reuse in order to

meet the standards of adequate testing. In this paper, we prove this result by applying test

adequacy axioms to certain major features of object-oriented languages — in particular,

encapsulation in classes, overriding of inherited methods, and multiple inheritance pose

various difficulties for adequately testing a program. Note that our results do not indicate

that there is a flaw in the general wisdom that classes promote reuse (which they in fact

do), but that some of the attendant assumptions about reuse are mistaken (that is, those

concerning testing)

Our past work in object-oriented languages has been concerned with multiple inheritance

and issues of granularity as they support reuse [10,11]. Independently, we have

developed several technologies for change management in large systems [12,14,20] and

recently have been investigating the problems of testing as a component of the change

process [13], especially the issues of integration and regression testing. When we began

to apply our testing approach to object-oriented programs, we expected that retesting

object-oriented programs after changes would be easier than retesting equivalent

programs written in conventional languages. Our results, however, have brought this

thesis into doubt. Testing object-oriented programs may still turn out to be easier than

testing conventional-language programs, but there are certain pitfalls that must be

avoided.

First we explain the concepts of specification- and program-based testing, and describe

criteria for adequate testing. Next, we list a set of axioms for test data adequacy

developed in the testing community for program-based testing. We then apply the

adequacy axioms to three features common to many object-oriented programming

languages, and show why the axioms may require inherited code to be retested.



2. Testing

By definition, a program is deemed to be adequately tested if it has been covered

according to the selected criteria. The principle choice is between two divergent forms of

test case coverage reported by Howden [9]: specification-based and program-based

testing.

Specification-based (or ‘‘black-box’’) testing is what most programmers have in mind

when they set out to test their programs. The goal is to determine whether the program

meets its functional and non-functional (for example, performance) specifications. The

current state of the practice is informal specification, and thus informal determination of

coverage of the specification is the norm. For example, tests can be cross-referenced

with portions of the design document [19], and a test management tool can make sure

that all parts of the design document are covered. Test adequacy determination has been

formalized for only a few special cases of specification-based testing — most notably,

mathematical subroutines [23].

In contrast to specification-based testing, program-based (or ‘‘white-box’’) testing

implies inspection of the source code of the program and selection of test cases that

together cover the program, as opposed to its specification. Various criteria have been

proposed for determining whether the program has been covered — for example, whether

all statements, branches, control flow paths or data flow paths have been executed. In

practice, some intermediate measure such as essential branch coverage [4] or feasible

data flow path coverage [5] is most likely to be used, since the number of possibilities

might otherwise be infinite or at least infeasibly large. The rationale here is that we

should not be confident about the correctness of a program if (reachable) parts of it have

never been executed.

The two approaches are orthogonal and complimentary. Specification-based testing is

weak with respect to formal adequacy criteria, while program-based testing has been

extensively studied [6]. On the one hand, specification-based testing tells us how well it

meets the specification, but tells us nothing about what part of the program is executed to

meet each part of the specification. On the other hand, program-based testing tells us

nothing about whether the program meets its intended functionality. Thus, if both

approaches are used, program-based testing provides a level of confidence derived from

the adequacy criteria that the program has been well tested whereas specification-based



testing determines whether in fact the program does what it is supposed to do.

3. Axioms of Test Data Adequacy

Weyuker in ‘‘Axiomatizing Software Test Data Adequacy’’ [29] developed a general

axiomatic theory of test data adequacy and considers various adequacy criteria in the

light of these axioms. Recently, in ‘‘The Evaluation of Program-Based Software Test

Data Adequacy Criteria’’ [30], Weyuker revises and expands the original set of eight

axioms to eleven. The goal of the first paper was to demonstrate that the original axioms

are useful in exposing weaknesses in several well-known program-based adequacy

criteria. The point of the second paper is to demonstrate the insufficiency of the current

set of axioms, that is, there are adequacy criteria that meet all eleven axioms but clearly

are irrelevant to detecting errors in programs. The contribution of our paper is that, by

applying these axioms to object-oriented programming, we expose weaknesses in the

common intuition that programs using inherited code require less testing than those

written using other paradigms.

The first four axioms state:

• Applicability. For every program, there exists an adequate test set.

• Non-Exhaustive Applicability. There is a program P and test set T such that P

is adequately tested by T, and T is not an exhaustive test set.

• Monotonicity. If T is adequate for P, and T is a subset of T’ then T’ is adequate

for P.

• Inadequate Empty Set. The empty set is not an adequate test set for any

program.

These (intuitively obvious) axioms apply to all programs independent of which

programming language or paradigm is used for implementation, and apply equally to

program-based and specification-based testing.

Weyuker’s three new axioms are also intuitively obvious.

• Renaming. Let P be a renaming of Q; then T is adequate for P if and only if T is

adequate for Q.



• Complexity. For every n, there is a program P, such that P is adequately tested

by a size n test set, but not by any size n-1 test set.

• Statement Coverage. If T is adequate for P, then T causes every executable

statement of P to be executed.

A program P is a renaming of Q if P is identical to Q except that all instances of an

identifier x of Q have been replaced in P by an identifier y, where y does not appear in Q,

or if there is a set of such renamed identifiers. The first two axioms are applicable to both

forms of testing; the third applies only to program-based testing. The concepts of

renaming, size of test set, and statement depend on the language paradigm, but this is

outside the scope of this article.

4. Antiextensionality, General Multiple Change, Antidecomposition, and
Anticomposition Axioms

We are interested in the four remaining (not so obvious) axioms: the antiextensionality,

general multiple change, antidecomposition and anticomposition axioms. These axioms

are concerned with testing various parts of a program in relationship to the whole and

vice versa, and certain of them apply only to program-based and not to specification-

based adequacy criteria. They are, in some sense, negative axioms in that they expose

inadequacy rather than guarantee adequacy.

Antiextensionality. If two programs compute the same function (that is, they are

semantically close), a test set adequate for one is not necessarily adequate for the other.

There are programs P and Q such that P ≡ Q, [test set] T is adequate for P, but T is

not adequate for Q.

This is probably the most surprising of the axioms, partly because our intuition of what it

means to adequately test a program is rooted in specification-based testing. In

specification-based testing, adequate testing is a function of covering the specification.

Since equivalent programs have, by definition, the same specification [22], any test set

that is adequate for one must be adequate for the other. However, in program-based

testing, adequate testing is a function of covering the source code. Since equivalent

programs may have radically different implementations, there is no reason to expect a

test set that, for example, executes all the statements of one implementation will execute



all the statements of another implementation.

General Multiple Change. When two programs are syntactically similar (that is, they

have the same shape), they usually require different test sets.

There are programs P and Q which are the same shape, and a test set T such that T is

adequate for P, but T is not adequate for Q.

Weyuker states: ‘‘Two programs are of the same shape if one can be transformed into the

other by applying the following rules any number of times: (a) Replace relational

operator r1 in a predicate with relational operator r2. (b) Replace constant c1 in a

predicate or assignment statement with constant c2. (c) Replace arithmetic operator a1 in

an assignment statement with arithmetic operator a2.’’ Since an adequate test set for

program-based testing may be selected, for example, to force execution of both branches

of each conditional statement, new relational operators and/or constants in the predicates

may require a different test set to maintain branch coverage. Although this axiom is

clearly concerned with the implementation, not the specification, of a program, we could

postulate a similar axiom about the syntactic similarity of specifications, as opposed to

source code.

Antidecomposition. Testing a program component in the context of an enclosing

program may be adequate with respect to that enclosing program but not necessarily

adequate for other uses of the component.

There exists a program P and component Q such that T is adequate for P, T’ is the

set of vectors of values that variables can assume on entrance to Q for some t of T,

and T’ is not adequate for Q.

This axiom characterizes a property of adequacy as well as an interesting property of

testing — that is, a program can be adequately tested even though it contains unreachable

code. But the unreachable code remains untested, adequately or otherwise. The

degenerate example is that in which Q is unreachable in P and T’ is the null set. By the

Inadequate Empty Set axiom of the previous section, T’ cannot be adequate for Q. In the

more typical case, some part of Q is not reachable in P but is reachable in other contexts;

hence, T’ will not adequately test Q. While this axiom is written in program-based

terms, it is equally applicable to specification-based testing. In particular, the enclosing



program P may not utilize all the functionality defined by the specification of Q and thus

could not possibly test Q adequately.

Anticomposition. Adequately testing each individual program component in isolation

does not necessarily suffice to adequately test the entire program. Composing two

program components results in interactions that cannot arise in isolation.

There exist programs P and Q, and test set T, such that T is adequate for P, and the

set of vectors of values that variables can assume on entrance to Q for inputs in T is

adequate for Q, but T is not adequate for P;Q. [P;Q is the composition of P and Q.]

Q P

Figure 1

This axiom is counter-intuitive if we limit our thinking to sequential composition of P

and Q. Consider instead the composition illustrated in figure 1, which can be interpreted

as either P calls Q multiple times or P and Q are mutually recursive. In either case, one

has the opportunity to modify the context seen by the other in a more complex manner

than could be done using stubs during testing of individual components in isolation.

If the composition of P and Q is in fact sequential, then the axiom is still true — just less

useful. The proof is by a simple combinatorics argument: If p is the set of paths through

P and q is the set of paths through Q, then the set of paths through P;Q may be as large as

p × q, depending on the form of composition and on reachability as considered by the

previous axiom. However, T applied to P;Q generates at most p paths. A larger test set

may be needed to induce the full set of paths. This is an issue for specification-based as

well as program-based testing when the specification captures only what the program is

supposed to do, not including what it is not supposed to do.



5. Encapsulation in Classes

In this and the following two sections, we consider only abstractions of encapsulation,

overriding of inherited methods and multiple inheritance, respectively, rather than

concern ourselves with the details of specific object-oriented languages, such as

Smalltalk-80 [7], Flavors [18], CommonLoops [1] and C++ [28].

Encapsulation is a technique for enforcing information hiding, where the interface and

implementation of a program unit are syntactically separated. This enables the

programmer to hide design decisions within the implementation, and to narrow the

possible interdependencies with other components by means of the interface.

Encapsulation encourages program modularity, isolates separately developed program

units, and restricts the implications of changes. In particular, if a programmer changes the

implementation of a unit, leaving the interface the same, other units should be unaffected

by those changes. Our initial intuition, grounded in specification-based testing, is that we

should be able to limit testing to just the modified unit. However, the anticomposition

axiom reminds us of the necessity of retesting every dependent unit as well, because a

program that has been adequately tested in isolation may not be adequately tested in

combination. This means that integration testing is always necessary in addition to unit

testing, regardless of the programming language paradigm.

Fortunately, one ramification of encapsulation for testing is that the dependencies tend to

be explicit and obvious. If a programmer changes only the implementation of a unit, he

need only retest that unit and any units that explicitly depend on it (call it, use its global

variables, etc), as opposed to the entire program. Similarly, if the programmer adds a

new unit, he need only test that unit and those existing units that have been modified to

use it (plus unmodified existing units that previously used a different unit that is now

masked due to a naming conflict).

One would assume that the classes of object-oriented languages would exhibit this

behavior, so that it would be both necessary and sufficient to retest those classes

explicitly dependent on a changed class as well as the modified class itself. We would

expect that, when a superclass is modified, it would be necessary to retest all its

subclasses since they depend on it in the sense that they inherit its methods. What we

don’t expect is the result of the antidecomposition axiom — that, when we add a new

subclass (or modify an existing subclass), we must retest the methods inherited from each



of its ancestor superclasses. The use of subclasses adds this unexpected form of

dependency because it provides a new context for the inherited components — that is, the

dependency is in both directions where we thought it was only in the one direction.

Class C:
Variables: v, . . .
Methods: J, . . .

J initializes v to 0

Class D:
Variables: . . .

Methods: K, . . .
K initializes v to 1

Figure 2

For example, consider a class C with method J; we have adequately tested J with respect

to C. We now create a new class D as a subclass of C; D does not replace J but inherits it

from C. According to the antidecomposition axiom, it is necessary to retest J in the

context of class D. There may be new errors when in the context of D, with its enlarged

set of methods and instance variables — and perhaps subtly different local meanings for

instance variables inherited from C. The bug illustrated in figure 2 (the conflicting

assumptions about instance variable v) would not be detected without retesting J in the

context of D.

In order to make this example more concrete, consider C to the class WindowManager, D

to be the class SunWindowManager, J is the method InitializeScreen, and K is

SetScreenBackground. J initializes to a blank screen, while K puts a digitized picture in

the background. There are obvious problems if K is invoked first and then J, and vice

versa.

There is one case where adding a new subclass does not require retesting the methods

inherited from the superclass in order to meet the adequacy axioms. This is when the new

subclass is a pure extension of the superclass, that is, it adds new instance variables and

new methods and there are no interactions in either direction between the new instance



variables and methods and any inherited instance variables and methods.

At least one object-oriented language has solved this problem in the general case, by

prohibiting unexpected dependencies: CommonObjects [25,26] removes all implicit

inheritance — that is, inherited methods must be explicitly invoked. This, in effect,

inserts ‘‘firewalls’’ between each superclass and its subclasses, in the same sense that

encapsulation inserts firewalls between a class and its clients.

6. Overriding of Methods

Almost all object-oriented languages permit a subclass to replace an inherited method

with a locally defined method with the same name, although some support a subtyping

hierarchy that restricts the method to have the same specification [24]. In either case, it is

obvious that the overriding subclass has to be retested. What is not so obvious is that a

different test set is often needed. This is expressed by the antiextensionality axiom:

although the two methods compute semantically close functions, a test set adequate for

one is not necessarily adequate for the other.

Class C:
Methods: M, . . .

Class D:
Methods: . . .

Class C:
Methods: M, . . .

Class D:
Methods: M, . . .

. . . . . . . . . . . . . . . .

Figure 3

For example, consider figure 3 where class C has subclass D, and method M is defined in

C but not in D. Say there exists an object O that is an instance of class D, which receives

a message containing the method selector M; M applied to O has already been adequately

tested. Now we change class D to add its own method M, which is similar to C.M (by

‘‘C.M’’, we mean the method M from superclass C). Obviously, we need to retest class

D. Intuitively we would expect that the old test data would be adequate, but the

antiextensionality axiom reminds us that it may not be adequate. Thus, we may have to

develop new test cases for two reasons. First, remember that program-based testing



considers the details of the program formulation, attempting to cover, for example, each

statement or branch. The test data would necessarily be at least slightly different for C.M

and D.M if the formulation in terms of statements and branches were different; the test

data would probably be very different if C.M and D.M used different algorithms.

Second, it is very likely that the underlying motivation for overriding a method affects

not only the internal structure of the overriding method but its external behavior as well

— that is, it changes the functional specification. Hence, in addition to test cases to

exercise the different structure of the method, we need test cases to test the different

specification of the that method.

More concretely, consider C to be the class WindowManager, D to be the class

SunWindowManager, C.M to be the method RefreshDisplay that rewrites an entire

bitmapped screen, and D.M to be the method RefreshDisplay that repaints only the

‘‘damaged’’ part of a bitmapped screen. In this case, the specifications as well as the

implementations of the two methods might be different, in which case different test sets

would be required for specification-based as well as program-based testing.

In the previous section, we treated the two-way dependency between classes and

superclasses and explained how the antidecomposition axiom requires testing of

inherited methods in each inheriting context as well as the defining context. What we did

not discuss there was the application of the antiextensionality axiom to this additional

testing: different test sets may be needed at every point in the ancestor chain between the

class defining the overriding method and its ancestor class defining the overridden

method.

In figure 4, class C has subclass D, which in turn has subclass E; C has methods M and

N; D has method M, which uses method N (from C); class E does not have method M but

does have method N (overriding the N inherited from C). The antiextensionality axiom

reminds us that we need different test data for M with respect to each of the classes C, D,

and E. This is obvious with respect to instances of C and D, since they invoke distinct

methods M in response to the message M; even if these methods are semantically close,

test data adequate for one may not be adequate for the other. This is less obvious with

respect to D and E, since they invoke the identical method M. But when we consider that

M calls C.N for D whereas it calls E.N for E, it becomes clear that different test sets are

required since the formulation and algorithms used by C.N and E.N are likely to be

different in functionality as well as structure.



Class C:
Methods: M, N, . . .

( M uses N )

Class D:
Methods: M, . . .

( M uses N from C )

Class E:
Methods: N, . . .

( M from D uses N from E)

Figure 4

Again, more concretely, let class C be WindowManager where method M is

RefreshDisplay and method N is DrawCharacter, using bitmapped fonts; let class D be

SunWindowManager where method M is D’s replacement for the method

RefreshDisplay; and let class E be NeWS where method N is E’s replacement for the

method DrawCharacter, using Postscript fonts.

7. Multiple Inheritance

Some, but not all, object-oriented languages support multiple inheritance [2], where each

class may have an arbitrary number of superclasses. The so-called ‘‘multiple inheritance

problem’’ arises when the same component may be inherited along different ancestor

paths. Solutions to this problem typically define a precedence ordering, which linearizes

the set of ancestors so that there is a unique selection (or a unique ordering if the

semantics of the language are such that all conflicting inherited methods must be

invoked) [27]. These solutions, unfortunately, cause very small syntactic changes to have

very large semantic consequences. Fortunately, the general multiple change axiom

reminds us that programs that are syntactically similar usually require different test sets.



Class C:
Methods: M, . . .

Class B:
Methods: M, . . .

Class D:
Methods: . . .

Class B:
Methods: M, . . .

Class C:
Methods: M, . . .

Class D:
Methods: . . .

.........

Figure 5

In figure 5, class D lists superclasses C and B, in that order, and the language imposes the

precedence ordering C, B. Method M is defined by both C and B but not by D. Class D is

then changed so that the ordering of the superclasses is B and C (meaning that the

precedence ordering is B, C). Not only must class D be retested, since it now uses B.M

rather than C.M, but most likely a different set of tests must be used. Since C and B are

independent, and perhaps developed separately, there is no reason that B.M would be

either syntactically or semantically similar to C.M — and even if it were, the

antiextensionality and general multiple change axioms remind us that even then

different test sets may be necessary.

As a concrete realization of this example, let class C be TextWindowManager where

method M is RefreshDisplay (that repaints the window from a text description), let class

B be GraphicsWindowManager where method M is RefreshDisplay (that repaints the

window from a bit-mapped representation), and let class D be SunWindowManager.

The example in figure 6 shows the inherent compounding effects of multiple inheritance.



Class S1:
Methods: M, N, . . .

Class S2:
Methods: N, . . .

Class R:
Methods: . . .

Class S3:
Methods: N, . . .

Class S4:
Methods: M, N, . . .

Class S:
Methods: . . .

Class T:
Methods: . . .

Figure 6

This implication of the general multiple change axiom is probably the most significant

result of applying the test data adequacy axioms to object-oriented languages, but also

the least surprising to the object-oriented languages community. Multiple inheritance is

already widely recognized as both a blessing and a curse [15,16,17].

8. Conclusions

Inheritance is one of the primary strengths of object-oriented programming. However, it

is precisely because of inheritance that we find problems arising with respect to testing.

• Encapsulation together with inheritance, which intuitively ought to bring a reduction

in testing problems, compounds them instead.

• Where non-inheritance languages make the effects of changes explicit, inheritance

languages tend to make these effects implicit and dependent on the various

underlying, and complicated, inheritance models.

Brooks concludes his section on object-oriented programming:

Nevertheless, such advances can do no more than to remove all the accidental

difficulties from the expression of the design. The complexity of the design itself is

essential, and such attacks make no change whatever in it. An order-of-magnitude

gain can be made by object-oriented programming only if the unnecessary type-

specification underbrush still in our programming language is itself nine-tenths of the



work involved in designing a program product. I doubt it.

While object-oriented programming clears away much of the accidental underbrush of

design, we have noted ways in which it adds to the accidental underbrush of change

management and testing. We conclude that there is a pressing need for research on

testing of object-oriented languages. We have begun work on this in the context of a

data-oriented debugger for concurrent object-oriented languages [8] and in the context of

semantic analysis (applying the approach of Inscape [21] to C++).
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