
Process Modelling - Where Next

M M Lehman
Department of Computing

Imperial College of Science. Technology and Medicine
180 Queen's Gate, London SW7 2BZ, UK

+44 (0171) 594 8214
mml 0 doc.ic.ac.uk

ABSTRACT
After limited interest prior to the 1980s, the software
process attracted the attention of a small group of
researchers and practitioners as evidenced by a series of
International Process Workshops commencing with the first
in 1984. General interest had, however, to wait until
Osterweil's now classic paper being honoured today and the
present author's response were delivered at ICSE 87. This
brief paper seeks to move forward from the positions
presented then to introduce three process related issues,
software process improvement, feedback in the software
process and business process improvement. The first is,
currently the principal focus of the software process
community. The second, it is believed, should be. The third
is equally relevant. Individually and collectively these
issues appear, to this author at least, to make the majority
view of the current focus of process modelling in general
and process programming in particular largely irrelevant.

Keywords
Process: modelling, process programming, process
improvement, feedback, feedback systems system dynamics

PROCESS MODELLING AND PROGRAMMING
The ICSE 97 program committee will not have found it
difficult to select Lee Osterweil's classic paper Sofnvare
Processes are Software Too [I] as the most influential
paper of ICSE 87. As evidenced by a number of earlier
publications [2, 3, 4, 51 and the first three of the now
regular International Process Workshops [6, 7, 81 this paper
did not pioneer the concept of process studies and process
modelling. But, as predicted, his fresh approach and the
underlying philosophy captured and retained the
imagination and fascination of individual and groups of
researchers in unparalleled fashion. Whether the resulting R
& D effort produced major new insight, understanding, and
progress in planning, designing, controlling and improving
the process is a matter for debate. But this in no way
detracts from the originality of Osterweil's thinking or the
influence, for better or worse, that his paper has had on the
directions that software engineering research has taken in
the last decade.

Permission to make digitallhard copies of all or p"rt of this material for
personal or clnssroom use is panted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

to republish, to post on servers or to redistribute to listq, requires specific
permission andor fee
ICSE 97 Boston MA LISA
Copyright 1997 ACM 0-89791-914-9197105 ..$3.50

given that copyright is by pem&nion ofthr ACM, Inc. To copy otherwise.

As is well known, I was a doubter from the start. I must
express my special appreciation to the program committee
of ICSE 97 for, nevertheless, associating me with this
award.

In the short time available to me today I am not able to
reopen the earlier debate. That is recorded in the ICSE 87
proceedings [1,9] and there is little in what I said then that
I would wish to change; though something could be added.
I restrict myself to a brief outline of three developments
that have surfaced in recent years. Individually and
collectively they imply a change of direction for software
process modelling and relegate the original concept of
process programming to an interesting technique with
conceptual implications but one that cannot be expected to
have major impact on future development.

SOFTWARE PROCESS IMPROVEMENT
Following on the pioneering work of the SEI [lo], model
based software process improvement has become a major
research and applied software engineering activity in both
academia and industry. In the application of process
modelling to process improvement, as with the SEI CMM
models for example, a wide range of activities at many
levels are considered. Process programming based
modelling, on the other hand, focuses, primarily, on
technical development, definition, control, direction and
sequencing of activities. It concentrates on individual and
small group activity where individual actions can be well
specified, rather than on organisational activity. As
discussed below, this aspect of process plays only a limited
role in process improvement, except at low levels of
process achievement. In primitive processes the
introduction of a new method or tool has more than a local
impact; the introduction of a method or tool, for example,
can yield visible improvement in some aspect of the overall
process. Once these have been introduced at these levels
and a degree of maturity achieved, further improvement
requires attention to a whole gamut of issues, managerial,
organisational and high level technical (eg the addition of
additional process steps, the use of metrics). Improvement
of individual steps, better development methods, improved
support tools, whatever their local effect, have little impact
at the global level [1 11.

One is forced to conclude that once one has advanced
beyond primitive processes, CMM levels one and two for
example, the principal current procedural process modelling
approaches have little, if anything, to contribute to the
search for process improvement. What is required in any

549

http://doc.ic.ac.uk

particular context is high level understanding and
representation of the needs of the business and of relevant
organisational processes in that context. One must achieve
thorough insight into the manner in which these act and
interact. One must learn how to design, control and modify
individual and joint action to produce the desired global
output and impact. One must assess the effectiveness of the
process as experienced and evaluated by the world outside
the development, marketing and support organisations.

Detailed design of constituent steps in general, and
technical steps in particular, is not the most critical issue in
seeking to achieve the desired overall processes or their
improvement. Local fine tuning cannot be expected to make
a major contribution to global effectiveness. It is a well
known property of complex systems that local optimisation
usually causes global sub-optimisation. And even without
this effect the impact is small. After all, a fifty per cent
efficiency improvement in an activity that represents, say,
five per cent of the activity or resource required to produce
the product from start to finish, makes at best a two and a
half percent impact, often very much less. The essential
lesson to be derived from current improvement approaches
is that one must develop a global view and comprehensive
insight as to how, through their processes, organisations
achieve and maintain quality products. This goal demands
models of the processes and techniques to achieve and
exploit them that are quite different to the majority of those
current in the process modelling community at large.

BACK IN THE SOFTWA
A second major development that signals a change in
direction for process modelling arises from the realisation
that the software process is a complex, multi-loop, multi-
level feedback system [l l] . This was first recognised
following a 1969 study of the IBM programming process
[3, 121 which led eventually to a study of the evolution of
OS360 and to the conclusion that the system's growth was
regulated by a self stabilising feedback process [13]. From
this it followed that understanding and improving the
process required it to be treated as a feedback system [141.
Moreover, in these systems, intrinsically, humans play a
major controlling role. This greatly complicates disciplined
analysis of such systems.

Some years ago, in asking why the global industrial process
still leaves so much to be desired despite the many
advances in software technology, these observations were
recalled. Now, an intrinsic property of systems that include
negative feedback loops and mechanisms, however
controlled, is that the impact of changes to individual

proportion to the amplification in the loop. This
phenomenon is not simple to interpret in the software
process context. Nevertheless, it may explain why global
characteristics of software development processes are not
responsive to changes in individual forward path steps or to
the introduction of new ones except in primitive processes
where negative feedback control is weak or absent. Where
negative feedback is present it is likely to constrain forward
path improvements such as the use of high level languages,
structured programming, new development paradigms,

forward path mechanisms outside the loop is attenuated in

formal methods, disciplined requirements analysis and
specification, CASE support and so on to explain why all
these are limited in their global impact. It leads to the
paradoxical situation that the more advanced a process, the
more technical, management, organisational and user
derived feedback control is applied the less benefit will
accrue from local technological change unless feedback
controls are adapted to the circumstance created by such
change. Processes not employing feedback control can
yield significant improvement as a consequence of
technological advances alone. Mature processes are likely
to respond to localised improvements only if feedback
mechanisms are also adjusted. Adjusting only the latter
may, in fact, itself yield significant improvement to global
process characteristics.

This observation and its implications were expressed in a
hypothesis, the FEAST hypothesis, as follows, [11, 1.51: As
complex feedback systems, E-type [13, 161 sofnvare
processes evolve strong system dynamics and with it the
global stability characteristics of other feedback systems.
Consequent stabilisation effects are likely to constrain
efforts at process improvement. It was restated in a project
proposal [17] as:- As for other complex feedback systems,
the dynamics of real world software development and
evolution processes will possess a degree of autonomy and
exhibit a degree of global stability. The resultant FEAST/l
project in the Department of Computing at Imperial College
is now investigating this hypothesis.

This short presentation is not the place for a detailed review
of the project or to present our results to date. It is,
however, appropriate to remark that early results [18, 191
are encouraging. So far the analysis has concentrated on the
evolution of the Logica plc FW financial transaction system
now in its tenth release. The data indicates that the
evolution of this system has characteristics similar to those
of OS/360 [161. The growth trendripple as in figure 1, for
example, is reminiscent of that of OS/360 as in figure 2. It
was, of course, this ripple that first suggested the presence
of feedback control. Moreover, the laws of software
evolution as previously stated [14, 16, 20, 211 are upheld
[22], or rather, not negated, by the data. There is also strong
evidence [181, that a controlling internal dynamics develops
over the early releases, as in figure 3. The "E" parameter of
that figure is the constant of Turski's inverse square growth
model [18]. The plot shows that data from the first six
releases suffice to determine the value of E. Thereafter, the
internal dynamics dominates further growth and the model
provides a growth trend predictor accurate to better than
5%. This is a remarkable result [181 that greatly increases

That all but the most primitive E-type software processes
constitute a feedback system is indisputable. This, by itself
implies that they cannot be satisfactorily modelled using the
techniques widely in vogue in the process modelling
community. The R&D challenge is, therefore, to discover
and develop more appropriate techniques. As a first step,
the FEAST/] project, which involves also four major
industrial collaborators, is using black box analysis of real
industrial processes. Figures 1 and 3 represent early results

confidence in the validity of the FEAST hypothesis.

550

Modules Logica FW Syst

a .

0 .

2500

7000-

6000-

5000-

2ooo!

a
a

0 .

. *
e

I

. . a . * -
loo,$

5001

RSN
0 -
1 3 5 7 9 11 13 15 17 19 21

System Growth Trend IC

Fig. 1. 1990s System - Logica FW

40001 3000
a e

2000 I , a .
@ *

o L - - - , - - q ~ , - - m - c - RSN

1 3 5 7 9 11 13 15 17 19 21 23 25

System Growth Trend k

Fig. 2. 1970s System - OS1360

Logica FW System
Mean Absolute Error and ~

fitted size of FW for E
from first k points k-

2 5 0 1
\

-4- -Mean Abs. E r j -+-St. Dev.

5 0 /

2 3 4 5 6 7 8 9 10111213141~16171819202L
Error as a function of the last <

estimating E commencing with E;

Fig. 3. - Development of the Logica FW System Dynamics

from that analysis whose aim is to demonstrate feed-back-
like behaviour and the presence of system dynamics effects.
White box studies based on systems dynamics modelling
[24, 251 will then seek to identify actual feedback control
mechanisms, assess their impact on the global process and
on the impact of changes to them, and identify, implement
and measure or otherwise evaluate potential improvements
[171. Multi agent modelling techniques will also be
explored in this context.

BUSINESS PROCESS IMP
One further brief observationmust be made. In general, E-
type software systems are not developed for their own sake.
They are required to address, in the most effective manner,
a need in some domain. In seeking to use computers in the
late fifties and early sixties US banks and insurance
companies for example, the first business organisations to
attempt major, if not tcltal, automation, soon recognised that
it was not effective to simply install computers as electronic
clerk- replacements, In introducing them one must ask the
question “How shall our business be conducted now that
computers are available?”. Only recently has this
awareness spread more widely; have organisations begun
the search for overall business process improvement as a
disciplined and integrated activity that also includes
computer supported processes. In addressing this question it
was soon discovered that for businesses operating legacy
computer systems the freedom to change is severely
constrained unless the computer software is reliably,
responsively and economically adaptable. Modelling and
improving a software process, a process including ab initio
development, fault fixing, adaptation and extension (ie.
software evolution), or modifying and extending its
products must be done in the context of the total business
including its clients, not as a self contained exercise. And
this is also true for the software industry where software
evolution is, basically, just another business process. There
is, therefore, little point in modelling the technical software
development process in ever greater detail. The total
process must be modelled in its business environment to
include all relevant activities and their feedback
mechanisms. This requires that the latter are identified and
understood, and that appropriate techniques are available.

This very brief analysis indicates why many of the current
approaches to process modelling and the objectives they
have been directed at have largely outlived their usefulness.
More appropriate approaches and techniques must now be
identified, explored, developed and applied. I believe that
feedback control dominates the software process both in its
technological aspects and in its organisational context.
Mastery of feedback mechanisms demands adequate
quantitative models individually calibrated against real
world software evolution environments. Eventually it may
be possible to develop generic models but that lies in the
distant future. A widespread concerted effort at global
software process modelling is required, one that takes into
account the facts as outlined. Current modelling approaches
and techniques will need to be augmented by others that
promise hope of success in domains that are significantly
wider and morc complex than those currently considered.

CBNCLUSIBNS

5 51

1.

2.

3.

4.

5 .

6.

7.

8.

9.

ACKNOWLEDGEMENTS
As the FEAST core group, Dr Dewayne Perry and
Professors Vic Stenning and Wlad Turski have played a
major role in developing and exploring the concepts and
results presented here [26]. More recently Dr Paul Wernick
and Juan F Rami1 have joined the FEAST/l team and have
also made significant contributions. It is also appropriate to
mention the many participants in the three International
FEAST Workshops (1994/5) who in their critical appraisal
and creative criticism of the work of the core group helped
ensure FEAST/1 funding, launch and further progress.
Acknowledgement is also due to the EPSRC for grants
numbers GR/K86008 supporting FEAST/l and and
GWL07437 that permits the continuing involvement of
Professor Turski and Dr Perry.

REFERENCES
Osterweil L, Software Processes are Software Too,
Proc. 9th Int. Con$ on Softw. Eng., Monterey, CA, 30
March - 2 Apr. 1987, IEEE Comp. Soc. Pub. n. 767,
IEEE Cat. n. 87CH2432-3,2 - 13
Bennington H D, Production of Large Computer
Programs, Proc. Symp. on Advanced Computer
Programs for Digital Computers, sponsored by ONR,
June 1956, Republished in Annals of the Histoly of
Computing, Oct. 1983, 350 - 361
Lehman M M, The Programming Process, IBM Res.
Rep. RC 2722, IBM Res. Centre, Yorktown Heights,
NY 10594, Sept. 1969. Also. in [13], 39 - 83
Royce W W, Managing the Development of Large
Software Systems, IEEE Wescon, Aug. 1970, 1 - 9
Boehm B W, Software Engineering, IEEE Trans. on
Comp., v. C-5, n. 12, Dec. 1976, 1226-1241
Potts C (ed), Proc. of the Softw. Process Worksh.,
Egham, Surrey, UK, Feb. 1984. IEEE cat. n.
84CH2044-6, Comp. Soc., Washington D.C., order n.
587,27 -35
Wileden J C and Dowson M (eds), SE Notes, Special
Issue on The 2nd International Workshop on the
Software Process and Software Environments, Cot0 de
Caza, Cal., 27-29 March 1985, Softw. Eng. Notes, v.
11, n. 4, Aug. 1986
Dowson M (ed), Iteration in the Software Process,
Proc. 3rd Int. Proc. Worksh., IEEE Comp. Soc. Press,
March 1987
Lehman M M. Process Models, Process Programs,
Programming Support - Invited Response to a Keynote
Address by Lee Osterweil, Proc. 9th Int. Con . on
Softw. Eng., Monterey, CA, 30 March 2 - Apr. 1987,
IEEE Comp. Soc. pub. n. 767, IEEE Cat. n.
87CH2432-3, 14 - 16

10. Paulk M C, Curtis B and Chrisi M B, Capability
Maturity Model for Software, Version 1.1, Softw. Eng.
Tech. Rep., CMU/SEI-93-TR, Feb. 24 1993

11. Preprints of the (first) FEAST Workshop, M M
Lehman (ed.), Dept. of Comp., ICSTM, June 1994

12. Lehman M M and Belady L A, Program Evolution, -
Processes of Software Change, Academic Press,
London, 1985,538 p.

13. Belady L A and Lehman M M, An Introduction to
Growth Dynamics, Proc. Conference on Statistical
Computer Performance Evaluation, Brown U. 1971,
Academic Press, 1972, W Freiberger (ed.), 503 - 51 1

14. Lehman M M, Laws of Program Evolution - Rules and
Tools for Programming Management, Proc. Infotech
State of the Art Con$, Why Software Projects Fail, -
April 9 - 11 1978, 11/1 - 11/25

15. Lehman M M, Feedback, Evolution And Software
Technology, Pos. Paper - ISPW9, Proc. 9th Int. Softw.
Process Workshop, 5 - 7 Oct. 1994, publ. by IEEE
Comp. Soc., 1995

16. Lehman M M, Programs, Life Cycles and Laws of
Software Evolution, Proc. IEEE Special Issue on
Softw. Eng., v. 68, n. 9, Sept. 1980,1060- 1076

17. Lehman M M and Stenning V, FEAST/l - Feedback,
Evolution And Software Technology; Case for
Support, EPSRC Research Proposal, Dept. of Comp.,
ZCSTM., London SW7 2BZ, Nov. 1995March 1996, l l
P.

18. W M Turski, A Reference Model for the Smooth
Growth of Software Systems, U. of Warsaw, March
1996, IEEE Trans. Softw. Eng., v. 22, n. 8, Aug. 1996,

19. Lehman M M, Process improvement - The Way
Forward, Invited Keynote Address, Proc. Brazilian
SoftW. Eng. Conf., 14 - 18 Oct. 1996,23 - 35

20. Lehman M M, Programs, Cities, Students, Limits to
Growth?, Inaug. Lect., May 1974. Publ. in Imp. Col of
Sc. Tech. Inaugural Lect. Ser., vol9, 1970,1974,211 -
229. Also in Programming Methodology, (D Gries
ed.), Springer Verlag, 1978,42 - 62

21. Lehman M M, On Understanding Laws, Evolution and
Conservation in the Large Program Life Cycle, J. of
Sys. and Softw., v. I , n. 3, 1980,213 - 221

23. Lehman M M, Laws of Software Evolution Revisited,
Pos. Paper, EWSPT96, Oct. 1996, to be published by
Springer Verlag

24. Abdel-Hamid T and Madnick S E, Software Project
Dynamics: An Integrated Approach, Prentice Hall,
Englewood Cliffs, 1991, NJ 07632,264 p.

25. Madachy R J, System Dynamics Modelling of an
Inspection Process, Proc. ICSE 18, Berlin, 25 - 29
Mar. 1996, IEEE Comp. Soc. ord. n. PR07246, IEEE
Cat. n. 96CB35918,376 - 386

26. Lehman M M, Perry D E and Turski W M, Why is it
so hard to find Feedback Control in Software
Processes?, Invited Talk, Proc. of the 19th
Australasian Comp. Sc. Con$, Melbourne, Australia,
31 Jan - Feb 2 1996. 107-115.

599 - 600

ml569[papers], 5/3/1997

5 52

