
PROCESS MODELS, PROCESS PROGRAMS,

PROGRAMMING SUPPORT

R e s p o n s e To An ICSE9 Keynote Address By Lee Osterweil

M M LEHMAN

Department of Computing, Imperial College, London SW7 2BH

One way of responding to a keynote speaker is to put the
expressed views into context, pointing to highlights in the
address, suggesting areas where alternative viewpoints might
have been presented, exposing any chinks in the armour of the
otherwise solid structure erected by the speaker.

Logistics have made it impossible for this respondent to see the
paper to be presented to ICSE9 by Professor L Osterweil
before generating his own written response,. The above
approach cannot, therefore, be taken. Instead, I raise a
fundamental issue that follows from a comparison of the
respective approaches to process modelling taken by Osterweil
and myself. What is expressed here reflects my current
understanding of his views on Process Programs and Process
Programming, my reaction to what I believe he will present. I
can only hope that this will not do too much violence to views
to be expressed in his Proceedings paper or in the Keynote
lecture itself.

This total process was seen as extending from initial
verbalization of the problem to be solved or computer
application to be implemented, through delivery of the product
and over its subsequent evolution. The search was expressed
through the development and refinement of a sequence of
Process Models [LEH85 chs. 3, 7, 14, 20, 21, 2]. It was
directed towards first formulating a model of an ideal process
('ideal' though unachievable in the sense of the 'ideal' cycle of
thermodynamics). Such a model would constitute a general
paradigm. A practical process would be obtained by
instantiation in terms of relevant concepts, available
technologies, specific implementation environments, process
constraints and so on. This development of process models
culminated in the LST model [LEH84] and its subsequent
analysis and application as presented at the first two Process
Workshops [SPW84, 86]. The importance of that model is not
only in the process it depicts. It is a canonical model of
software development and of development steps.

To set the scene and to provide a basis and framework for
discussion, let me first summarize my view of studies of the
software development process in terms of my own involvement
in them.

To the best of my knowledge, the first such study was a 1956
paper by Benington/BEN56]. In this, a process model with
basic characteristics of that subsequently termed the 'Waterfall
Model', was first presented. Current interest in the software
development process makes it most appropriate that this
historic paper is to re-presented at this conference. In 1968/9,
totally unaware of the earlier paper, I engaged in a study whose
conclusions were presented in a confidential report entitled
'The Programming Process' [LEH69]. This has now become
available in the open literature [LEH85, chapter 3] and is, I
believe, as relevant today as at the time it was written. It was
this study and the continuing research it triggered that
subsequently led my colleagues and me to the concepts of
process models, evolution dynamics, program evolution and
support environments.

Our earliest process models reflected the dynamics of the
process [LEH85, chs. 5-9, 14, 16, 19]. By the mid 70% at
about the time that Barry Boehm [BOE76] popularized the
Waterfall model first proposed by Royce/ROY70], my studies
had led to a search for better understanding of the total process
of software development.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

What has all this to do with process programs? Process
programs, as described by Osterweil, are also process models.
They are models constructed from linguistic elements
expressed and structured in programmatic form. They are
intended to define a procedure for achieving some desired end
from an initial starting point and are expressed in terms of
expressions in a natural or formal language. The procedure is
implemented by executing the primitive actions named in the
program.

A process program to describe a process that, if followed, will
permit execution of some specific task in its environment, can
be systematically developed, top-down, in a manner equivalent
to top-down development of a procedural program. The
Osterweil approach is essentially equivalent, in the context of
process modelling, to the use of procedural programming (in
contrast to styles such as functional, imperative and so on). Its
power is defined by the properties of the language used in
relation to available execution mechanisms. In fact, a process
program is precisely that - a procedural program whose value
depends on the constructability of a mechanism that can execute
it mechanically, human intervention being restricted primarily
to the provision of information. This is a view that Osterweil
will not dispute; in the papers that I have seen the algorithmic
nature of process programs is repeatedly stressed.

And therein lies the rub. The approach is fine, almost certainly
useful, when comprehensive models of the phenomenon, the
domain and the system that are the subject of the program are
known and understood, when strategies and algorithms for
achieving the desired ends are known a priori , when
computational, managerial and administrative practices are fully
defined. It is useless, indeed meaningless, if such
phenomenological and algorithmic models do not exist
[TUR86], if progress in definition (and execution) of the
process is a function of the process itself.

© 1987 ACM 0270-5257/87/0300/0014500.75
14

That this is so can be illustrated by considering the power and
limitations of Integrated Support Environments (IPSEs).
Underlying the IPSE concept is a simple observation. One
must seek to mechanize those parts of the software
development process that can be defined algorithmically.
Machines cannot, however, be developed to execute activities
for which an a priori constructive definition cannot be
expressed, may not even exist. So people must undertake the
creative portions of the process. If Osterweil were correct one
should be able to take an IPSE such as ISTAR [DOW86],
embed it in an appropriate harness, provide the information
required by the process at various stages and then crank the
machine to produce the products that implement the initial
concept. Clearly, this is not generally possible. The problem
is that every stage and step of the programming process
requires thought, the application of heuristic (often creative)
judgement, analysis, review of earlier steps, further refinement
or backtracking to redo earlier models. Using descriptive
natural language to express what cannot be understood except
in the context of an actual execution, is not helpful.

In terms of our current understanding and of the known
properties of the programming process [LEH84], process
programs are more likely to divert attention from the real
problems of software engineering than to help solve them. The
very existence of a programming language sets up constraints
as to how a problem may be solved, severely limits human
creativity. As expressed so eloquently by Arthur Koestler in
his 'Act of Creation' [KOE64]:

"The prejudices and impurities which have become

incorporated into the verbal concepts of a given

'universe of discourse' cannot be undone by any

amount of discourse within the frame of reference

of that universe. The rules of the game, however

absurd, cannot be altered by playing that game.

Among all forms of mentation, verbal thinking is

the most articulate, the most complex, and the

most vulnerable to infectious diseases. It is liable

to absorb whispered suggestions, and to

incorporate them as hidden persuaders into the

code. Language can become a screen which

stands between the thinker and reality. This is the

reason why true creativity often starts where

language ends".

Express ions l ike ' code w r o n g : c h a n g e code ' or
'create_design' in the body of a Process Program do nothing
to clarify the process. They are either trivial, a stilted form of a
natural language model or their meaning is undefined and their
expression merely creates an illusion of progress. A
disciplined process is vital as computers penetrate ever more
into the operation of society. To the extent that process
programs express such discipline and contribute to its
achievement they represent progress. They do not, however,
appear to provide a fundamental contribution to the further
development of a software engineering discipline.

In application domains where Software Engineering know-how
is substantially complete, in Turski's words 'artificial

application domains such as presented by mathematical
problems' [TUR86], successful process programs can certainly
be constructed. Examples include compiler construction and
the numerical solution of many classes of mathematical
problems. But that is because these application classes and
solutions to problems in their domains can be expressed in
mathematical terms. In the early years, programs in these
domains will largely have been developed on an ad hoc basis.
Such development also led gradually to clearer understanding
of the application domain and hence to potential for its
formalisation. It is the problem domains (the problems and
possible solutions) that become well understood and formally
modelled not the process for program development in general.
When the former is achieved any complexity lies, at worst, in
the formal representations. The process of implementation is
straightforward, well defined and expressible, for example, in
.program form; a process program in fact. This is why, in such
instances, one may create a metaprogram, a meta-compiler for
example, that implements the desired system given an
appropriate specification. Such a meta-program is, in fact, an
IPSE with driving harness, as hypothesized above.

For applications (commonly termed 'programing-in-the-large')
which provide the real challenge for software engineering as
distinct from programming methodology, models of the
application as a whole or of many of its parts do not, in
general, exist; there is no theory of program development, there
is no global and formalisable development procedure, at best
there is only an abstract process model [LEH84]. For this
class of applications, process programming cannot provide
potential for a major breakthrough. What is first required for
each instance or class of applications, what is vital if the goal of
reliable, timely and cost-effective development is to be
achieved, is the development of formal phenomenological
models and formal procedures for transformation of those
models into executable programs. Process programs are not
the correct approach to this goal. Nor will they assist in the
development of an engineering discipline that will facilitate the
ready and reliable creation of the appropriate systems and their
subsequent evolution. An individual program will, at best,
create an impression of complete understanding. But this
must, inevitably, be incomplete in critical elements.
Widespread pursuit of process programming would be a
diversion, developing descriptions of those parts of the process
that are well understood, covering up those aspects that
represent the real challenge.

For achievement of real progress, models such as those
referred to in the opening sections of this response are
essential; models derived by analysis, models whose
development yields clarification and understanding of the
activity of software development and evolution. That is the
challenge for the future.

In summary, process programming is meaningful in certain
restricted areas. In these, Osterweirs work is significant.
Moreover, his work must, unquestionably, be commended for
its originality and neatness of presentation. Nevertheless, it
must, be recognized that process programs have limited value
in the context of improvement of the software development and
evolution process. Whatever their value and domain of
application, further pursuit does not satisfy the need for
intensification of the direct study of the overall process of
software engineering and for developing support for that
process. Process programming does not represent progress
towards the goal of making the world after the computer safe to
live in, a goal demanding urgent attention.

15

References

[BEN56] Benington HD, 'Production of Large Computer
Programs', Proc. Symp. on Advanced Computer
Programs for Digital Computers' sponsored by
ONR, June 1956. Republished in Annals of the
History of Computing, Oct. 1983, pp. 350-361

[BOE76] Boehm BW, 'Software Engineering', IEEE
Trans. on Comp., vol. C-5, no. 12, Dec. 1976,
pp. 1226-1241

[DOW86] Dowson M, 'ISTAR - An Integrated Project
Support Environment', Proc. of the 2nd ACM
SIGSOFT/SIGPLAN Software Eng. Symp. on
Practical Development Support Environments,
ACM SIGPLAN Notices, vol. 2, no. 1, Jan. 1987

[KOE64] Koestler A, 'The Act of Creation', 1970 edition,
Pan Books Ltd, London, pp. 176-177

[LEH69] Lehman MM, 'The Programming Process', IBM
Res. Rep. RC 2722, IBM Res. Div., Yorktown
Heights, NY 10495, Dec. 1969, 46p. Reprinted in
[LEH85] as chap. 3

[LEH84] Lehman MM, Stenning V and Turski WM,
'Another Look at Software Design Methodology',
ACM Software Eng. Notes, vol. 9, no. 2, Apr.
1984, pp. 38-53

[LEH85]

[ROY70]

[SPW84]

[SPW86]

[TUR86]

Lehman MM and Belady LA, 'Program Evolution
- Processes of Software Change', Academic Press
1985, 539p.

Royce WW, 'Managing the Development of Large
Software Systems: Concepts and Techniques',
Proc. WestCon., Aug. 1970

Potts C (ed), 'Proceeding of the Software Process
Workshop', Egham, Surrey, U.K., Feb. 1984.
Publ. IEEE, cat. no. 84CH2044-6 Comp. Soc.,
Washington D.C., order no. 587, 175p.

Wileden JC and Dowson M (eds), Software Eng.
Notes Special Issue on the International Workshop
on the Software Process and Software
Environments, Coto de Caza, Cal., 27-29 March
1985, vol. 11, no. 4, Aug. 1986, 74p

Turski WM 'And No Philosopher's Stone, Either',
Information Processing 86, Proc. of the IFIP
World Computer Congress, Dublin, 1986, Publ.
by North-Holland, 1986, pp. 1078-1080

mm1409
[lizl06-response-lo]

26 January 1987

16

