
why isn’t there more 
progress toward building systems 
?om existingparts? One anmer 
is that the asmmptions of the 
parts about their intended 
environment are implicit and 
either don’t match the actual 
environment or conflict with 
those o f  other parts. The authors 
explore these problems in the 
context of  their own experience 1 with a compositional approach. 
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ware productivity may welldepend on ’ tors, and other related products that 
the software community’s ability to support reuse and open systems have 
combine existing pieces of software to been developed. 
produce new applications. The current Yet the systematic construction of 
build-from-scratch techniques that large-scale software applications from 
dominate most software production existing parts remains an elusive goal. 
must eventually give way to techniques Why? Some of the blame can rightful- 
that emphasize construction from ly be placed on the lack of pieces to 
reusable building blocks. If not, soft- build on or the inability to locate the 
ware designers may hit a production desired pieces when they do exist. 
ceiling in generating large, high-quali- But even when the components are 
ty software applications. in hand, significant problems often 

The last decade has seen increased remain because the chosen parts do not 
support for compositional approaches fit well together. In many cases these 
to software. There  is considerable mismatches may be caused by low- 
research and development in reuse; level problems of interoperability, such 
industry standards like CORBA have as incompatibilities in programming 
been created for component interac- languages, operating platforms, or 
tion; and many domain-specific archi- database schemas. These are hard 
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problems to  overcome, but recent 
research has been making good 
progress in addressing many of them. 

In this article, we describe a differ- 
ent, and in many ways more pervasive, 
class of problem, which we term archi- 
tectural mismatch. Architectural mis- 
match stems from mismatched 
assumptions a reusable part makes 
about the structure of the system it is 
to be part of. These assumptions often 
conflict with the assumptions of other 
parts and are almost always implicit, 
making them extremely difficult to 
analyze before building the system. 

To illustrate how the perspective of 
architectural mismatch can clarify our 
understanding of component integra- 
tion problems, we describe our experi- 
ence of building a family of software 

design environments from existing 
parts. On the basis of our experience, 
we show how an analysis of architec- 
tural mismatch exposes some funda- 
mental, thorny problems for software 
composition and suggests some possi- 
ble research avenues needed to solve 
them. 

AESOP SYSTEM 

For the last five years, we have been 
carrying out research in the ABLE 
(Architecture-Based Languages anc 
Environments) Project a t  Carnegit 
Mellon University, which is aimed ai 
developing foundations for an engi- 
neering discipline for software archi- 
tecture. Part of this research is dedicat- 
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Figure 1. The Aesop environment-generating system. Given a set o f  awhitec- 
turd-style descriptions, Aesop produces a custom design environment. All envi- 
ronments have the shared infiastructure provided by Aesop, and they have thr 
same organization: a collection of  tools, one of which is a graphical user interface. 
a database that contains architectural designs; and remote-procedure-call anc 
event-broadcast mechanisms for communication between the tools and the desip 
database. 

ed to finding ways to build tools and 
environments that will support archi- 
tectural design and analysis. The  box 
on pp. 20-21 describes the motivation 
for our work. 

The Aesop system was envisioned as 
the project's implementation platform 
for experimenting with architectural 
development environments.' It was to 
be a kind of environment generator 
that, when given a description of a set 
of architectural styles, would produce 
an environment tailored to the devel- 
opment of systems in those styles. The 
project team completed the first Aesop 
prototype in August 1993 and has 
recently built a second prototype. 

Aesop provides a toolkit for con- 
structing open, architectural design 
environments that support architectur- 
al styles. The basic idea is that Aesop 
makes it easy to define new styles and 
then use them to create architectural 
designs. Thus, each Aesop environ- 
ment is configured around a set of 
styles that guide the designer in pro- 
ducing architectural designs. 

Figure 1 shows the Aesop system 
and the structure of the environments 
it generates. To produce an environ- 
ment, Aesop combines a set of style 
definitions with some shared infra- 
structure. The shared infrastructure is 
incorporated into each environment as 
a set of basic support services for archi- 
tectural design. The elements of a style 
definition are a description of 

+ an architectural design vocabu- 
lary (as a set of object types), 

+ visualizations of design elements 
suitable for manipulation by a graphi- 
cal editor, and 

+ a set of architectural analysis 
tools to be integrated into the environ- 
ment. 

For each design environment, the 
set of basic support functions provided 
by the shared infrastructure includes a 
design database for storing and retriev- 
ing designs; a graphical user interface 
for modifying and creating new 
designs; a tool-integration framework 
that makes it easy to add new tools 
(such as compilers, architectural analy- 
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sis tools, and so on) to the environ- 
ment; and a repository mechanism for 
reusing fragments and patterns from 
previous designs. 

Every Aesop environment has the 
same structure: As Figure 1 shows, 
each is an open collection of tools that 
access an architectural-design database. 
T h e  database stores architectural 
designs and provides tools with a high- 
level, object-oriented interface to  
architectural designs. T h e  database 
also manages concurrent access to 
shared data and enforces the architec- 
tural design constraints specified by 
the architectural styles. 

The tools run as separate processes 
and access the database through a 
remote-procedure-call mechanism that 
lets them invoke methods on objects in 
the database. (The  tools may also 
access databases and file systems out- 
side the Aesop environment, but such 
access is not relevant here and so is not 
shown.) Additionally, the environment 
includes a tool-integration mechanism 
based on event broadcast.* With this 
mechanism, tools can register to be 
notified about changes to  database 
objects and announce significant 
events to other tools. Typical tools 
include a graphical editor for creating 
and browsing architectural designs as 
well as style-specific tools for carrying 
out architectural analyses, such as 
checking for architectural consistency, 
generating code, and interacting with 
component repositories. 

WISHFUL THINKING 

We faced two important challenges 
in building Aesop: 

+ Designing the notations and 
mechanisms to support style defini- 
tion. 

+ Creating the infrastructure for 
the environment-support functions, 
such as the design manager and tool- 
integration framework. 

In this article we focus on the sec- 
ond challenge. 

Viewed abstractly, the infrastruc- 

ture required by Aesop environments 
is hardly novel. Indeed, it is now com- 
monplace to construct environments 
in this fashion, as open, loosely inte- 
grated collections of tools that access 
shared data. Moreover, graphical edi- 
tors are common components of 
drawing packages, 
computer-aided soft- 
w a r e - e n g i n e e r i n g  
tools, and other user 
interfaces. W e  were 
therefore optimistic 
that we could obtain 
most of the infrastruc- 
ture needed for Aesop 
by building on existing 
software. Specifically 
we wanted to reuse 
four standard pieces: 

which provides event-based tool 
integration.' 

+ Mach RPC Interface Generator 
(or MIG), an RPC stub generator, 
developed a t  the Carnegie Mellon 
University, that was well-suited to our 
host operating system.6 

All we had to do was mt 
the subsystems together. 

WE ENCOUNTERED It did not appear to be a 
difficult task, especially 

SIX MAIN PROBLEMS since all the subsvstems 
IN INTEGRATING THE were written in 'either 

C++ or C, all had been FOUR SUBSYSTEMS, used in many projects, 

VIRTUALLY ALL OF and all had available 
source code. W e  esti- 

THEM CAUSED BY mated the work would 
take six months and one 

ARCHITECTURE. person-year. 
+ an object-orient- 

+ a toolkit for constructing graphi- 

+ an event-based tool-integration 

4 an FWC mechanism. 
W e  had numerous candidates for 

each piece. In making our selections 
we picked systems that seemed to have 
promise for working well together and 
within our development environment. 
In particular, we wanted to be sure that 
we could process the systems using the 
same compilers, that each piece had 
been used successfully in several devel- 
opment projects, and that each piece 
was compatible with the operating sys- 
tem (in this case, Mach) and machine 
platforms (in this case, Sun machines) 
on which we were running. 

Our choices for the four subsystems 
were 

+ OBST, a public-domain object- 
oriented database. 

+ Interviews, a toolkit for con- 
structing graphical user  interface^,^ 
developed at Stanford University, 
which we used with Unidraw, a 
reusable framework for creating draw- 
ing editors that was also produced by 
the Interviews  developer^.^ 

+ SoftBench, an event-broadcast 
mechanism from Hewlett-Packard, 

ed database, 

cal user interfaces, 

mechanism, and 

HARSH REALITY 

Two years and nearly five person- 
years later, we managed to get the 
pieces working together in our first 
Aesop prototype. But even then, the 
system was huge (even though we had 
contributed only a small portion of our 
own code to the system), the perfor- 
mance was sluggish, and many parts of 
the system were difficult to maintain 
without detailed, low-level under- 
standing of the implementations. 

Integration problems. We encountered 
six main difficulties in integrating the 
four software subsystems: 

+ Excessive code. The binary code of 
our user interface alone was more than 
3 Mbytes after stripping. The binary 
code of our database server was 2 . 3  
Mbytes after stripping. Even small 
tools (of, say, 20 lines of code) interact- 
ing with our system were more than 
600,000 lines after stripping! In an 
operating system without shared 
libraries, running the central compo- 
nents plus the supporting tools (such as 
external structure editors, specification 
checkers, and compilers) overwhelmed 
the resources of a midsize workstation. 

+ Poor performance. T h e  system 
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operated much more slowly than we 
wished. Some of the problems 
occurred because of overhead from 
tool-to-database communication. For 
example, saving the state of a simple 
architectural diagram (containing, say, 
20 design objects) took several minutes 
when we first tried it out. Even with 
performance tuning, it still took many 
seconds to perform such an operation. 

The excessive code also contributed 
to the performance problem. Under 
the Andrew File System, which we 
were using, files are cached at the local 
workstation in total when they are 
opened. When tools are large, the 
start-up overhead is also large. For 
example, the start-up time of an Aesop 

environment with even a minimal tool 
configuration took approximately three 
minutes. 

+ Need t o  rnodifj external packages. 
Even though the reusable packages 
seemed to run "out of the box" in our 
initial tests, we discovered that once we 
combined them in a complete system 
they needed major modifications to 
work together a t  all. For example, we 
had to significantly modify the 
SoftBench client-event loop (a critical 
piece of the functionality) for i t  to 
work with the Interviews event mech- 
anism. W e  also had to reverse-engi- 
neer the memory-allocation routines 
for OBST to communicate object han- 
dles to external tools. 

+ Need to reinvent existing finctions. 
In some cases, modifymg the packages 
was not enough. W e  also had to aug- 
ment the packages with different ver- 
sions of the functions they already sup- 
plied. For example, we were forced to 
bypass Interviews' support for hierar- 
chical data structures because it did not 
allow direct, external access to hierar- 
chically nested subvisualizations. 
Similarly, we ended up building our 
own separate transaction mechanism 
that acted as a server on top of a ver- 
sion of the OBST database software, 
even though the original version sup- 
ported transactions. W e  did this so 
that we could share transactions across 
multiple address spaces, a capability 

SOFTWARE ARCHITECTURE 

.I critical aspect of  any complex 
software system is its architecture. 
There is currently no single, univer- 
sally accepted definition of software 
architecture, but typically a system's 
architectural design is concerned with 
describing its decomposition into com- 
putational elements and their interac- 
tions. Frequently these descriptions are 
presented as informal box and line dia- 
grams depicting the gross organiza- 
tional structure of a system, and they 
are often described using idiomatic 
characterizations such as client-server 
organization, layered system, or black- 
board architecture. 

Design tasks at  this level include 
organizing the system as a composition 
of components; developing global con- 
trol structures; selecting protocols for 
communication, synchronization, and 
data access; assigning functionality to 
design eIements; physically distributing 
the components; scaling the system and 
estimating performance; defining the 
expected evolutionary paths; and 
selecting among design alternatives. 

Moliucltioa. Architectural design is 
important for at least two reasons. 
First, an architectural description 
makes a complex system intellectually 

tractable by characterizing it a t  a high 
level of abstraction. In particular, 
architectural design exposes top-level 
design decisions and lets the desipner 
reason about how to satisfy system 
requirements in assigning functionaliq 
to design elements. For example, if 
data throughput is a key issue, an 
appropriate architectural design would 
let the designer make systemwide esti- 
mates that are based on the values of 
the throughputs for the individual 
components. 

Second, architectural design lets 
designers exploit recurring organiza- 
tional patterns. Such patterns - or 
architectural styles - ease the design 
process by providing routine solutions 
for certain classes of problems, by sup- 
porting the reuse of underlying imple- 
mentations, and by permitting special- 
ized analyses. Consider, for example, 
an architectural design that uses a pipe- 
and-filter style. When mapped to a 
Unix implementation, the system can 
take advantage of the rich collection of 
existing filters and ttK operating sys- 
tem support €or pipe communication. 
Another example is the traditional 
decomposition of a compiler together 
with supporting development tools, 
which has made it possible for under- 

graduates to bui ld  
in .I seine5ter course 

nontrn id \\ stem 

Hot research areas. \\bile a t  present, 
'irchitectur'il-design pr'ictice 15 largely 
~ i J  hoc, the topic 15 receir ing increasing 
attention trom reexchers and pracu- 
tioners. P'irticul'irh xtike areas are 

+ .-tiz/7iteitciiol d e u i  iption. Re- 
searchers har e propowd se\ era1 new 
languages tor architectural descrip- 
tion.' ' ;\Inong their n w e l  teatures are 
the dbi i in  to ch'ir'icterize xchitectural 
clue (or connector\) &I\ fir\t-class ab- 
stractions, the a b i l i ~  to describe pat- 
terns ot structure m c i  interaction, and 
the introduction ot  neu tornis of  sys- 
tem anah 515. 

+ Foi7mil ~ri i t l t vpr i in ing~ Se i  era1 
researcher5 are attempting to provide a 
sound semantic h'isi5 tor architectural 
description md ' inah 31s. hlost efforts 
have adapted e\isttnp formalisms to the 
problems of s o h  %ire architecture. 
Representative tormal models include 
process algebra5.' partiallv ordered 
sets,' the Chemical Abstrxt Machine,' 
and Z.3 

+ Destgil g i t i h l e .  A key issue for 
architectural design 15 the ability to 
codify and disseminate eupemse. 
Ideally, there would be a handbook of 
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the original version did not permit. 
+ Unnecessarily complicated tools. 

Many of the architectural tools we 
wanted to develop on top of the infra- 
structure were logically simple sequen- 
tial programs. However, in many cases 
it was difficult to build them as such 
because the standard interface to their 
environment required them to handle 
multiple, independent threads of com- 
putation simultaneously. 

+ Error-prone constmction process. As 
we built the system, modifications 
became increasingly costly. The  time 
to recompile a new version of the sys- 
tem became quite long and seemingly 
simple modifications (such as the  
introduction of a new procedure call) 

software architecture. Among the more 
recent developments in  this area are 
initial steps toward a description of 
architectural styles' and catalogs of 
object-oriented design patternsi Other 
steps are embodied in recent prototype 
tools for architecturd guidance. One of 
these is our Aesop system, which helps 
designers conform to stylistic rules. 
ho the r  is Toni Lane's design assistant 
for user interfaces." 

+ Do?tmin-specifir fi?-cbiteitme. Several 
development projects have realized sig- 
nificant improvements by tailoring 
architecrures to an application domain 
or a product fiamily.' Typically, these 
projects have developed notations and 
tools that allow specialists in the appli- 
cation domain (as opposed to the soft- 
ware domain) to develop components 
and systems from high-level descrip- 
tions of the desired system behavior. 

e Architecture in context. Some 
researchers have begun to examine the 
role of software architecture in the 
broader engineering context of soft- 
ware development processes for archi- 
tecture, the relationship between archi- 
tecture and requirements specification, 
and the use of architectures in software 
a~quisition.8.~ 

+ Role of tools and environments. As 

would break the automated build rou- 
tines. The  recompilation time was due 
in part to the code size. But more sig- 
nificantly, it was also because of inter- 
locking code dependencies tha t  
required minor changes to propagate 
(in the form of required recompila- 
tions) throughout most of the system. 

anyone who has tried to compose simi- 
lar kinds of software, and not everyone 
can be a poor system builder. 
Therefore, the root causes must lie at a 
deeper systemic level. 

UNDERSTANDING 
ARCHITECTURAL MISMATCH 

Underlying cause. The creators of the 
reusable subsystems we imported were 
neither lazy, stupid, nor malicious. 
Nor were we using the pieces in ways 
inappropriate to their advertised scope 
of application. So what went wrong? 
One possibility is simply that we were 
poor systems builders, but we suspect 
our problems are not unfamiliar to 

Indeed, when we began to analyze 
our problems through an architectural 
lens, we realized tha t  we could 
attribute virtually all our problems to 
what we now call architectural mis- 
match, specifically to conflicting 
assumptions among the parts. 

To understand the nature of archi- 

architectural desiyn emerges as a disci- 
pline within sofnvare engineering, it 
will heconie increasingly important to 
support architectural description ancl 
analysis with tools and environments. 
Indeed, we are already seeing a prolif- 
eration of environments oriented 
around specific architectural styles. 
These environments typically provide 
tools to support particular architectural 

frameworks, and user-interface toolk- 
its), the architectural aspects are typi- 
cally redesigned and reimplemented 
from scratch for each new style. The 
cost of such efforts can be quite high. 
Moreover, once built, each environ- 
ment typically stands in isolation, sup- 
porting a single architectural style tai- 
lored to a particular product domain. 
The Aesop system illustrates one 
approach to solving this problem. 

~ - 
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tectural mismatch, it is helpful to view 
the system as a configuration of com- 
ponents and connectors.’~* The compo- 
nents are the primary computational 
and storage entities of the system: 
tools, databases, filters, servers, and so 
on. The cozmcto~~s determine the inter- 
actions between the 

ing a schema; an event-broadcast 
mechanism is instantiated, in part, by 
providing a set of events and registra- 
tions. In such cases the building blocks 
frequently make assumptions about the 
order in which pieces are instantiated 
and combined in a system. 

Server protocols, pipes, ONE OF OUR MOST CONFLICTING 

typically expressed WAS DUE TO THE 
SERIOUS PROBLEMS 

Using the definitions 
just given for compo- 

ASSUMPTIONS nents and connectors, 
formal notations for MADE ABOUT WHAT the main components of 

an Aesop environment S O W A R E  PART are the collection of 
emerge, as the box on HELD THE MAIN tools and the architec- 

tural-design database 
In terms of compo- I THREAD OF CONTROL. (which consists primarily 

components: client- 

RPC links, and so on. 
These abstractions are 

informally as box and 
line drawings, although 

architectural descrip- 
t ion have begun to 

pp. 20-2 1 describes. 

nents and connectors, 
we identified four main 
categories of assumptions that can con- 
tribute to  architectural mismatch. 
These categories form a taxonomy for 
understanding how conflicting 
assumptions arise. 

+ Nature of components. This catego- 
ry includes assumptions about the sub- 
strate on which the component is built 
(infrastructure), about which compo- 
nents will control the computation 
sequencing (control model) and about 
the way the environment will manipu- 
late data managed by a component 
(data model). 

+ Nature of the connectors. This cate- 
gory contains assumptions about the 
patterns of interaction characterized by 
a connector (protocols) and about the 
kind of data communicated (data 
model). 

+ Global architectural structure. This 
category includes assumptions about 
the topology of the system communi- 
cations and about the presence or  
absence of particular components and 
connectors. 

+ Construction process. In many cases 
the components and connectors are 
produced by instantiating a generic 
building block. For example, a data- 
base is instantiated, in part, by provid- 

of a persistent object 
base). The main connec- 

tors are the communication links of 
the RPC and event-broadcast mecha- 
nism. The parts that we attempted to 
import provide an implementation 
basis for two components - the data- 
base (via OBST) and the graphical user 
interface (via Interviews) - and two 
connectors - RPC (via MIG) and 
event broadcast (via SoftBench). 

Nature of components. Within this 
assumption category are three main 
subcategories: infrastructure, control 
model, and data model. 

Infrostructure. One kind of assumption 
packages make about components is 
the nature of the underlying support 
they need to perform their operations. 
This support takes the form of addi- 
tional infrastructure that the package 
either provides or expects to use. In 
our case, each package assumed it had 
to provide considerable infrastructure, 
much of which we did not need. The 
unwanted infrastructure was part of 
why we had excessive code. 

For example, OBST provided an 
extensive library of standard object 
classes to make general-purpose pro- 
gramming easier. However, we needed 

only a few of these classes because we 
have a constrained, special-purpose 
data model.’ 

Additionally, some packages made 
assumptions about the kind of compo- 
nents that would exist in the final sys- 
tem, and therefore used infrastructure 
that did not match our needs. For 
example, the SoftBench Broadcast 
Message Server expected all the com- 
ponents to have a GUI and therefore 
used the X library to provide commu- 
nication primitives. This meant that 
even tools that did not have their own 
user interface (such as compilers or 
design-manipulation utilities) had to 
include the X library in their exe- 
cutable code. 

Controlmodel. One of our most serious 
problems was due to the assumptions 
made about what part of the software 
held the main thread of control. Three 
of the packages, SoftBench, 
Interviews, and MIG, use an event 
loop to  deal with communication 
events. The  event loop encapsulates 
the details of the communication sub- 
strate, which lets the developer struc- 
ture a component’s interactions with 
its environment around a set of call- 
back modules. 

Unfortunately, each package uses a 
different event loop. SoftBench bases 
its main thread of control on the X 
Intrinsics package. Interviews pro- 
vides its own, object-based abstraction 
of an event loop, implemented direct- 
ly in terms of Xlib routines. MIG has 
a handcrafted loop for the server to 
wait for Mach messages. Each of these 
control loops is incompatible with the 
others. 

Because the event loops were oper- 
ating in the same process, we could not 
use simple event gateways to bridge 
different event-control regimes. This 
meant that we had to reverse-engineer 
the Interviews event loop and modify 
it to poll for SoftBench events before 
we could have the user interface 
respond to events. In the time we had 
available for the project, we were 
unable to modify the M I G  control 
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loop so that the server could receive 
events, although we had originally seen 
this as an important way to provide 
modular control over the design data. 

Doto model. The packages also assume 
certain things about the nature of the 
data they will be manipulating. For 
example, Unidraw provides a hierar- 
chical model for its visualization 
objects. One  object can be part of 
another object, and any manipulation 
of the parent object (such as changing 
its position on the screen) results in a 
corresponding change in the child 
object. T h e  critical assumption of 
Unidraw, however, is that all manipu- 
lations will be of top-level objects. In 
other words, the user could not change 
a child object except to have the parent 
object manipulate it. This  was not 
acceptable. Although the data we 
wanted to present and manipulate was 
strongly hierarchical, we wanted the 
user to have direct control over both 
parent and child objects. Thus, we had 
two alternatives: modify Unidraw to 
support the direct manipulation of 
children, or create a flat Unidraw data 
structure and build our own, parallel 
hierarchy to support the correspon- 
dences we wanted. It turned out to be 
less costly to reimplement the hierar- 
chy from scratch. 

Nature of  connectors. Within this 
assumption category are two subcate- 
gories: protocols and data model. 

Protocols. When we began the project, 
we expected to have two kinds of tool 
interactions. T h e  first, a pure event 
broadcast, involves one tool informing 
others about the state of the world. For 
example, the database broadcasts that a 
particular data object has changed. 
T h e  second interaction, a request/ 
reply pair, provides a simple means for 
multiple tools to cooperate in perfom- 
ing a complex manipulation. This con- 
nector follows the model of a proce- 
dure call in that the requesting tool 
cannot generally continue until the 
receiving tool completes its task. 

The SoftBench Broadcast Message 
Server provides both these kinds of 
interaction through different kinds of 
messages. The notzjj message handles 
the first kind of interaction. T h e  
:hange is announced and then forgot- 
ten by the announcing tool.  T h e  
request and reply messages work togeth- 
:r to handle the second kind of inter- 
iction. 

Unfortunately, SoftBench attempts 
to handle both kinds of interaction 
uniformly. T o  receive any message, a 
tool registers a callback procedure for 
that message. W h e n  the message 
arrives, the SoftBench client library 
invokes the callback procedure. This 
zallback technique is used for all three 
message types (notify, request, and 
reply). This means that when a tool 
makes a request, it does not simply 
make the request, wait for the reply, 
and then continue - as you would 
expect. Instead, i t  must divide its 
manipulation into two callback rou- 
tines, one to be done before the call 
and one to be done after receiving the 
reply. This breaks up the natural struc- 
ture of the tool and 
makes i t  difficult to  
understand. 

Moreover, if the 
server receives any 
other messages (such as 
a notify) before the 
reply message, it deliv- 
ers those to the tool 
and invokes its callback 
procedure before the 
tool can process the 
redv.  This means. in 

for the database interaction because the 
tool-database path is the most critical 
and heavily used path in our system. 

Doto model. Just as the packages make 
assumptions about the kind of data the 
components will manipulate, so also do 
they make assumptions about the data 
that will be communicated over the 
connectors. The  two communication 
mechanisms we used, Mach WC and 
SoftBench, make different assumptions 
about the data. Mach RPC supports 
integration between arbitrary C pro- 
grams, and so provides a C-based 
model: data passed through procedure 
calls is based on C constructs and 
arrays. SoftBench, on the other hand, 
assumes that most communication will 
be about files and the data contained in 
them, and so all data to be communi- 
cated by SoftBench is represented as 
ASCII strings. Because our  tools 
manipulate primarily database and C++ 
object pointers, we had to develop 
translation routines and intermediate 
interfaces between the different mod- 
els. The result was that we had transla- 

tion overhead on everv 
call to  the database‘, 
which caused the most 
significant performance 
bottlenecks in the sys- 

A TRANSLATION 
OVERHEAD ON 
NERY CALL TO THE tem. T h e  problem DATABASE CAUSED occurred even though 

we were working in C 
THE BIGGEST and C++ exclusively and 

had compatible d a t a  
models in all the compo- 
nents we developed. 

PERFORMANCE 
BOTTLENECK. 

e k e i t ,  that  if a tool 
wishes to delegate any part of its pro- 
cessing, then it must be able to deal 
with multiple threads of control simul- 
taneously, one for each message that 
might be delivered before a reply is 
received. Thus, SoftBench’s handling 
of the requedreply protocol forces 
tools to handle concurrency even if it 
would he simpler to construct and 
understand them as sequential pro- 
grams. For this reason, we ended up 
using Mach RPC instead of SoftBench 

Global architectural structure. 
As it turned out, OBST assumes that 
the communications in the system 
form a star with the database a t  the 
center. Specifically, OBST assumes 
that all the tools are completely inde- 
pendent of each other. In other words, 
it assumes that there is no direct inter- 
action between tools, and it views any 
concurrency among tools as conflict, 
not cooperation. T o  protect against 
this “conflict,” OBST selects on a tool- 
by-tool basis, a mechanism that blocks 
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(ode specific I i, to the application 

(depends on) 
* 

Generic package code 

[depends on) 
* 

Infrastructure 
(supplied by the package) 

Figure 2. Assumed structure of th 
dependencies in the system-constructioj 
process. Each layer in the figure repre 
sents part o f  the software ensembl 
that must come together to instantiat 
a generic package: infiastmcture thu 
the package depends on; generic code L 

the package h e &  and code that spe 
cializes the package to  the particula 
application. 

1 kftllenrh MIG OBV 
' 1  

/i 

__I_. 
- ~- 

2 2 - / -  

+ / /  * /  4 

-.-- - ,- 
t c f *  --- 

Figure 3 .  Actual structure of tt 
dependencies in the system-constmctio 
process. The  three subsystems ar 
instances o f  the structure in Figure 
but rather than existing as indepefi 
dent stacks, the three stacks haz 
interstack dependencies that afect tl 
order in which the pieces must be con; 
piled and combined. 

transactions. Because the tools in 5 

Aesop environment can coordina 
their efforts by delegating part of the 
computation to other tools, this mod 
was totally unacceptable for our pu 
poses. Either cooperating tools wou 
deadlock by holding conflicting lock 
o r  conflicting tools would crea 

inconsistencies when a tool attempted 
to release the database to a cooperating 
tool. T o  solve this problem, we built 
our own transaction manager as a serv- 
er on top of OBST. 

Construction process. Several of our 
packages assume that there are three 
categories of code being combined in 
the system: 

+ the existing infrastructure (such 
as the X libraries and the package's 
own runtime libraries), which would 
not change; 

+ the application code developed in 
a generic programming language, 
which would use the infrastructure but 
otherwise be self-contained; and 

+ the code developed using the 
notations specific to the reuse package, 
which would control and integrate the 
rest of the application. 

Figure 2 shows the assumed depen- 
dency structure for building an applica- 
tion from a package. T h s  structure dic- 
tated that we should first build the 
generic parts of the application, then 
possibly specify them for the package's 
build tool, and finally preprocess, com- 
pile, and link the package-specific sec- 
tions. Generally, a change to the inter- 
face of the generic section meant that we 
had to both respecify and rebuild the 
package-specific section. This made 
sense for each package in isolation, 
because we think of the packages as pro- 
viding glue code to integrate the parts of 
the generic application. For example, 
MIG assumes that the rest of the code is 
a flat collection of C procedures, and 
that its specification describes the signa- 
ture (name, parameters, and return type) 
of all these procedures. 

In our case, however, more than 
one package was making these kinds of 
assumptions. This meant that there 
were in fact four categories of code: 
the three previous categories plus the 
code generated from the other pack- 
ages. The integration of the code gen- 
erated by different packages presented 
the most difficulty in the process of 
building the system. W e  had to take 
the generated code and make it look 

like whatever generic structure the 
other packages were expecting. 

Figure 3 shows what the build- 
process dependencies actually were. 
There are three instances of the struc- 
ture in Figure 2 - one each for 
SoftBench, MIG, and OBST. However, 
as the figure shows, there were depen- 
dencies between the instances, which 
dictated the order in which each must 
be compiled and combined. To follow 
these dependencies, we had to, for 
example, take the output of the OBST 
preprocessor and specify the resulting 
procedure calls in MIG's notation, run 
MIG to generate a server version of the 
database, and then rebuild all the tools 
(including rebuilding and linking the 
SoftBench wrapper code) to recognize 
the new client interface. 

The  two sets of conflicting assump- 
tions about the build process resulted 
in time-consuming and complicated 
construction. 

THE WAY FORWARD? 

W e  believe our experience is typical 
of any construction tha t  involves 
assembling large-scale components 
into a new system. And although some 
problems encountered will be the 
result of issues such as language inter- 
operability, platform independence, 
and heterogeneous data manipulation, 
the really hard problems - the ones 
that result from architectural mismatch 
- do not go away once you solve these 
low-level problems. 

What can be done? W e  believe that 
two broad-based approaches are need- 
ed to improve the prospects for suc- 
cessful software composition. First, 
designers must change the way they 
build components that are intended to 
be part of a larger system. Second, the 
software community must provide new 
notations, mechanisms, and tools that 
will let designers accomplish this. 
There are at least four aspects of a 
long-term solution: 

+ Make architectural assumptions 
explicit. 
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+ Construct large software pieces 
using orthogonal subcomponents. 

+ Provide techniques for bridging 
mismatches. 

+ Develop sources of architectural 
design guidance. 

W e  believe that each of these is ripe 
for further research and offer a brief 
outline of possible directions. 

Make assumptions explicit. One of the 
most significant problems is that the 
architectural assumptions of a reusable 
component are never documented. 
True, the current software-design cul- 
ture is one in which documentation is 
generally lacking, but the problem 
goes deeper. Software engineers have 
neither the proper vocabulary nor the 
structure to help them express these 
assumptions. For example, although 
good documentation of an abstract 
data type may list preconditions for 
calling its interface routines, there is 
no comparable convention or theory 
for documenting many of the architec- 
tural assumptions we described earlier. 

Moreover, an architectural view goes 
beyond the notion of a single compo- 
nent interface. One of the important 
features of reusable infrastructure is 
that it must live in a three-dimensional 
world. As illustrated in Figure 4, the 
interface at the bottom documents 
assumptions about lower level infra- 
structure that the component must 
interact with. An interface at the top 
concerns interactions with components 
that use the reused component as their 
infrastructure. Side interfaces describe 
interactions with other components at 
the same level of abstraction. Each of 
these interfaces can be mismatched in 
its assumptions about the control 
model, data model, protocol, and so on. 

Of course, documenting assump- 
tions will not make mismatches disap- 
pear, but a t  least it will let designers 
detect problems early on. Some initial 
steps toward this goal are emerging in 
recent work on architecture descrip- 
tion languages and formal underpin- 
nings for software architecture, as the 
box on pp. 20-2 1 describes. 

Use orthogonal subcomponents. Although 
most large reusable subsystems are 
themselves constructed out of smaller 
subcomponents, it is extremely difficult 
to separate the pieces or change the way 
in which these subcomponents work 
together. The software community has 
known for some time that modules 
should hide certain design assumptions 
to increase their chance of reuse. 
Unfortunately, the architectural design 
assumptions of most systems are spread 
throughout the constituent modules. 

Ideally, designers would be able to 
tinker with the architectural assump- 
tions of a reused system by substituting 
different modules for the ones already 
there. In reality, however, recombining 
such building blocks will require much 
more sophisticated processing than 
link editing, for example, as illustrated 
in work by Don Batory.’ 

Provide bridging techniques. Even with 
good documentation and appropriate 
modularization, mismatches will 
inevitably occur. Software engineers 
now use a number of techniques for 
dealing with such mismatches. I n  
implementing Aesop, we used several 
of these techniques. 

W e  tried modifying several compo- 
nents and connnectors to alleviate mis- 
matches. This  technique, however, 
may require a large investment in 
reverse-engineering and may be 
impractical o r  even impossible for 
legacy systems or programs, for which 
source code is often not available. 

Another technique is to install more 
versatile components and connectors, 
either to take over some of the tasks of 
the original architectural elements, or 
to  act as mediatoiFs between original ele- 
ments. Mediation can take place either 
via smart connectors (connectors that 
can translate data and communication 
in multiple protocols) or via mediator 
components that take over some of the 
computation. 

A special but somewhat common 
case of mediation involves putting a 
wrapper around a component or con- 
nector. The wrapper provides a conve- 

Asiumptions about the 
auuiitotion domain 

Assumptions 
ilbout 

infrastructure 

Figure 4. Three-dimensional view of  
component interaction. 

nient interface to the rest of the sys- 
tem, and implements its interface by 
calls to the interface of the original 
architectural element. 

In rapidly changing systems and 
environments with many software 
components negotiated inter$aces may be 
appropriate. Components and connec- 
tors are built to handle a range of 
interaction styles, and different ele- 
ments of the system decide dynamical- 
ly what sort of communication is most 
appropriate. Negotiated interfaces are 
already common in low-level interac- 
tions like modem protocols; we would 
like to see them at the architectural 
level as well. 

These mismatch-bridging tech- 
niques are not exhaustive, nor has the 
software community successfully stan- 
dardized them. Over time, however, 
software engineers can expect to see 
more detailed and comprehensive cat- 
alogs of standard techniques, eventual- 
ly leading to tools that help implement 
them. 

Develop sources of  design guidance. 
Developing good intuitions about what 
kinds of architectural components 
work well together is no t  easy. 
Designers now rely on trial and error, 
and it is many years before even skilled 
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designers acquire expertise at putting 
systems together from parts - and 
such expertise is typically confined to a 
specific application domain, such as 
management information systems or 
signal processing. The software com- 
munity must find ways to codify and 
disseminate principles and rules for 
software composition. 

As we note in the box on pp. 20-2 1, 
there is some progress in this area in 
the form of handbooks for the reuse of 
design patterns, the creation of archi- 
tectural design environments, and the 
development of design tools for certain 
application domains. 

he root causes of the software com- T munity’s inability to achieve wide- 
spread reuse are not going to be solved 
by low-level improvements in compil- 

ing and linking software modules 
Rather, the problems are of a deeper 
systemic nature. As we have tried t c  
illustrate, viewing assumptions ir 
architectural terms reveals possiblc 
ways to explicitly document archi. 
tectural assumptions and incorporatc 
principled techniques for detecting an( 
bridging architectural mismatches. 

This approach opens a rich set o 
research dimensions, four of which wt 
have outlined. Within the ABLE pro 
ject, we are investigating many of these 
In particular, our most recent imple 
mentation of Aesop supports the abilit] 
to document certain classes of architec 
tural assumptions. W e  are currentl: 
developing tools that use these annota 
tions to automatically check and repai 
several of the kinds of architectural m i s  
match that we have described here. 4 
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