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ABSTRAC~ 

Designing software to be extensinle and 
easily contracted is discussed a s  a 
special came of design for change. A 
number of ways that extension and 
contraction proble m~ manifest t heasel yes 
in current software are explained. Four 
steps in the design of software that is 
more flexible are t~hen discussed. The 
most critical step is the desigu of a 
soft wa re structure calle d the " useS" 
relation. Some criteria for design 
decisions are given and iliustrated using 
a small example. It is shown that the 
identification of min_imai subsets and 
minimal extensions can lean to software 
that can be tailored to the needs of a 
broad variety of users. 

I. ' IN TRODUCTION. 

This paper is being written because the 
following complaints aUout ~ftware 
systems are so commpn: 

(A) "We were behind schedule and wanted 
to deliver an early release with only 
<proper subset of intended capabilities>, 
but found that that subset would not work 
until everything worked." 

{B) "We wanted to add <simple 
capability>, but to do so would have meant 
rewriting all or most of the current 
c ode. " 

(C) "We wanted to simplify and s~eed up 
the system by re moving the <unneeded 
capability>, but to take advantage of this 
simplification w~ would have had to 
rewrite major sections of the code." 

(D) "Our SYSG£N was intendea to allow us 
to tailor a system to our customers' needs 
but it was not flexible enough to suit 
US. " 

After studying a number of such systems, I 
have identified some simple concepts that 

can help programmers to deign software so 
that sub~ts and extens~ion are mo~e easily 
obtained. The~ concepts are simple if 
you think about software in the way 
suggested by t.his limper. Programmers do 
not commonly do so. 

XI. SOFTWARE AS A FAMILY OF PROGRA85. 

When we were first taught how to program, 
we were given a specific problem and told 
to write one program to do that job. 
Later we compared our program to others, 
considering suc~ issues as space ann time 
utilization, but still assuming that we 
were producing a single product. Even the 
most recent literature on programming 
methodology is written on that basis. 
Dijkstra's "Discipline of Programming" [ I ] 
uses p~edicate transformers to specAfy the 
task to be performed by the ~rogram to be 
written. The use of the definite article 
implies that there is a unique prohle.m to 
be solved and but one program to write. 

Today, the software designea should be 
aware that he is not designing a single 
program but a family of programs. As 
discussed in an earlier paper ~2], we 
consider a set of ~rograms to he a p~oNr~ 
family i£ they have so much in common that 
it pays to study their common aspects 
before looking at the aspects that 
differentiate them. This rather pragmatic 
definition d~s not tell us what pays, but 
it d~s explain the motivation for 
designing program families. We want to 
exploit the commonalities, share code, and 
reduce maintenance costs. 

Some of the ways that the members of a 
program fami ly may differ are listed 
below: 

(I} They may run on different haraware 
config ura tions. 

(2) They may perform the same functAons 
but differ in the format o~ the input and 
output data .  
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(3) They may differ in certain data 
structures or algorithms because of 
differences in the available resources. 

(q) The y may differ ~ some data 
structures or algorithms because of 
differences in the size of the input data 
sets or the relative frequency of certain 
events. 

(5) Some users may require only a subset 
of the servic~es or features that other 
users need. These "less demanding" users 
may demand that they not be forced to pay 
for the resourc~s consumed b~ the unneeded 
features. 

Engineers are taught that they must try to 
anticipate the changes that may be made, 
and are shown how to achieve aesigns that 
ca n ea si ly be a Ite re d when t hese 
anticipated changes occur. For example, 
an electrical engineer wall be adv~ed 
that the whole world has not standardized 
oD 60-cycle, 1|O-volt current. Television 
designers are fully aware oi the differing 
transmission conventions that exist in the 
world. It is standard pra~ice to design 
products that are easily c~anged in those 
aspects. Unfortunately, there is no magic 
techni ~ue for handling unan t~cipat ed 
changes. The makers of con ve~tion al 
watches have no difficult X altering a 
watch that shows the day so that it 
displays "NEE" instead of "W~D," but 
would expect a long delay for redesign 
were the world to swit~ to a ten day 
week. 

Softwa~ engineers have not ~en tra~ed 
ix, this way. The usual programming 
courses neither mention ~ae need to 
anticipate changes nor do the X offer 
technigues for designing programs in which 
changes are easy. Because programs are 
abstract mathematical objects, the 
software engineers' tecnni~ues for 
responding to anticipated c~anges are more 
subtle and more difficult to grasp than 
the technigues used by designers of 
physical objects. Furthe=, we have beem 
led astray by the other designers of 
abstract objects- mathematicians who 
state and prove theorems. When a 
mathematician becomes aware of the need 
for a set of closely related theore~s, he 
responds by ~r oving a more general 
theorem. For mathematicians, a more 
general result is always superior to a 
more specialized product. The eng~eering 
a halo9 y to  the mathematician's approach 
would be to desd gn television sets 
containing variable transformers and 
tusers that are capable of detecting 
several types of signals. Except for U.S. 
armed forces stationed overseas, t~ere is 
little market for such a product. Few of 
us consider relocations sO likely that we 
are willing to pay to have ~he generality 

present in the product. My 9uess ~.~ that 
t he  market for calendar watches for a 
variable length week is even smaller than 
the market for the televis/on sets ]ust 
de~ribed. 

In [ 2] I have treated the subject of the 
design of program f~ilies rathe/ 
generally and in terms ot text in a 
prog ra mining language. In this paper I 
f~us on the fifth situation described 
above; families of programs in which some 
members are subsets of other family 
members or several family m~bers share a 
common subset° I discuss an earlier stage 
of design, the stage when one identifi~ 
the major components of the system and 
defines relations between those 
components. We focus on this early stage 
because the ~roblems de~ri1~ d in the 
intzod uc ti on re sult f tom fail u~e to 
carefully consider early design decisions. 

IIX. HOW DOES THE LACK OF SUBSETS AND 
EXTENSIONS MINIFEST ITSELF? 

Although we often speak of programs that 
are "not subsetable" or "not extensible," 
we must recognize that phrase as 
inaccurate. It is always possible to 
remove code from a program and have a 
tunable result. Any software system can 
be extended (TSO proves that) . The 
pr~lem is that these subsets and 
extensions are not the ~r~rams that we 
would have designed if we had set out to 
design just that product. Further, the 
a mount of work needed t o o brain t he 
product seems all out of proportion to the 
nature of the change. The problems 
e~ounter~d in trying to extend or shrink 
systems fall into four cla~es. 

A. Excessive information distribution. 

A system may be hard to extend or contract 
if too many programs were written assuming 
that a given feature is present or not 
present. This can be illustrated by an 
old, rating system in which am earl i design 
decision was that %Ae system would support 
thDee conversational languages. There 
were many ~ctions of the s~stem where 
knowledge of this decision was used. For 
example, error message tables had room for 
three entries. An extensi(~ to allow four 
languages would have re,u/red that a great 
deal of code be rewritten. More 
surprisingly, i% would have been difficult 
to reduce the system t o  one that 
efficiently supported only two of the 
language s. One could remove the third 
language, but to regain the table space, 
one would have had to rewrite the same 
sections of code that would ~ rewritt~ 
to add a language. 
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B. A chain of data trans~ormin g 
components. 

Many programs are structured as a chain of 
components, each receiving data from the 
previous component, processing At (and 
changing the format) , before sending the 
data to the next program in the chain. If 
one component in this chain is not needed, 
that code is often hard to remove because 
the output of its predecessor is not 
compatible with the input re~luirements of 
its successor. A program ~hat does 
nothing but change the format must be 
substituted. One illustra~ion wou~d be a 
payroll program that assumeu unsorted 
input. One of the components of the 
system accepts the unsorted input and 
produces output that is sorted by some 
key. If the firm adopts an office 
pr~edure that results in sorted input, 
this phase of the processing is 
unnecessary. To eliminate taat program, 
one may ha ve to add a program that 
transfers data from a file in the input 
format to a file in the format appropriate 
for the mext phase. It may be almost as 
efficient to allow the original SORT 
component to sort the sorted in~ut. 

C. Components that perform more than one 
function. 

Another common error is to combine two 
simple f unctions into one corn pon ent 
because the functions seem ~oo simple to 
separate. For example, one might be 
tempted to combine synchronization with 
message sending and acknowledgment in 
building an o~e ra ti mg sxstem. The two 
fu~tions seem closely related; one might 
exact that for the sake of reliability 
one should insist on a "handshake" with 
each exchange of sychronization signals. 
If one later encounters an application .in 
which synchronization is needed very 
frequently, one may find that there is no 
simple way to strip the message sending 
out of the synchronization routines. 
Another example is the inclusi~ of run- 
time type-checlting in the basic subroutine 
call mechanism. In a ~plication s where 
compile-time checking or verification 
eliminates the need for the ~un-time type- 
check, another subroutine call mech~ism 
will ~ ~eeded. The irony of these 
situations is that the "more powerful" 
mechanism could have ~en built senarately 
from, but usin£, s/mpler mechanisms. 
se~ration would result in a s~stem in 
which the subset function was ava/~able 
for use where it suffic~nd. 

D. L o o p s  in the "uses" relation. 

In many software design projects, the 
decisions about what other component 
pr~rams to use are left to individual 

systems ~rog rammers. If a p~og~amm er 
knows of a program in another module, a/Id 
feels that it would be useful in his 
prog ra m, he includes a call on  that 
program in his text. Programmers are 
encouraged to use the work of other 
programmers as much as possible because, 
whe n each pr~ Ea miner writes his own 
routines to ~e~form common functions, we 
end u~ with a system that is much larger 
than it need be. 

Unfortunately, there are two sides to the 
question of Fro9 ram usage. Unless some 
restraint is exercised, one say end up 
with a system in which nothin 9 works until 
everything works. For example, while it 
may seem wise to have an operating system 
schedule[ use the file system to store its 
data { rather than use its own disk 
routines) , the result will be that the 
file system must be pre~nt and working 
before any task scheduling is possible. 
There are users for whom an operating 
system subset without a file s~stem would 
be useful. Even if one has no such users, 
the subset would be useful dur/a g 
development and testing. 

IV. STEPS TORAHDS A BETTER 52ROCT~RE. 

This section discusses fou~ parts of a 
methodology that I ~lieve will help the 
softwa~ engineer to build systems that do 
not evidence the problems discussed above. 

A. Requirements definition: 1denti£)in g 
the subsets first. 

One of the clearest morals in the earlier 
discus~on about "design for change" as it 
is taught in other areas of engineering ks 
that one must anticipate changes before 
one begins the design. At a recent 
conference [ 3], many of the papers 
exhorted the audience to spend more time 
identifying the actual requirements before 
starting on a desi9n. I dunmt want to 
repeat such exhortations, but I do want to 
point out that the identification of the 
possible subsets is ~art of identifying 
the requirements. Treating the easy 
availability of oe rtaui n subsets as an 
operational requirement is especially 
important to government officials who 
purchase software. Many officials de~spair 
of placing strict controls on the 
pr~ uction methods used by their 
contractors because they are forbidden by 
law to tell the contractor now to ~erform 
his job. They may tell him what they 
require, but not how to build it. 
Fortunatel~, the availabilit X of subsets 
may be const rued as an operation al 
property of the software. 

On the other hand, the identification of 
the required subsets ks not a simple 
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matter of asking potential users what they 
could 4o without. First, users tend to 
overstate their reguirements. Second, the 
answer will not characterize the set of 
subsets that might be wanted in the 
future. In my experience, identification 
of the potentially desirable subset.s is a 
demanding intellectual exercise in which 
one first searches for the m_in~m__al - subset 
that migh t conceivably perform a useful 
service and then searches for a set of 
minimal inc re sents to the system. Each 
increment is small - sometimes so small 
that it seems trivial. The emphasis on 
mini~lity stems from our desire to avoid 
components that perform more than one 
function as discussed in section III. C. 
identifying the minimal subset is 
difficult because the minimal system is 
not usually a program one that an ~one 
would ask for. If we are going to build 
the software family, the minimal subset is 
useful, but it is not usually worth 
building by itself. Similarly, the 
maximum flexibility is obtained by looking 
for the smallest possible increments in 
capability; often these are small e/ 
increments than a user would think of. 
Whether or not he would think of them 
before system development, he ks like.ly to 
want that flexibility later. 

The search for a minimal subset and 
minimal extensions can best be shown by an 

example. One example of a minimal subset 
is given in [ 4]. Another example will be 
given later in this paper. 

B. Information hiding: ~nterface and 
sod ule definition. 

In an earlier section we touchea upon the 
difference between the mathematician's 
concept of generality and an engineer's 
apprc~ch to design flexibility. Where the 
mathematician wants his product, a t h e o r e m  
o r  m e t h o d  o f  p r o o f ,  t o  be a s  g e n e r a l  a s  
possible, i.e applicable, without change, 
in as many situations as possible, 
engineer often must tailor aim product to 
the situation actuall~ at aand. Lack of 
generality is necessary to make the 
~ro~ ram as efficient or inexpensive as 
possible, if he must develop a family of 
prod uc ts, he tries to isol ate t he 
changeable parts in modules and to develop 
an interface between the module and the 
rest of the product that remains wa]id for 
all versions. The crucial steps are: 

a. Identification of the items that 
are likely to change. These items 
are termed "secrets." 

b. Location of the specialized 
components in separate modules. 

c. Designing intermodule interfaces 
that are insensitive to t h e  

anticipated the changes. The 
changeable aspects are termed the 
"secrets" of the modules. 

It is exactly this that the concept of 
information hiding [5], encapsulation, or 
a~straction [6] is intended to do fOE 
software° Because software is an abstract 
or mathematical product, the modules max 
not have any easily recognized phxsical 
identity. ~hey are not necessarily 
separately compilable or coincident with 
memory overlay units. The interface must 
be general but the contents should not be. 
Specialization is necessary for economy 
and efficiency. 

The concept of information hiding is very 
general and is applicable in many of 
software change situations- not just the 
issue of subsets and extensions that we 
address in this paper. The ideas have 
also been extensively discussed in the 
literature [ 5,6,7,8,9]. The special 
implications for our problem are simply 
that, as far as possible, even the 
presence or absence of a component should 
be hidden from other components. If one 
pE W ram uses another directl y, the 
presence of the second program cannot be 
fully hidden from its user. ~owever, 
there is ~ver any reason for a compon~t 
to "know" how many other programs use it. 
All data structures that reveal the 
presence or number of cert4uin compon~ts 
should be included in separate ~formation 
hiding modules with abstract interfaces 
[ 10]. Space and other considerations make 
it impossible to discuss this concept 
£urther in this paper; it will be 
illustrated in the example. Readers for 
whom this concept is new are aavised to 
read some of the articles mentioned a~ve. 

C. The virtual machine concept. 

To avoid the ~r oblems t~at we have 
described as "a chain of data transforming 
components," it is necessary to stop 
thinking of systems in terms o£ components 
that correspond to steps in the 
pr~e ssing. This wax of thin kin g dies 
hard. It is almost certain that your 
first introduction to programming was in 
terms of a series d statements intended 
to be executed in the order that they were 
explained to you. We are goal oriented; 
we know what we start with and what we 
want to produce. It is natural to think 
in terms of steps progressing towards that 
g~l. ~t is the fact that we are 
designing a family of systems that makes 
this "natural" approach the wrong one. 

The viewpoint that seems most appropriate 
to designing software families is often 
termed the virtual machine approach. 
Rather than write programs that perform 
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the transformation from input data to 
output data, we design software machine 
exten~ons that mill be useful in writing 
many such programs. Where our hardware 
machine ~rovide s us with a set of 
instructions that operate on a small set 
of data types, the extended or virtual 
machine will have additional data types as 
well as "software instructions" that 
operate on those data types. These added 
features will be tailored to the class of 
programs that we are building. While the 
VM instructions are designed to be 
generally useful, they can be left out of 
a final product if the user's programs 
don't use them° The programmer writing 
programs Zor the virtual machine should 
not need to distinguish between 
i nstructi ons th at are im~lemen ted in 
software and those that are hardware 
implemented. To achieve a true virtual 
machine, the hardware resources that are 
used in implementing the extended 
instruction set must be unavailable to the 
user of the virtual machine. ~e has 
traded these resources fo~ the new data 
elements and instructions. An~ attempt to 
use those resources again will invalidate 
the concept of virtual machine and lead to 
complications. Failure to provide for 
isolation of resources is one o~ the 
reasons for the failure or some attempts 
to use macros to provide a virtual 
machine. The macro user must De careful 
not to use the resources used in the 
macros. 

There is no reason to accomplish the 
transformation from the hardware machine 
to a virtual machine with all of the 
desired features in a single leap. 
Instead we will use the machine at hand to 
implement a few new instructions. At each 
step ue take advantage o f  the newly 
introduced features. Such a step-by-step 
approach turns a large problem into a set 
of small ones and, as we will see later, 
eases the problem of finding the 
appropriate subsets. Each element in this 
series of virtual machines is a useful 
subset of the system. 

D. Designing the "uses" st;ucture. 

The concept of anabstract machine is an 
intuitive way of thinking about design. A 
precise description of the concept comes 
through a discussion of the ~elation 
"uses" [ 1 1 , 1 2 ] .  

1. The relation "uses." 

We consider a system to be divided into a 
set of ~ograms t3at can be invoked either 
by the normal flow of control mechanisms, 
by an interrupt, or by an exception 
handling mechanism. Each of these 
prog rams is assumed to have a 

specification that defines exactly the 
effect that an invocation o f  the program 
should have. 

We say of two programs A a n d  B that A use__s 
B if correct execution of B ma~ be 
necessary for A to complete the task 
described in its specification. That is, 
A uses B if there exist situations in 
which the correct functioning oz A depends 
upon the a vai lability of a correct 
implementation of B. Note that to decide 
whether A _uses B or not, one must examine 
b_ot_hh the i aple ment ation an_~d t he 
specification of A. 

The "u_~_s" relation and "invokes" very 
of re n coincide, but _uses differs from 
invokes in two ways: 

(I) Certain invocations may not be 
instances of "u_~_~s." If A0s 
specification requires only that A 
invoke B ~hen certain conditions 
occur, then A has fulfilled its 
specification when it has generated 
a correct call to B. A is correct 
even if B is incor~.ect or absent. 
& proof o£ correctness of A need 
only make assumptions about the way 
to invoke B. 

(2) A program A may use B even though 
it ne ver in yoke s i t. The best 
illustration of this is interrupt 
handling. Most programs in a 
computer system are onl 2 correct on 
the assumption that the interrupt 
handling routine will correctly 
handle the interrupts (leave the 
processor in an acceptable state). 
Such programs use the interrupt 
handling routines even though they 
never call them. "~ses" can be 
more precisely formulated as 
"requires the ~resence o£ a correct 
version of. " 

systems that have achieve~ a certain 
" e l e g a n c e "  ( e . g . ,  T . t t .E .  i S ] ,  Venus [ 6 ] )  
have done so by having parts of the system 
"-u_.se, other I~arts in such a way that the 
"user" prc~ rams were simplified. For 
example, the transput stream mechanism in 
To ~. E° uses the segmenting mechanism to 
great advantage. In contrast, many large 
and complex operating systems achieve 
their size and comple~i ty by hav~g 
"inde l~nde nt" parts. For example, there 
are many systems in which "spooling," 
virtual memory management, and the file 
system all perform their own backup store 
operations. Code to perform these 
functions is present in each of the 
components. Whenever such components must 
share a single device, complex interfaces 
exist. 
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The disadvantage of unrestrained "usage" 
o£ each others facilities is that the 
system parts become highly interdependent. 
Often there are no subsets of the system 
that can be used before the whole system 
is comple re. In practice, some 
duplication of effort seems preferable to 
a system in which nothing runs unless 
everything run~ 

2. The uses hierarchy. 

By restricting the relation "uses" so that 
its graph is loop free we can retain the 
primary advantages of having system parts 
"~se" each other while eliminating the 
problems. In that case it is possible to 
assign the programs to the levels of a 
hierarchy b~ the following rules- 

2. 

Level 0 is the set of all programs 
that u_se_ no other program. 
Level i is the set of all pEog£ams 
that u~ at least one program on 
level i-I and no ~rog~am at a level 
higher than i-l. 

If such a hierarchical ordering exists, 
then each level offers a testable and 
usable subset of the system. In fact, one 
can get additional subsets by including 
only parts of a level. This propert 2 is 
very valuable for the construction of any 
software system and is vital for 
developing a broad family oI systems. 

The design of the "uses" hierarchy should 
be one of the major milestones in a design 
effort. The division of the s~stem into 
independently callable subprograms has to 
go on in parallel with the decisions about 
uses, because they influence each otaero 

3 .  The criteria to be used in allowing 
one program to use another. 

We propose to allow A "use_~' B when all of 
the followin 9 conditions hold: 

(a) A is essentially simplez because 
it uses B. 

(b) S is not substantially more 
complex because it is not allowed 
to use A. 

(c) There is a useful subset 
containing E and not needing A. 

(d) There is no conceivably useful 
subset contalsing A but not ~. 

During the process of designing the "Uses" 
relation, we often find ourselves in a 
situation where two programs could 
obviously benefit from using each other 
and the conditions above cannot be 
satisfied. In such situations, we resolve 

the apparent con£1icts by a technique that 
we call "sandwiching." One o£ the 
programs is "sliced" into two parts in a 
way that allows the programs to "use" each 
other and still satisfy the above 
conditions. If we find ourselYes in a 
position where A would benefit ~rom using 
B, but B can also benefit from using A, we 
may split s into two programs: B| and B2. 
We then allow A to use B2 and BI to use A. 
The result would appear to be a sandwich 
with B as the bread and A as the filling. 
Often, we then go on to split A. Me start 
with a few levels and end up with many. 

The most frequent instances of splitting 
and sandwiching case because initially we 
weD~ assuming that a "level" would be a 
"module" in the sense of IV. B. We will 
discuss this in the final part of this 
paper. 

4. Use of the word "convenience." 

It will trouble some readers that it is 
usual to use the word "convenience" to 
describe a reason for introducing a 
certain facility at a given level of the 
hierarchy. A more substantial basis would 
seem mode scientific. 

As discussed in [ 11] and [ 13], we must 
assume that the hardware itself is capable 
of performing all necessary functions. As 
one goes higher in the levels, one can 
lose capabilities (as resouces are 
consumed ) - not gain them. On the other 
hand, at the higher levels the new 
functions can be implemented with simpler 
programs because of the additional 
programs that can be used. We speak of 
"convenience" to make it clear that one 
could implement any functions on a lower 
level, b u t  the availability oZ the 
additional programs at the higher level is 
useful. For each function we give the 
lowest level at which the features that 
are useful for implementing that function 
(with the stated restrictions) , are 
available. In each case, we see no 
functions available at the next higher 
level that would be use£ul for 
implementing the functions as described. 
Lf we implemented the program one level 
lower we would have to duplicate programs 
that become available at that level. 

V. EXAMPLE: AN ADDRESS PROCESSING 
SOBSXSTEM 

As an example of designing for 
extensibility and subsets, we consider a 
set of programs to read in, store, and 
w rite out lists of addresses. This 
example has also been used, to illustrate 
a different point, in [ 10 ] and has been 
used in several classroom experiments to 
demonstrate module interchangeability. 
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A. _o._~_~asi_c_!s~s.mations_..__~_e- 

I. The information items discussed in 
F_~ure 1 will be the items to be 
proc~ ssed blf all application 
programs. 

2. The input formats of the addresses 
are subject to change. 

3. The output £ormats oz ~e addresses 
are subject to change. 

4. Some systems will use a sinsle 
fixed format for input and output. 
Other systems will need the ability 
to choose from several of mtput or 
output formats at run-time. Some 
systems will ~ required Jm which 
the user can specify the format 
using an address format definltion 
language. 

5. The representation o~ addresses in 
main storage will vary ~om system 
to system. 

6. In most systems, only a subset of 
the total set o~ addresses stored 
in the system need be in ma/n 
storage at any one time. The 
number of addresses needed may vary 
from system to system ann, in some 
systems the num~r o~ addresses to 
be kept in main memory may vary at 
run-time. 

The following items of information will 
be found in the addresses to be processed 
and constitute the only items of relevance 
to the application programs: 

• Last name 
• Given names (first name and possible 

middle names) 
• Organization (Connnand or Activity) 
• Internal identifier (Branch or Code) 
• Street address or P.O. box 
• City or nmil unit identifier 
-State 
• Zip code 
-Title 
• Branch of se~-~ice if military 
• GS grade if civil se~ice 

Each of the above will be strings of 
characters in the standard ~uNSI alphabet, 
and each of the above nmy be empty or blank. 

FIGURE l 

B. Ee___P z oo~o_se___!th_s___Le~_ o wi___an H___D_D Ss i_sn 
Decis~_s: 

I .  The input and output programs w i l l  
be tab le  driven; the table w i l l  
spec i f y  the fo rmat  to be used fo r  

2. 

4. 

input and output. Tae contents and 
organization of these format tables 
will be the 'secrets' oZ the i~put 
and output modules. 

The representation of aadresses in 
core will be the 'secret' of an 
Address Storage Nodule ~ASM). The 
implementation ch~en for this 
module will M such that the 
operations ~ changin s a portion of 
an address will be relatively 
inexpen~ve, compares to maKin 9 the 
address table larger or smaller. 

When the number of a~resses to be 
stored exceeds the capacity of an 
ASM, prc~rams will use an Address 
File Module (AFM). An AFM ca~ be 
made upward compati~e w~th an ASM; 
programs that were written to use 
ASA's could operate using an AFM in 
the sa~ way. The AFa provides 
additional commands to allow more 
efficient usage by p~ogr~s that do 
not assume the random access 
prope rties of an AS~. These 
programs new descri~ ~low. 

Our implementaton of an AFM would 
u~ an ASM as a submodule as ~ell 
as another submodule that we will 
call Block File Module &BFM). The 
BFM stores blocks of data that are 
sufficiently large to represent a/l 
address, but the BFM is not 
s~cializ~d to the handling of 
addres~s. An ASa that is used 
within an AFM may be said to have 
two interfaces. In the "normal 
interface" that an AS~ presents to 
an outside user, an address is a 
~t of fields and ~he access 
functions hide or abstL'act from the 
repre~ntation. Figure 2 is a list 
of the access programs that 
comprise this interface. In the 
second interface, the ASM deals 
with blocks of contiguous storage 
and abstracts from the contents. 
There are commands for the AS~ to 
input and output 'addresses' but 
the o~rands are storage blocks 
who~ inter ~retation as addresses 
is known only within the ASa. The 
AFM makes assumptions about the 
a ss~ia ti on ~t ween bl oc~ks an d 
add~ sses but not about the way 
that an address' s components are 
repre~nted as blocks. ~'he BFM /s 
completely independent of ~he fact 
that the blocks contain address 
information. The BFM might, in 
fact, be a manufacturer supplied 
access method. 
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ACCESS FITNCTIONS WOR "NORMAL INTEI~FACE" 

MODULE: ASM 

NAMF OF 

ACCESS PI~O~P#M* I~mUT PAR#"ETE~S 

*ADOTIT: asm X integer X 

ADDGN: asm X integer X 

AOD L N: asm X integer X 

ADDSERV: asm X integer X 

ADDBORC: a=m X integer X 

ADDCORA: asm X integer X 

ADDSORP: aim X integer X 

ADDCITY:  asm X integer X 

ADDSTATE: asm X integer X 

ADDZIP: asm X integer X 

ADDGSL: asm X integer X 

$ETN UM: asm X integer 

FETTIT: asm X integer -- 

FETGN: esm X integer 

FETGN: asrn X integer 

FETLN: asm X integer 

F E TSE R V: asm X integer 

F ETBO R C: asm X intege r 

FETCORA: asm X integer - -  

FETSORP: asm X integer 

FETCITY: asm X integer - -  

F ETSTAT E: asm X integer 

FETZIP: asm X integer 

FETGSL: asm X integer 

FETNUM: esm ~ integer 

string 

Itrlng 

string 

string 

string 

string 

string 

string 

string 

string 

string 

lsm 

string 

string 

string 

string 

string 

string 

string 

str~ng 

strlr~J 

string 

string 

string 

OUTPUT 

~' 15111 • 

"~ Bm • 

"~ l | m  " 

-~ ISm 

-4 85m 

- ~  a s m  * 

"+ asm • 

~IGURE 2 - SYNTAX OF ASM FUNCTIONS 

*These are abreviatio~s: ADDTIT = ADD TITI,F; ADDGN = ADD ~IVEN N~HE, etc. 
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C. 

I. nodule: 

INAD: 

C~o m~one___~n t_E~&~/rams. 

Address Input 

Reads in an address that is 
assumed to be in a format 
specified by a format table 
and calls AS~ or AYM 
functions to store it. 

INFSL : Selects a format from an 
existing set of format 
tables. The selected 
format is the one that will 
be used by INAD° There is 
a lways a fo~aat selected. 

INFCR: Adds a new format to the 
tables used Oy INFSL. The 
for mat is specified in a 
' format i anguage. ' 
Selection is not changed 
(i.e., TNAD still uses the 
same format table) . 

INTASEXT: Adds a blank table to the 
set of input format tables. 

INTASCHG: Rewrites a table in the 
input format tables using a 
descri pti on in a form at 
language. Selection is not 
changed. 

IN FDEL : Deletes a table from the 
set of format tables. The 
selected format cannot be 
de feted. 

INADSEL: R~ads in an address using 
one of a set of formats. 
Choice is specified by an 
integer parameter. 

INADFO: Reads in an address in a 
format specified as one of 
its parameters (a string in 
the format definition 
language} . The ~ormat is 
selected and added to the 
tables and subseluent 
addresses could be read in 
using INAD. 

Address Output 

Prints an address in a 
format specified by a 
f o r  mat table. The 
information to be printed 
is assumed to be in an ASM 
and identified by its 
position in an ASM. 

OUTFSL: Selects a format table from 
an eKisting set o£ output 
f ormat ta~les. The 
selected FGaMAT is the one 
that will be used by OUTAD. 

2. Module: 

OUTAD: 

OUTTABEXT: 

OUTTABCHG: 

Adds a "blank" table to the 
set of output format 
tables. 

Rewrites the contents of a 
f or mat table using 
information in a format 
language. 

OUTFCR: Adds a new format to the 
set of formats that can be 
selected by OUTFSL in a 
f or mat description 
language. 

OUT ~D EL : Deletes a table from the 
set of FORMAT tables that 
can be selectea by OUTFSL. 

OUTADSEL: Prints out an address using 
one of a set of formats. 

OUTADFO: Prints out an address in a 
format specified in a 
format definition language 
string, which is one oZ the 
actual parameters. The 
format is added to the 
tables and selected. 

3 .  Module: Address StoraNe tASa) 

FET (Component Name} : 
This is a set oZ functions 
used to read inform ation 
from an address store. 
Returns a string as a 
value. See F~gu~e 2. 

ADD (Component Name): 
This is a set of functions 
used to write information 
in an address store. Each 
takes a string and an 
integer as parameters. The 
integer specifies an 
address within zae ASM. 
See Figure 2. 

OBLOCK: Takes an integer parameter, 
returns a s~oraNe block as 
a value. 

ISLOCK: Accepts a storage block and 
integer as ~arameters. Its 
effect is to change the 
contents o~ an address 
store- whica is reflected 
by a change in the values 
of the FET l~ogramso 

AS MEXT : Extends an a~dress store by 
a p p e n d i n g  a n e w  a d d r e s s  
with empty components at 
the end oz the address 
store. 
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AS MS,R: "Shrinks" the address 
s tore. 

AS MCR: Creates a new address 
store. Tae parameter 
s~ecifies the number of 
components. All components 
are initiall£ empty. 

AS~DEL: Deletes an exAstin 9 address 
store. 

~. Module: Block File Module 

t~L~' ~T : Accepts an integer as a 
parameter and returns a 
"block." 

BLSTO: Accepts a Olock and an 
integer ann stores the 
b lock. 

B F~T : Extends BfM by adding 
additional olocks to its 
capacity. 

8FSHR: Reduces the size o~ the BYM 
b~ removing some blocks. 

BFMCR: Creates a f~les of blocks. 

BF~DEL: Deletes an existing file of 
b lock s. 

5. Module: Address File Module 

This modules includes implementations of 
all of the AS~ functions except OBLOCK and 
£BLOCK. To avoid confusion in the diagram 
showing the uses hierarchy we have changed 
the names to: 

AFMADD(Component Name} defined as in 
Fig ure 2 

AFZFET(Com~onent Marne) defined as in 
Fig ure I 

AFMEXT defined as in BF~ above 
AMFSBB defined as in BF~ above 
AFMCR defined as in BFM aooYe 
AFMDEL defined as in B~i~ above 

D. Uses Relation 

Figure 3 shows the us_~e_s r e l a t i o n  between 
the component programs. It is important 
to note that we are now ~iscuss~ 9 the 
implementation of those programs, not just 
their specification. The u~e.~s relation is 
characterized by the fact that there are a 
large number of relatively sim~le, sin~l_e 
~u~p~q_se_ frograms on the lowest level. The 
upper level ~rograms are implemented by 
means of these lower level programs so 
that they too are quite simple. This uses 
~e/ation diagram characterizes the set of 
possible sub se ks. 

! 

I 
i 

I 

H 

r ~  

u J  

L;_ 
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E. Disc ussi on 

To pick a subset, one iden~fies the set 
of up~r level ~r ograms that the user 
needs and includes only those programs 
that thos~ programs use (directly or 
indirectly). For example, a user who uses 
addresses in a single format does not need 
the component frograms that interpret 
ormat description languages. Systems 

that work with a small set of addresses 
can be built without any BFM components. 
A program that works as a ~aery system and 
never prints out a complete addi'ess would 
not seed any Address Output com~onemts. 

The syst£m is also easily extended, f'or 
example, one could add a capability to 
read in addresses with sel z- defining 
files. If the first recor~ on a file was 
a descril~-tion of the format ill something 
eiuiva~nt to the format description 
language, one could write a progr~ that 
would be able to read in that record, use 
INTABCHG to build a new format taOle, and 
then read in t/~e addresses. PLograms that 
do things with addresses {such as print 
out "~rsonalized" form letters) cam also 
be added using these programs and 
selecting only those ca~abilit ies that 
they actually need. 

One other observation that can be made is 
that the upper level programs can be used 
to "generate,' lower level vers/ons. For 
example, the format descri£tion i~guages 
can. be used to generate the tables used 
for the fixed format versions. The~e is 
no need tot a separate SYSGEN program. 

We will elaborate on this observation in 
the conclusion. 

X. SOME REMARKS ON OPhRATING 
SYSTEMS: WHY GENERALS ARE SUP BRIOR TO 
CO LO ~ E LS 

An earlier report [ll] discusses the 
design of a "uses,' aierarch X for operating 
systems. Although there have been some 
refinements to the proposals of that 
report, its ba~c contents are consistent 
with the present proposals. This section 
com~res the ap~r bach ouzlined J~ this 
pa~er and the "kernel" approach or 
"nuc le us" ap~r bach to OS design 
[ |8,19,20]. It is temp~ng to say that 
the suggestions in this paper do not 
conflict with the "kernel" approach. 
These proposals can be viewed as a 
refinement of the nucleus approach. The 
first few levels of our system could be 
labeled "kernel," and one could conclude 
that we are j us, discussing a ~in e 
structure within the kernel. 

To yie/~ to ~at temptation would be to 
ignore an es~ntial difference between the 

approaches suggested in this paper and the 
kernel approach. The system keLneis kl, own 
to me ar£ such that scme desirable subsets 
cannot h~ obtai~d without ma]oL" surgery. 
It was assumed that the nucleus must De in 
every system family member. In the ~C4000 
system the inability ~o separate 
sy~hronization from message passang has 
led some u~rs to bypass the Kernel to 
perform teletype handling ~unctions. la 
Hydra as originally ~roposed [ 19], "type 
checking" was so intrinsic to the call 
mechanism that it appeared impossible to 
disable it when it was not needed or 
aff bramble.* 

Drawing a line between "kernel" an~ the 
rest of the system, and p uttin g 
"es~ ntial" services of "critical 
~rograms" in the nucleus yields a system 
in which kernel features cannot be removed 
and certain extensions a~e impractical. 
Looking for a n/nima ! subset and a set of 
minimal independent incremental function 
leads to a system in which one can trim 
away unneeded features, i know of n o  
£eature that is always needed. When we 
say that two functions are ~most ~iways 
used t~e the r, we should remember that 
"almost" is a euphemism for "not." 

XT. SUMMATION 

This ~afer describes an approach to 
software intended to result in systems 
that can be tailored to fit the needs of a 
br~d variety of users. ~he points most 
worthy of emphasis are: 

I .  Th_e_Re.~uirements includ~ Subsets an d 
Extensions. 

It is essential to recognize the 
identification of useable subsets as part 
of the pre~minaries to soztware design. 
Flexibility cannot ~ an drier,hough,. 
Subsetability is needed, not just to meet 
a variety of customers' needs, but to 
provide a fail-soft way of handling 
sched u/~ slippage. 

2. Advan taqe s of the. Vi_rtua!_ Mac~ne 
_A~a_c~. 

Designing software as a set of virtual 
machines has deflate advantages over the 
conventional (flow chart) approach to 
system design. The virtual machine 
"instr,,ions" provide facilities that are 
useful Zor purposes beyond those 
brig iaally conceived. These instructions 
can easily be omitted from a system if 

*Accurate reports on the current status 
and ~erformance of that s?stem are not 
available to me.  
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they are not needed. Remove a major box 
from a flow chart and there is often a 
need to "fill the hole" with conversion 
pr og ra ms. 

3 .  _on____th_e___ Di_~f ~_ere~ce__ s e~_~een__ s_~_~ ~a_~_Se 
~_.e_ ra ti t_x_an~ s__o~_ ~__~are_S_ ~_!e__xA ~il i_~_X. 

Software can be considered "general" if it 
can be used, without change, in a variety 
of situations. Software can be considered 
flexible, if it is easiIy_g_hhan~e_~ to be 
used in a variety of situations. It 
appears unavoidable that there is a run- 
time cost to be paid fo~ general it y. 
Clever designers can achieve flexibility 
without significant run-tAme cost, but 
there is a design-time cost. One should 
incur the design-time cost only i£ one 
expects to recover it when changes are 
made. 

Some organizations may choose to pay the 
run-time cost for generality. They build 
ge~ral software rather than flexible 
software because of the mainten~ ce 
problems associated with maintaining 
several different versions. Factors 
influencing this decision include {a} the 
availability of extra ccmputer resources, 
(b) the facilities for program change and 
~inte na ace a vai lable at each 
installation, and (c) the extent to which 
design tech ni~ues ease the task of 
applying the same change to many versions 
of a program. 

No one can tell a designer how much 
flexibility and generality should be built 
into a product, but the decis~ion should be 
a conseious one. Often, it just happens. 

4. On the.di s tinctiRn b_etet w_e_ee_e.~nen__mo d ul_es, 
s,b~_oS_za_ms_L_a_ n_~d__leJ~e!_s. 

Several systems and a~ least one 
dissertation [lq,15,16, 17 ] have, i.l my 
o~inion, blurred the distinction between 
modules, subprograms and levels. 
Conventional programming techniques 
consider a subroutine or other callable 
program to be a module. If one wants the 
modules to include all prcgr~s that must 
be designed togei/ler and changed together, 
then, as ou~ example illustrates, one will 
usually include many small subprograms in 
a single module. It doe~'t matter what 
word we use; the point is that the unit of 
change is not a single call able 
subprogram. 

in several systems, modules and levels 
have coincided [ Iq,15]. This had led to 
the phrase "level of abstraction." ~ach 
of the modules in the example abstract 
from some detail that is assumed likely to 
change. However, there is no 
correspondence between modules and levels. 
Further, I have not £oun~ a relation, 

"more abstract than," that would allow me 
to define an abstraction hierarchy [ 12]o 
Although I am myself guilty Of using it, 
in most cases the phrase "levels of 
abstraction" is an abuse of language. 

Janson has suggested that a design such as 
this one (or the one discussed in [ 11]) 
contain "s~t modules" that can represent 
a b r e a c h  of secu rit~ principles. 
Obviously an error in any program in one 
of our modules can violate the integrity 
of that module. All module programs that 
will be included in a given subset must be 
considered in proving the correctness of 
that module. However, I see no way that 
allowing the component programs to be on 
different levels of a "use~' hierarchy 
makes this process more difficult or makes 
the system less secure. The boundaries of 
our modules are ~uite firm ~d clearly 
identified. 

The essential difference between this 
paper and other discussions of 
hierarchically structured designs is the 
emphasis on subsets and extensions. My 
search for a criterium to be used in 
designing the uses hierarchy has convinced 
me that if one d~s not c~ire about the 
existence of sub~ts, it doesn't really 
matter what hierarch X one uses. Any 
design can ~ bent until it works, it is 
only in the ease of decomposition that 
they di/fe r. 

5.  On A v__oidi nS_) u)l_icat io__n. 

some earlier work [21] has suggested that 
one need s to h ave d upli care or n ear 
duplicate mo~ ules i n a bier ar chicall y 
structured syste m- For example, they 
suggest t~at ode n~ds one iaplemeutation 
of priests to give a fixed number of 
processes at a low level mud another to 
~rovide for a varying num~r of processes 
at a user's level. Similar ideas have 
appeared elsewhere. Mere suc~h duplication 
to be necessary, it would be a sound 
argument against the use o£ "structured" 
approaches. One can avoid such 
duplication if o~ allows the programs 
that vary the size of a data structure to 
be on a higher level than the other 
pro9 ra ms that operate on that data 
structure. For example, in a~ operating 
system, the programs to create and delete 
pr~esses need not be on the same level as 
the more frequently used scheduling 
o~e rations. In designing software, I 
rega rd the need to per £orm sire il ar 
functions in two programs as ~ indication 
of a fundamental error in my thinking. 

6. _De_s_ii~_ni_n~_f_~r Subsets_.~and _~_~tensions 
can ~educe the Need for Support Software. 

we have already mentioned that t~is design 
approach can eliminate the need for 
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sepa rate SXSGE N programs, We can also 
eliminate the need for s_.~_c_ia ! purpose 
compilers. The price of the convenience 
features offered by such languages is 
often a compiler and run-time package 
distinctly larger than the systeJa being 
built. In our approach, each level 
provides a language extention available to 
the prGgrammers of the next level. We 
never build a compiler; we just build our 
system, but we get convenleno~ features 
anyway. 

7. EKte nsion at R_un-~ime Vs. Extension 
D u~_~_S_,__S ~_E~ ~. 

At a later stage in the design we will 
have to choose data structures and take 
the difference between run-time extension 
and S~SGEN extension into consideration. 
Certain data structures are more easily 
accessed but harder to e~ztena wh/le the 
program is running: others are easily 
extended but at the expense of a higher 
access cost. These differences do not 
affect our early design decisions because 
they are hidden in modules. 

8. On the ~alne of a model. 

My work on this example and simila~ ones 
ha S gone much faster l~cause ~ have 
learned to exploit a pattern that Z first 
noticed in the design diz~:ussed in [ 11 ]. 
Low level o~erations assume the existence 
of a fixed data structure of some type. 
The operations on the next level allow the 
swapping of a data element with others 
from a fixed set of similar elements. The 
high level programs allow the creation ~und 
deletion of such data elements. This 
pattern appears several times ~n Mth 
designs. Although I have not designed 
your system for you, i believe that yo~ 
can take advantage of a similar pattern. 
If so, this pai~r has served its purpose. 
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