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Abstract —We conducted a long-term experiment to compare the costs and benefits of several different software inspection
methods. These methods were applied by professional developers to a commercial software product they were creating. Because
the laboratory for this experiment was a live development effort, we took special care to minimize cost and risk to the project, while
maximizing our ability to gather useful data. This article has several goals: 1) to describe the experiment’s design and show how we
used simulation techniques to optimize it, 2) to present our results and discuss their implications for both software practitioners and
researchers, and 3) to discuss several new questions raised by our findings. For each inspection, we randomly assigned three
independent variables: 1) the number of reviewers on each inspection team (1, 2, or 4), 2) the number of teams inspecting the code
unit (1 or 2), and 3) the requirement that defects be repaired between the first and second team’s inspections. The reviewers for
each inspection were randomly selected without replacement from a pool of 11 experienced software developers. The dependent
variables for each inspection included inspection interval (elapsed time), total effort, and the defect detection rate. Our results
showed that these treatments did not significantly influence the defect detection effectiveness, but that certain combinations of
changes dramatically increased the inspection interval.

Index Terms —Software inspection, controlled experiments, industrial experimentation, ANOVA, power analysis.

——————————   ✦   ——————————

1 INTRODUCTION

OR almost 20 years, software inspections have been
promoted as a cost-effective way to improve software

quality. Although the benefits of inspections have been well
studied, their costs are often justified by simply observing
that the longer a defect remains in a system, the more ex-
pensive it is to repair, and therefore the future cost of fixing
defects is greater than the present cost of finding them.
However, this argument is simplistic—for example, it doesn’t
consider the effect inspections have on schedule [23].

We have observed that a typical release of Lucent Tech-
nologies’ 5ESS´ switch [15] (�0.5M lines of added and
changed code per release on a base of 5M lines) can require
roughly 1,500 inspections, each with four, five, or even
more participants. Besides the obvious labor costs, holding
such a large number of meetings can also cause delays,
which may significantly lengthen the development interval
(calendar time to complete development).1 Since long

development intervals risk substantial economic penalties,
this hidden cost must be considered.

We hypothesized that different inspection approaches
create different tradeoffs between minimum interval,
minimum effort, and maximum effectiveness. But until
now there have been no controlled experiments to iden-
tify the mechanisms that drive these tradeoffs. We con-
ducted such a study, and our results indicate that the choice
of approach significantly affects the cost-effectiveness of the
inspection. Below, we review the relevant research litera-
ture, describe the various inspection approaches we ex-
amined, and present our experimental design, analysis,
and conclusions.

1.1 Inspection Process Summary and Literature
Review

To eliminate defects, many organizations use an iterative,
three-step inspection procedure: preparation, collection,
and repair [11]. First, a team of reviewers each reads the
artifact separately, detecting as many defects as possible.
Next, these newly discovered defects are collected, usually
at a team meeting. They are then sent to the artifact’s author
for repair. Under some conditions the entire process may be
repeated one or more times.

The research literature shows that several variants of this
approach have been proposed in order to improve inspec-
tion performance. These include Fagan Inspections [8], Ac-
tive Design Reviews [16], N-Fold Inspections [19], Phased
Inspections [13], and Two-Person Inspections [2].
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1. As developer’s calendars fill up, it becomes increasingly difficult to
schedule meetings. This pushes meeting dates farther and farther into the
future, increasing the development interval [1].
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Each of these is created by restructuring the basic process,
e.g., rearranging the steps, changing the number of people
working on each step, or the number of times each step is
executed. Several also require the use of special defect detec-
tion methods. Although some of these variants have been
evaluated empirically, the focus has been on their overall
performance. Very few investigations have tried to isolate the
effects of specific structural changes. We believe that we must
know which changes cause which effects in order to deter-
mine the factors that drive inspection performance, to under-
stand why one approach may be better than another, and to
focus future research on high-payoff areas.

Team Size. Inspections are usually carried out by a team
of four to six reviewers. Buck [3] provides data (from an
uncontrolled experiment) that showed no difference in the
effectiveness of three, four, and five-person teams. How-
ever, no studies have measured the effect of team size on
inspection interval (calendar time to complete inspection).

Single-Session vs. Multiple-Session Inspections. Tra-
ditionally, inspections are carried out in a single session.
Additional sessions occur only if the original artifact or the
inspection itself is believed to be seriously flawed. But some
authors have argued that multiple session inspections
might be more effective.

Tsai et al. [20] developed the N-fold inspection process,
in which N teams each carry out independent inspections
of the entire artifact. The results of each inspection are col-
lated by a single moderator, who removes duplicate defect
reports. N-fold inspections will find more defects than
regular inspections as long as the teams don’t completely
duplicate each other’s work. However, they are far more
expensive than a single team inspection.

Parnas and Weiss’ active design reviews (ADR) [16] and
Knight and Myers’ phased inspections (PI) [14] are also
multiple-session inspection procedures. Each inspection is
divided into several mini-inspections or “phases.” ADR
phases are independent, while PI phases are executed se-
quentially, and all known defects are repaired after each
phase. Usually each phase is carried out by one or more
reviewers concentrating on a single type of defect.

The proponents of multiple-session inspections believe
they will be much more effective than single-session in-
spections, but they have not shown this empirically, nor
have they considered its effect on inspection interval.

Group-Centered vs. Individual-Centered Inspections.
It is widely believed that most defects are first identified
during the collection meeting as a result of group interac-
tion [9]. Consequently, most research has focused on
streamlining the collection meeting by determining who
should attend, what roles they should play, how long the
meeting should last, etc.

On the other hand, several recent studies have concluded
that most defects are actually found by individuals prior to
the collection meeting. Humphrey [10] claims that the per-
centage of defects first discovered at the collection meeting
(“meeting gain rate”) averages about 25 percent. In an in-
dustrial case study of 50 design inspections, Votta [23] found
far lower meeting gain rates (about 5 percent). Porter et al.
[18] conducted a controlled experiment in which graduate

students in computer science inspected several requirements
specifications. Their results show meeting gain rates consis-
tent with Votta’s gain rates. They also show that these gains
are offset by “meeting losses” (defects first discovered during
preparation but never reported at the collection meeting).
Again, since this issue clearly affects both the research and
practice of inspections, additional studies are needed.

Defect Detection Methods. Preparation, the first step of
the inspection process, is accomplished through the appli-
cation of defect detection methods. These methods are
composed of defect detection techniques, individual re-
viewer responsibilities, and a policy for coordinating re-
sponsibilities among the review team.

Defect detection techniques range in prescriptiveness
from intuitive, nonsystematic procedures (such as ad hoc or
checklist techniques) to explicit and highly systematic pro-
cedures (such as correctness proofs).

A reviewer’s individual responsibility may be general, to
identify as many defects as possible, or specific, to focus on
a limited set of issues (such as ensuring appropriate use of
hardware interfaces, identifying untestable requirements,
or checking conformity to coding standards).

Individual responsibilities may or may not be coordi-
nated among the review team members. When they are not
coordinated, all reviewers have identical responsibilities. In
contrast, the reviewers in coordinated teams have distinct
responsibilities.

The most frequently used detection methods (ad hoc and
checklist) rely on nonsystematic techniques. Reviewer re-
sponsibilities are general and identical. Multiple-session
inspection approaches normally require reviewers to carry
out specific and distinct responsibilities. One reason these
approaches are rarely used may be that many practitioners
consider it too risky to remove the redundancy of general
and identical responsibilities and to focus reviewers on nar-
row sets of issues that may or may not be present. Clearly,
the advantages and disadvantages of alternative defect de-
tection methods need to be understood before new meth-
ods can be safely applied.

2 THE EXPERIMENT

2.1 Hypotheses
Inspection approaches are usually evaluated according to
the number of defects they find. As a result, information
has been collected about the effectiveness of different ap-
proaches, but far less about their costs. We believe that cost
is as important as effectiveness, and we hypothesize that
different approaches have significantly different tradeoffs
between development interval, development effort, and
detection effectiveness. Specifically, we hypothesize that:

H1. Inspections with large teams have longer inspection
intervals, but find no more defects than smaller teams.

H2. Multiple-session inspections are more effective than
single-session inspections, but significantly increase in-
spection interval.

H3. Multiple-session inspections with sequential sessions
(sessions happen in a specific order and all defects found
at the ith session must be repaired before the i + 1st ses-
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sion begins) have a longer interval, but find more defects
than multiple-session inspections with parallel sessions
(sessions can happen in any order and defects are not
repaired inbetween sessions).

2.2 Experimental Setting
We ran this experiment at Lucent Technologies (formerly
AT&T Bell Laboratories) on a project developing a compiler
and environment to support developers of the 5ESS´ tele-
phone switching system. The finished system contains over
55K new lines of C++ code, plus 10K, which was reused
from a prototype. Reused code was not inspected, which is
the standard procedure in this organization.

The inspector pool consisted of six developers building
the compiler plus five developers working on other projects.2

They had all been with the organization for at least five years,
had similar development backgrounds, and had received
inspection training within the five years prior to the experi-
ment. However, most of their previous development efforts
used the C programming language. Thus, few of them were
highly experienced with C++. We collected data over a pe-
riod of 18 months (from June 1994 to December 1995), during
which time 88 code inspections were performed.

The first code units were inspected from July 1994 to
September 1994, at which time the first integration build
delivered the compiler’s front end. After this, there were
few inspections as the development team tested and modi-
fied the front end and continued designing the back end. By
January 1995, the back-end code became available, and
there was a steady stream of inspections performed
throughout 1995.

2.3 Operational Model
To test our hypotheses we needed to measure the effort,
interval, and effectiveness of each inspection. To do this we
constructed two models; one for calculating inspection in-
terval and effort, and another for estimating the number of
defects in a code unit. These models are depicted in Fig. 1.

2.3.1 Modeling the Inspection Interval
The inspection process begins when a code unit is ready for
inspection and ends when the author finishes repairing the
defects found in the code. The elapsed time between these
events is called the inspection interval.

The length of this interval depends on the time spent
working (preparing, attending collection meetings, and
repairing defects) and the time spent waiting (time during
which the inspection does not progress due to process de-
pendencies, higher priority work, scheduling conflicts, etc).

In order to measure inspection interval and its various
subintervals, we devised an inspection time model based
on visible inspection events [24]. Whenever one of these
events occurred it was timestamped and the event’s par-
ticipants were recorded. (In most cases, this information
was manually recorded on the forms described in Section
2.5.1.) These events occurred, for example, when code was

2. In addition, six more developers were called in at one time or another
to help inspect one or two pieces of code, mostly to relieve the regular pool
during the peak development periods. It is common practice to get non-
project developers to inspect code during peak periods.

ready for inspection, or when a reviewer started or finished
his or her preparation. This information was entered into a
database, and inspection intervals were calculated as the
calendar time between two specific events. This includes
time that is not spent on inspection activities. Inspection
effort was calculated by summing only the calendar time
attributed to inspection activities.

2.3.2 Modeling the Defect Detection Ratio
One important measure of an inspection’s effectiveness is
its defect detection ratio—the number of defects found
during the inspection divided by the total number of de-
fects in the code. Because we never know exactly how
many defects an artifact contains, it was impossible to make
this measurement directly, and therefore we were forced to
approximate it.

The estimation procedure needs to be: 1) as accurate as
possible and 2) available throughout the study because we
were experimenting with a live project that needed to iden-
tify and eliminate dangerously ineffective approaches as
soon as possible.

We found no single approximation that met both crite-
ria. Therefore we considered three methods.

• Observed Defect Density. We assumed that total de-
fect density is constant for all code units and that we
could compare the number of defects found per
KNCSL (thousand noncommentary source lines). This
was always available, but is inaccurate.

• Partial Estimation of Detection Ratio. We tried cap-
ture-recapture methods to estimate preinspection de-
fect content [4], [6], [7], [17], [22]. This estimation can
be performed when there are at least two reviewers
and they discover some defects in common. Under
these conditions this method is more accurate than
the observed defect density and is available immedi-
ately after every inspection. Since capture-recapture
techniques make strong statistical assumptions, we
tested our data to see whether or not this technique
would be appropriate. We found that this method
was inappropriate for our study. For example, in-
spectors often found completely disjoint sets of de-
fects. Therefore, we did not use it in our analysis.

• Complete Estimation of Detection Ratio. We can
track the code through testing and field deployment,
recording new defects as they are found. This is the
most accurate method, but is not available until well
after the project is completed. We are currently in-
strumenting the development process to capture this
data, but it will not be available for some time. And
even then, there may still be defects left undiscovered.
In addition, it may be extremely difficult to determine
whether additional defects found were due to mis-
takes in implementing the original requirements or in
subsequent customer-requested enhancements.
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2.4 Experimental Design

2.4.1 Variables
The experiment manipulated three independent variables:

1) the number of reviewers per team (one, two, or four
reviewers, in addition to the author),

2) the number of inspection sessions (one-session or
two-sessions),

3) the coordination between sessions (in two-session in-
spections the author was either required to or prohib-
ited from repairing known defects between sessions).

These variables reflect many (but not all) of the differences
between Fagan inspections, N-Fold inspections, Active De-
sign Reviews, and Phased Inspections. One very important
difference that is not captured in our experiment is the choice
of defect detection methods. (See Section 1.1 on Defect De-
tection Methods.) The methods used in Active Design Re-
views and Phased Inspections involve systematic techniques,
with specific and distinct responsibilities, while those used in
Fagan and N-fold Inspection are normally nonsystematic
techniques with general and identical responsibilities.

The treatments are arrived at by randomly selecting a
value for each of the independent variables. The selection
probabilities were weighted as shown in Table 1. These
probabilities changed during the experiment because we
discontinued some of the poorly performing or excessively
expensive treatments. In this article particular treatments
are denoted [1,or 2] sessions X [1, 2, or 4] persons [No-
repair, Repair], so, for example, the label 2sX1pN indicates
a two-session, one-person, without-repair inspection. The
1sX4p treatment is the standard inspection process in this
software organization.

There are many ways in which inspections might be
beneficial. The most obvious is defect detection. However,
they may also help development teams share information
quickly, train inexperienced personnel, etc. In this article,
however, we restrict our attention to defect detection only.
Consequently, we measured five dependent variables for
each inspection.

1) inspection interval,
2) inspection effort,
3) observed defect density (defects/KNCSL, see Section

2.3.2),
4) the percentage of defects first identified at the collec-

tion meeting (meeting gain rate),
5) the percentage of potential defects reported by an in-

dividual, that were determined not to be defects dur-
ing the collection meeting (meeting suppression rate).

We also captured repair statistics for every defect (see Sec-
tion 2.5.2). This information was used to discard certain
defect reports from the analysis—i.e., those regarding de-
fects that required no changes to fix them or concerned
coding style rather than incorrect functionality.

TABLE 1

Number of Sessions
2

Reviewers 1 With Repair No Repair Totals

1 1/9 1/9 1/9 1/3
2 1/9 1/9 1/9 1/3
4 1/3 0 0 1/3

Totals 5/9 2/9 2/9 1

This table gives the proportion of inspections originally allocated to each
treatment. These proportions changed during the experiment’s execution
because several poorly performing treatments were discontinued.

2.4.2 Design
This experiment used a 22 � 3 partial factorial design to
compare the interval, effort, and effectiveness of inspections
with different team sizes, number of inspection sessions,
and coordination strategies. We chose a partial factorial
design because some treatment combinations were consid-
ered too expensive (e.g., two-session-four-person inspec-
tions with and without repair).

2.4.3 Professional Developers as Subjects
We took special care to ensure that the experimental design
did not inadvertently influence subject behavior (professional

Fig. 1. This figure depicts how inspection participants use time during the inspection process. The figure’s lower panel summarizes the inspec-
tion’s time usage. Specifically, it depicts the inspection’s participants (an author and several reviewers), the activities they perform (coding, prepa-
ration, collection, repair, and other); the subinterval devoted to each activity (denoted by the shaded areas); and the total inspection interval (end
of coding to completion of repair). It also suggests that in a software development organization, inspections must compete with other processes
for limited time and resources. The upper portion of the figure suggests when, and to what extent, inspections remove defects from the code.
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developers and inspectors). Each study participant was given
a simple “bill of rights,” reminding them of their right to
withdraw from the study at anytime with no recriminations
from the researchers or his/her management [12]. Each par-
ticipant acknowledged this right at the beginning of the ex-
periment by signing a release form. No subject used this right
during the experiment.

2.4.4 Discontinuing Ineffective Treatments
In our initial briefings with the development team, we were
asked, “What happens if a treatment cost too much or takes
too long?” They were concerned that the experiment could
jeopardize the budget or schedule of the product.

We took this concern seriously and realized that if a
treatment was jeopardizing the project’s budget, schedule,
or quality, we would have to discontinue the treatment.
However, the professional developers also realized that
they were gaining some valuable knowledge from the
study. So before we began the experiment we agreed to
discontinue any treatment after enough inspections had
been done to determine that the treatment was ineffective.
We used simulation techniques to help determine the num-
ber of inspections we would need. See Appendix A for
more details.

This specific problem of knowing when to stop experi-
menting is important for software engineering researchers.
Experiments that use professional developers who are cre-
ating professional products are desirable for their strong
external validity, but can put the participating project at
risk. A similar problem confronts medical researchers when
assessing the efficacy of drug treatments for diseases [12].
They solve the problem like we did through an agreement
with their subjects in the study.

In the course of the experiment, several treatments were
discontinued because they were either ineffective (1sX1p
treatment), or because they were taking too long to com-
plete (all two-session treatments which required repair
between sessions). See Appendix B for more details.

2.4.5 Threats to Internal Validity
Threats to internal validity are influences that can affect the
dependent variable without the researcher’s knowledge.
We considered three such influences: 1) selection effects, 2)
maturation effects, and 3) instrumentation effects.

Selection effects are due to natural variation in human
performance. For example, if one-person inspections are
done only by highly experienced people, then their greater
than average skill can be mistaken for a difference in the
effectiveness of the treatments. We limited this effect by
randomly assigning team members for each inspection.
This way individual differences were spread across all
treatments.

Maturation effects result because participants’ skills im-
prove with experience. Again we randomly assigned the
treatment for each inspection to spread any performance
improvements across all treatments.

Instrumentation effects are caused by the code to be in-
spected, by differences in the data collection forms, or by
other experimental materials. In this study, one set of data
collection forms was used for all treatments. Since we could

not control code quality or code size, we randomly as-
signed the treatment for each inspection. One important
implication of this is that our analysis assumes that each
treatment is applied to a uniform set of code units.

2.4.6 Threats to External Validity
Threats to external validity are conditions that limit our
ability to generalize the results of our experiment to indus-
trial practice. We considered three sources of such threats:
1) experimental scale, 2) subject generalizability, and 3)
subject and artifact representativeness.

Experimental scale is a threat when the experimental
setting or the materials are not representative of industrial
practice. We avoided this threat by conducting the experi-
ment on a live software project.

A threat to subject generalizability may exist when the
subject population is not drawn from the industrial popu-
lation. This is not a concern here because our subjects are
software professionals.

Threats regarding subject and artifact representativeness
arise when the subject and artifact population is not repre-
sentative of the industrial population. This may endanger
our study because our subjects are members of a develop-
ment team, not a random sample of the entire development
population and our artifacts are not representative of every
type of software professional developers write.

2.4.7 Analysis Strategy
Our strategy for analyzing the experiment has three steps:
resolution analysis, calibration, and hypothesis testing.

Resolution Analysis. An experiment’s resolution is the
minimum difference in the effectiveness of two treatments
that can be reliably detected.

We performed the resolution analysis using a Monte
Carlo simulation. The simulation indicates that with as few
as five observations per treatment the experiment can relia-
bly detect a difference as small as 0.075 in the defect detec-
tion rate (observed/total) of any two treatments. The
strongest influence on the experiment’s resolution is the
standard deviation of the code units’ defect content—the
smaller the standard deviation the finer the resolution. (See
Appendix A for more details.)

Calibration. We continuously calibrated the experiment
by monitoring the sample mean and variance of each
treatment’s detection ratio and inspection interval, and the
number of observed inspections. (These data are the pa-
rameters of the simulation results described above.) After
cross-referencing this information with the resolution
analysis, we discontinued some treatments because their
effectiveness was so low or their interval was so long that it
put the project at risk. We also monitored the experiment to
ensure that the distribution of treatments did not produce
too few data points to identify statistically significant per-
formance differences.3

3. For example, if two treatments have little within-treatment variance
and very different mean performance, then few data points are needed to
statistically establish the difference. Otherwise, more observations are nec-
essary.
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Hypothesis Testing. Once the data was collected we
analyzed the combined effect of the independent variables
on the dependent variables to evaluate our hypotheses.
Once the significant explanatory variables were discovered
and their magnitude estimated, we examined relevant sub-
sets of the data to study specific hypotheses.

2.5 Experimental Instrumentation
We designed several instruments for this experiment:
preparation and meeting forms, author repair forms, and
participant reference cards.

2.5.1 Data Collection Forms
We designed two data collection forms, one for preparation
and another for the collection meeting.

The meeting form was filled in at the collection meeting.
When completed, it gives the time during which the meet-
ing was held, a page number, a line number, and an ID for
each defect.

The preparation form was filled in during both prepara-
tion and collection. During preparation, the reviewer re-
corded the times during which he or she reviewed, and the
page and line number of each issue (“suspected” defect).
During the collection meeting the team decided which of the
reviewer’s issues were, in fact, real defects. At that time, real
defects were recorded on the meeting form and given an ID.
If a reviewer had discovered this defect during preparation,
they recorded this ID on their preparation form.

2.5.2 Author Repair Forms
The author repair form captured information about each
defect identified during the inspection. This information
included Defect Disposition (no change required, repaired,
deferred), Repair Effort (� 1hr, � 4hr, � 8hr, or > 8hr), Repair
Locality (whether the repair was isolated to the inspected
code unit), Repair Responsibility (whether the repair re-
quired other developers to change their code), Related De-
fect Flag (whether the repair triggered the detection of new
defects), and Defect Characteristics (whether the defect re-
quired any change in the code, was changed to improve
readability or to conform to coding standards, was changed
to correct violations of requirements or design, or was
changed to improve efficiency).

2.5.3 Participant Reference Cards
Each participant received a set of reference cards containing
a concise description of the experimental procedures and
the responsibilities of the authors and reviewers.

2.6 Conducting the Experiment
To support the experiment, Harvey P. Siy, a doctoral stu-
dent working with Adam A. Porter at the University of
Maryland, joined the development team in the role of in-
spection quality engineer (IQE). The IQE was responsible
for tracking the experiment’s progress, capturing and vali-
dating data, and observing all inspections. He also attended
the development team’s meetings, but had no development
responsibilities.

When a code unit (a logical unit of code, on average
about 300 LOC) has compiled successfully without warn-
ings, its author sent an inspection request to the IQE. He

then randomly assigned a treatment (based on the treat-
ment distributions given in Table 1) and randomly drew
the review team from the reviewer pool.4 These names were
then given to the author, who scheduled the collection
meeting. Once the meeting was scheduled, the IQE put to-
gether the team’s inspection packets.5

The inspection process used in this environment is simi-
lar to a Fagan inspection, but there are some differences.
During preparation, reviewers analyze the code in order to
find defects, not just to acquaint themselves with the code.
During preparation reviewers have no specific technical
roles (i.e., tester, or end-user) and have no checklists or
other defect detection aids. All suspected defects are re-
corded on the preparation form. The experiment places no
time limit on preparation, but a organizational limit of 300
LOC over a maximum of two hours is generally observed.

For the collection meeting one reviewer is selected to be
the reader. This reviewer paraphrases the code. (Often this
involves reading several lines of code at a time and empha-
sizing their function or purpose.) During this activity, re-
viewers may bring up any issues found during preparation
or discuss new issues. One reviewer acts as the moderator.
This person runs the meeting and makes sure all required
changes are made. The code unit’s author compiles the
master list of all defects and no other reviewer has a prede-
fined role.

The IQE attended 125 of 130 collection meetings6 to
make sure the meeting data was reported accurately and
that reviewers do not mistakenly add to their preparation
forms any issues that were not found until collection. He
also took extensive field notes to corroborate and supple-
ment some of the data in the meeting forms. After the col-
lection meeting he gave the preparation forms to the
author, who then repaired the defects, filled out the author
repair form, and returned all forms to him. After the forms
were returned, he interviewed the author to validate any
questionable data.

3 DATA AND ANALYSIS

Four sets of data are important for this study: the team de-
fect summaries, the individual defect summaries, the inter-
val summaries, and the author repair summaries. This in-
formation is captured on the preparation, meeting, and re-
pair forms.

The team defect summary forms show all the defects
discovered by each team. This form is filled out by the
author during the collection meeting. It is also used to
measure the added benefits of a second inspection session
by comparing the meeting reports from both halves of two-
session inspections with no repair.

The individual defect summary forms show whether or
not a reviewer discovered a particular defect. This form is
filled out during preparation to record all suspected de-

4. We did not allow any single reviewer to be assigned to both teams in a
two-session inspection.

5. The inspection packet contains the code to be inspected, all required
data collection forms and instructions, and a notice giving the time and
location of the collection meeting. In addition, the inspectors have access to
the appropriate design documents.

6. The unattended ones are due to schedule conflicts and illness.
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fects. The data is gathered from the preparation form and is
compiled during the collection meeting when reviewers
cross-reference their suspected defects with those that are
recorded on the meeting form. This information, together
with the team summaries, is used to calculate the capture-
recapture estimates and to measure the benefits of collec-
tion meetings.

The interval summaries describe the amount of calen-
dar time that was needed to complete the inspection proc-
ess. This information is used to compare the average in-
spection interval and the distribution of subintervals for
each treatment.

The author repair summaries characterize all the de-
fects and provide information about the effort required to
repair them.

3.1 Significance Testing
Because most of the data have asymmetric (i.e., nonnormal)
distributions, significance tests that assume normality (e.g.,
t-test) may be unreliable. Thus we use nonparametric tech-
niques which only require that the distribution be ran-
domly sampled [21].

This decision has several implications. We considered
two data distributions to be significantly different only if
the Wilcoxon rank sum test [21] rejects the null hypothesis
that the observations are drawn from the same population
with a confidence level � �.9.

Medians, not means, summarize the data. Therefore, care
must be used when making inferences from the data pre-
sented in this article. In particular, since medians are ordinal,
the median of two distributions is not equal to the sum of the
medians of each distribution. Readers who wish to conduct
their own significance tests can find the experiment’s data at
http://www.cs.umd.edu/users/harvey/ experiment .

Note also the extensive use of boxplots (e.g., Fig. 3) to
represent data distributions. Each data set is represented by
a box whose height spans the central 50 percent of the data.
The upper and lower ends of the box marks the upper and
lower quartiles. The data’s median is denoted by a bold line
within the box. The dashed vertical lines attached to the box
indicate the tails of the distribution; they extend to the
standard range of the data (1.5 times the interquartile
range). All other detached points are “outliers” [5].

Finally, for expository convenience, we say that two dis-
tributions are “different” only if they are significantly dif-
ferent.

3.2 Data Reduction
Data reduction is the manipulation of data after its collec-
tion. We have reduced our data in order to: 1) remove data
that is not pertinent to our study and 2) adjust for system-
atic measurement errors.

3.2.1 Reducing the Defect Data
The preparation and meeting forms capture the set of issues
that were raised during each inspection. The reduction we
made was to remove duplicate issues from two-session-
without-repair inspections. This task is performed by the
IQE and the code unit’s author.

Although defect classifications are usually made during
the collection meeting, we feel that authors understand the

issues better after they have attempted to repair them, and
therefore, can make more reliable classifications. Conse-
quently, we use information in the repair form and inter-
views with each author to classify the issues into one of
three categories:

• false positives (issues for which no changes were made),
• soft maintenance (issues for which changes were

made only to improve readability or enforce coding
standards),

• true defects (issues for which changes were made to fix
requirements or design violations, or to improve sys-
tem efficiency).

The distribution of defect classifications for each treat-
ment appears in Fig. 2. Across all inspections, 22 percent of
the issues are false positives, 60 percent involve soft main-
tenance, and 18 percent are true defects. We consider only
true defects in our analysis of estimated defect detection
ratio (a dependent variable). We made this second reduc-
tion because we observed that most of the soft maintenance
issues are caused by conflicts between different reviewers
about the coding style or conventions used. Since, in and of
themselves, these are not true defects, some reviewers
never reported them while others always did. In contrast,
true defects have a clear definition, something that would
cause proper execution to fail, and reviewers always re-
ported them. We do not mean to imply that soft mainte-
nance issues are unimportant, only that for this study we
are restricting our focus to true defects.

Fig. 2. Disposition of issues recorded at the collection meeting. For
each treatment, the bar chart shows the percentage of the issues re-
corded at collection meetings that turn out to be false positives, soft
maintenance, or true defects. Across all treatments, only 18 percent of
the issues are true defects.

3.2.2 Reducing the Interval Data
The preparation, meeting, and repair forms show the dates
on which important inspection events occur. This data is
used to compute the inspection intervals.

We made two reductions to this data. First, we observed
that some authors did not repair defects immediately fol-
lowing the collection meeting. Instead, they preferred to
concentrate on other development activities, and fix the
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defects later, during slow work periods.7 This happened
regardless of treatment used, obscuring the effect any
treatment may have on the inspection interval. Therefore
we use only the premeeting interval (the calendar period
between the submission of an inspection request and the
completion of the collection meeting) as our initial measure
of inspection interval.

When this reduction is made, two-session inspections
have two inspection subintervals—one for each session.
The interval for a two-session inspection is the longer of its
two subintervals, since both of them begin at the same time.

Next, we removed all nonworking days from the inter-
val. Nonworking days are defined as either: 1) weekend
days during which no inspection activities occur or 2) days
during which the author is on vacation and no reviewer
performs any inspection activities. We use these reduced
intervals as our measure of inspection interval.

Fig. 3 is a boxplot showing the number of working days
from the issuance of the inspection request to the collection
meeting (Pre-Meeting), from the collection meeting to the
completion of repair (Repair), and the total (Total). The to-
tal inspection interval has a median of 21 working days.

3.3 Overview of Data
Table 2 shows the number of observations for each treat-
ment. Fig. 4 is a contrast plot showing the interval, effort,
and effectiveness of all inspections and for every setting of
each independent variable. This information is used to de-
termine the amount of the variation in the dependent vari-
ables that is explained by each independent variable. We
also show another variable, total number of reviewers (the
number of reviewers per session multiplied by the number
of sessions). This variable provides information about the
relative influence of team size vs. number of sessions.

3.4 Defect Discovery by Inspection Phase
During preparation, reviewers analyze the code units to
discover defects. After all reviewers are finished preparing,
a collection meeting is held. These meetings are believed to
serve at least two important functions: 1) suppressing un-
important or incorrect issues and 2) finding new defects. In
this section we analyze how defect discovery is distributed
across the preparation and collection meeting activities.

Analysis of Preparation Reports. One input to the col-
lection meeting is the list of defects found by each reviewer
during his or her preparation. Fig. 5 shows the percentage
of defects reported by each reviewer that are eventually
determined to be true defects. We can find no clear rela-
tionship between treatment and preparation effectiveness.
Across all 233 preparation reports, only 13 percent of all
issues turn out to be true defects.

Analysis of Suppression. It is generally assumed that
collection meetings suppress unimportant or incorrect is-
sues, and that without these meetings, authors would have
to process many spurious issues during repair. As we de-
duce from the previous section an average of 87 percent of
reviewer issues (100% – 13%) do not involve true defects.

7. This interpretation is supported in Fig. 3 by the larger number of out-
liers in the repair interval boxplot.

Fig. 3. Premeeting inspection interval. These boxplots show all the
interval data divided into two parts: time before the meeting and time
after the meeting. The median inspection interval is 21 days.

TABLE 2

Number of Sessions
2

Reviewers 1 With Repair No Repair Totals

1 7 5 18 30
2 26 4 15 45
4 13 0 0 13

Totals 46 9 33 88

This table shows the number of inspections allocated to each treatment.

Fig. 4. Effectiveness, interval, and effort by independent variables. The
dashes in the far left column of the first plot show the observed defect
densities for all inspections. The dotted horizontal line marks the aver-
age observed defect density. The other four columns indicate factors
that may influence this dependent variable. The plot demonstrates the
ability of each factor to explain variations in the dependent variable.
For the Repair factor, the vertical locations of the symbols “R” and “NR”
are determined by averaging the defect detection rates for all code
inspections using two-sessions with repair and two-sessions without-
repair. The bracket at each factor represents one standard error of
difference. If the actual difference is longer than the bracket, then that
factor is statistically significant. The middle and right panels show
similar information for premeeting interval and effort.
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Fig. 6 shows the percentage of issues suppressed for all
233 reviewer reports. Across all inspections about 26 per-
cent of issues are suppressed. This appears to be independ-
ent of the treatment.

Analysis of Meeting Gains. Another function of the
collection meeting is to find new defects in addition to
those discovered by the individual reviewers. Defects that
are first discovered at the collection meeting are called
meeting gains.

Fig. 7 shows the meeting gain percentages for all 130
collection meetings. Across all inspections, 30 percent of all
defects discovered are meeting gains. The data suggests
that, except for the 1sX1p treatment, meeting gains are in-
dependent of treatment.

3.5 Analysis of Effort Data
The common measure of inspection cost is total effort—the
number of hours spent in preparation and meeting by each
reviewer and author. Fig. 8 shows the effort spent per

KNCSL for each inspection by treatment and for all treat-
ments. Across all treatments, the median effort is about 22
person-hours per KNCSL.

The data suggest that effort increases with the total
number of reviewers while the number of sessions and the
repair between sessions have no effect. That is, inspections
involving four reviewers (1sX4p, 2sX2pN, and 2sX2pR)
required significantly more effort than inspections involv-
ing two reviewers. Likewise, inspections involving two re-
viewers (1sX2p, 2sX1pN, and 2sX1pR) required signifi-
cantly more effort than inspections involving one reviewer.

3.6 Analysis of Interval Data
Inspection interval is another important, but often over-
looked cost. Fig. 9 shows the inspection interval
(premeeting only) by treatment and for all treatments.

Fig. 5. Percentage of true defects in reviewer preparation forms by
treatment. This boxplot shows the percentage of issues found during
preparation that are eventually considered to be true defects. Across
all inspections, an average of only 13 percent of the issues turn out to
be true defects.

Fig. 6. Meeting suppression percentage by treatment. These boxplots
show the suppression percentage for each reviewer by treatment. This
is the number of defects detected during preparation but not included in
the collection meeting defect report, divided by the total number of de-
fects recorded by the reviewer in his/her preparation. Across all inspec-
tions, an average of 26 percent of the issues are suppressed.

Fig. 7. Meeting gain percentage by treatment. These boxplots shows
the percentage of defects discovered at the meeting for all inspec-
tions and for each treatment. The median is 30 percent.

Fig. 8. Total inspection effort by treatment. This plot shows the total
inspection effort per KNCSL for each treatment. Across all treat-
ments, the median effort is 22 person-hours per KNCSL.
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The cost of increasing team size is suggested by com-
paring one-session inspections (1sX1p, 1sX2p, and 1sX4p).
Since there is no difference between the intervals, team size
alone did not affect interval.

The additional cost of multiple inspection sessions can
be seen by comparing one-session inspections with two-
session inspections (1sX2p and 1sX1p with 2sX2p and
2sX1p inspections). We find that 2sX1p inspections didn’t
take longer to conduct than 1sX1p inspections, but that
2sX2p inspections took longer to complete than 1sX2p in-
spections. (This effect is caused solely by the 2sX2pR treat-
ment, since there was no difference between 1sX2p and
2sX2pN inspections.)

The cost of serializing two inspection sessions is sug-
gested by comparing two-session-with-repair inspections to
two-session-without-repair inspections (2sX2pN and
2sX1pN with 2sX2pR and 2sX1pR inspections). When the
teams had only 1 reviewer we found no difference in inter-
val, however, we did see a difference for two-reviewer
teams. This suggests that requiring repair between sessions
only increases interval as the team size grows.

Another interesting observation is that the median inter-
val for the 2sX2pR treatment is extremely long (20 days),
while all others have a median of only 10 days. Since this
treatment took much longer to complete than did the others
we discontinued it early in the experiment. Consequently,
we conducted only four of these inspections. Nevertheless,
we are convinced that this finding warrants further study,
because it suggests that relatively straightforward changes
to a process can have dramatic, negative effects on interval.

3.7 Analysis of Effectiveness Data
The primary benefit of inspections is that they find defects.
This benefit varied with different inspection treatments.
Fig. 10 shows the observed defect density for all inspections
and for each treatment separately.

The effect of increasing team size is suggested by com-
paring the effectiveness of all 1-session inspections (1sX1p,
1sX2p, and 1sX4p inspections). There was no difference
between two- and four-person inspections, but both per-
formed better than one-person inspections.

The effect of multiple sessions is suggested by compar-
ing one-session inspections with two-session inspections.
When team size is held constant (1sX2p vs. 2sX2p and
1sX1p vs. 2sX1p inspections), 2-session inspections were
more effective than one-session inspection only for one-
person teams. However, when total number of reviewers is
held constant (1sX2p vs. 2sX1p and 1sX4p vs. 2sX2p) there
were no differences in effectiveness.

The effect of serializing multiple sessions is suggested by
comparing two-session-with-repair inspections to two-
session-without-repair inspections (2sX2pN and 2sX1pN
with 2sX2pR and 2sX1pR inspections). The data show that
repairing defects between multiple sessions didn’t increase
effectiveness when the team size was one, but did when the
team size was two. This result should be viewed with cau-
tion, however, because there are only four 2sX2pR and five
2sX1pR inspections, respectively. Also, during the time in
which the with-repair treatments were used they per-
formed no differently than did without-repair treatments,
and furthermore the overall mean dropped steadily as the
experiment progressed possibly exaggerating the differ-
ences between the 2sX2pR and 2sX2pN treatments. (See
Appendix B for more details.)

We draw several observations from this data: 1) in-
creasing the number of reviewers did not necessarily lead
to increased defect discovery, 2) splitting one large team
into two smaller teams did not increase effectiveness, and
3) repairing defects in between two-session inspections
doesn’t guarantee increased effectiveness.

4 LOW LEVEL ANALYSIS

Several software inspection researchers have proposed
changes to the structure of the process, hoping to improve
its performance. For example, some researchers claimed
that large teams bring a wide diversity of expertise to an
inspection, and, therefore find more defects than smaller
teams. But others believed that smaller teams are better
because they minimize the inefficiencies of large team
meetings. Some argued further that multiple sessions with
small teams are more effective than a single session with a

Fig. 9. Premeeting interval by treatment. This plot shows the observed
premeeting interval for each inspection treatment. Across all treat-
ments, the median interval is 10.5 days.

Fig. 10. Observed defect density by treatment. This plot shows the
observed defect density for each inspection treatment. Across all in-
spections, the median defect detection rate was 12 defects per
KNCSL.
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larger team because the small teams are nearly as effective
as large ones, won’t duplicate each other’s effort and have
more effective collection meetings. Finally, some authors
told us that repairing defects in between multiple sessions
would be more effective than not repairing because repair
improves the ability of the second team to find defects.

Our initial analysis suggests, however, that many of
these changes did not have the hypothesized effect on ob-
served defect density. For example,

• Increasing team size does not always improve per-
formance. (1sX1p < 1sX2p, but 1sX2p = 1sX4p),

• Creating two smaller teams is not an effective way to
reorganize a large group. (2sX2p = 1sX4p and 2sX1p =
1sX2p), and

• Repairing defects between sessions does not guaran-
tee improved inspection performance. (2sX2pR =
2sX2pN8 and 2sX1pR = 2sX1pN).

One possible explanation is that the assumptions driving
inspection process changes didn’t hold in practice. (e.g.,
that repairing defects between multiple sessions didn’t im-
prove the ability of the second team to find defects.) An-
other possible explanation is that the treatments had unin-
tended, negative side effects (i.e., the treatment improved
some aspect of the inspection while degrading another).

To evaluate these potential explanations we examined the
effect of each treatment on several inspection subactivities.

4.1 Modeling Defect Detection in an Inspection
Artifact

First, we have developed a model to measure defect dis-
covery in each inspection subtask. The model, shown in Fig.
11, assumes that the inspection artifact contains N undis-
covered defects. Each reviewer, Ri, finds some number of
defects, pi, during preparation. Some number of these,
common, may be found by more than one reviewer so the
number of unique defects found in preparation, P, may be
less than Ç pi. Some number of additional defects, M, may
found at the meeting. During the meeting some of the de-
fects found in preparation may be suppressed (determined
not to be defects). These are called meeting losses.

Although we don’t know how many true defects are
suppressed, we will assume the number to be small and
will, therefore, ignore meeting losses for now. Given this
assumption, the number of defects found in one inspection,
D, is just P + M and the observed defect density is D

NCSL ,
where NCSL is the number of noncommentary lines of code
in the artifact.

Using this model and the data from our experiment we
can calculate several statistics:

1) the average number of defects found by individual
reviewers during preparation: pi ,

2) the number of unique preparation defects: P,
3) the number of defects found by more than one re-

viewer during preparation: common,
4) the overlap in preparation defects: common

P , and
5) meeting gains: M.

8. Comparing only the inspections that occurred while the 2sX2pR treat-
ment was being used.

Our goal in this analysis is to determine whether treat-
ments with similar inspection performances show signifi-
cant differences in these lower-level activities. For example,
if one treatment has higher preparation defect densities
( P

NCSL ) than another, but the same observed defect densi-
ties, then we would expect to find worse performance in
some other subtasks, (e.g., lower meeting gain densities
( M

NCSL )).

4.2 Large Teams vs. Small Teams
As long as additional reviewers find some new defects and
don’t negatively affect collection meeting performance, we
would expect larger teams to find more defects than
smaller teams, yet we found that 1sX2p inspections per-
formed the same as 1sX4p inspections. Somewhere the
supposed advantage of having more reviewers didn’t mate-
rialize, so we investigated how team size affected both
preparation and meeting performance.

First, we investigated two aspects of preparation per-
formance: individual preparation and amount of overlap in
the defects found by the reviewers.

Fig. 12b shows the number of defects per NCSL found in
preparation by reviewers in 1sX2p and 1sX4p inspections,

p
NCSL

i . There was no difference between the two treatments.
Then we examined the amount of overlap in the re-

viewer’s defect reports. This is the number of defects found
by more than one reviewer divided by the total number
found in preparation, common

P . There was no difference in
overlap between 1sX2p and 1sX4p inspections and both
distributions had a median of 0. (See Fig. 12c).

Next we examined two aspects of meeting performance:
defect suppression and meeting gains. We found that defect
suppression rates were higher for 1sX4p than for 1sX2p
inspections. (See Fig. 6).

Finally, Fig. 12a shows that there is no difference in the
meeting gains per NCSL, M

NCSL , for 1sX2p and 1sX4p in-
spections.

Our interpretation of these results is that larger teams
don’t improve inspection performance because meeting
gains do not increase as the number of reviewers increases,
and because larger teams may suppress a large number of
(possibly true?) defects.

4.3 One Large Team vs. Two Small Teams
Another recommendation that has appeared in the litera-
ture is to substitute several small one- or two-person teams
for one larger team. This approach should be more effective
if the combined defect detection of the smaller teams is
greater than that of the single larger team, and if the small
teams don’t significantly duplicate each other’s efforts.

Nevertheless we saw that 2sX1p (2sX2p) inspections did
not perform better than 1sX2p (1sX4p) inspections. To in-
vestigate this, we compared the distribution of observed
defect densities for one-session inspections with the sum of
the defect densities found in both sessions of the two-
session inspections (defects found by both teams are
counted twice). We found that the combined defect densi-
ties of 2sX1p (2sX2p) inspections are not greater than the
defect densities of 1sX2p (1sX4p) inspections. (Compare the
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second and third boxplots in Figs. 13a and 13b. We also
found that there was effectively no overlap in the defects
found by the two sessions. (Compare the first and second
boxplots in Figs. 13a and 13b).

Fig. 12. Effect of team size on inspection subtasks. (a) meeting gains;
(b) mean individual preparation performance; and (c) overlap of de-
fects found in preparation.

Fig. 13. The effect of splitting one large team. This figure compares the
distribution of observed defect densities of two-session inspections
before (Dups) and after (No Dups) accounting for overlap with that of
one-session inspections.

This data suggests that for our experimental setting
overlap among reviewers is a rare occurrence, but that

splitting teams did not improve performance because the
two smaller teams found no more defects than the one
larger team.

4.4 Repair vs. No Repair
Repairing defects between sessions of a multiple session
inspection should result in greater defect detection than not
repairing if: 1) the teams in the with-repair inspections per-
form as well as the teams in the without-repair inspections,
2) there are significantly more defects than one team can
find alone, and 3) the teams doing without-repair inspec-
tion find many of the same defects.

However, we saw that during the period in which with-
repair inspections were conducted they did not perform
better than without-repair inspections. One or more of the
assumptions may have been violated. To investigate this,
we extended our inspection model with a second session
such that D1 and D2 are the number of defects found in the
first and second session, respectively.

To test whether with-repair teams perform as well as
without-repair teams we compared defect densities per
session, D1 and D2, of with-repair inspections with those of
without-repair inspections. We found no differences in the
performances (see Figs. 14a and 15a), suggesting that the
with-repair teams perform no differently than without-
repair teams.

To test whether there are enough defects to warrant two
inspection teams we compared the performance of with-
repair teams inspecting the same unit. If the second team
(inspecting after the repair) consistently found fewer de-
fects than the first team, (i.e., D1 � D2 is significantly higher
than 0), then the first team may have found most of the de-
fects that can be found with current inspection techniques.
If not, this suggests that that there are more than enough
defects to be found by two teams, and that on the average,
one team is as good as the other. We found that the number
of defects found by the second team of 2sX1pR inspections
are generally lower (Fig. 14b), but that was not the case for
2sX2pR inspections (Fig. 15b).

To test whether overlap has a significant influence on
without-repair inspections we first calculated the number
of defects identified by the first team that were subse-
quently rediscovered by the second team. If we assume that
an equal number of new defects would have been found
had repair been done prior to the second inspection, then
an approximation for the total number of defects that
would have been found by the two sessions would be D1 +

Fig. 11. A defect detection model. During preparation, reviewer Ri finds pi defects. Each ¸ mark in row Ri indicates one of these defects. Each X mark
indicates a defect that was found by Ri, but was suppressed at the meeting. The row labeled Preparation contains one ¸ mark for each defect that
found by at least one reviewer during preparation and the M defects found at the meeting are indicated by a ̧  mark in the row labeled Meeting. Finally,
the row labeled Total Defects contains a ¸ mark for each of the D defects that are known to the artifact’s author at the end of the inspection.
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D2. We found that this approximate defect density was not
different than defect density of the actual without-repair
inspections (see Figs. 14c and 15c).

These results are based on a very small number of ob-
servations and should be viewed with considerable caution.
Tentatively, it suggests that multiple-session inspections
will improve performance only when there is an excess of
defects to be found, and that repairing defects in between
multiple sessions may not improve the performance of a
second inspection team.

5 CONCLUSIONS

We have run an 18-month experiment in which we applied
different software inspection methods to all the code units
produced during a professional software development. We
assessed the methods by randomly assigning different team
sizes, numbers of inspection sessions, author repair activi-
ties, and reviewers to each code unit.

5.1 Fundamental Issues in Industrial
Experimentation

This study and its results have several implications for the
design and analysis of industrial experiments.

Measurement Problems. In any empirical study, it is
important to precisely define the variables to be measured.
An important measure of an inspection’s effectiveness is the
proportion of defects it was able to detect. As we discussed
in Section 2.3.2, it is very difficult to create a reliable and
readily-available measure for this because we never know
how many defects are in the original code unit. Longitudi-
nal studies may help, but they have many problems as well.
For example, they are not available until long after the proj-
ect is finished and thus cannot help identify ineffective
treatments in the course of an industrial experiment. Also
our attempts to use statistical methods to estimate the
original defect content were unsuccessful. Future research
should look into better estimation methods.

Fig. 15. Effect of repairing in between sessions for two-Reviewer
Teams. (a) comparing session performance with same team size; (b)
difference in number of defects found between session 1 and session
2; and (c) counting the duplicates for 2sX2pN inspections.

Another issue is that defects can have different levels of
severity. Therefore, defect detection ratio may not reflect
the true value of different treatments. For example, a treat-
ment that finds fewer, but more severe, defects may be
preferable to another that finds more, but less severe, de-
fects. Future research should look into measures that cap-
ture these issues.

Discontinuing Treatments. Because we performed this
experiment on a real project, with real deadlines, budgets,
and customers, we would have put the project at risk if any
one of our treatments turned out to be too costly or too inef-
fective. Prior to running the experiment we agreed to ter-
minate such treatments. At the same time, we wanted to be
reasonably certain that we had enough points to determine
that the ineffectiveness or costliness was due to the treat-
ment and not to random chance. Therefore we simulated
the experiment and inferred that, with as few as five obser-
vations, we could tell whether two treatments were differ-
ent (if the true distributions are sufficiently different. See
Appendix A). At the end of the first calendar quarter of the
experiment, we indeed discontinued several treatments be-
cause they were either significantly less effective or costlier
than other treatments. Industrial experimenters must be
aware of the risks they introduce to the projects under study.

Nonparametric Statistical Analysis. We used non-
parametric statistical techniques because the data distribu-
tions were asymmetric and we felt that parametric statisti-
cal techniques might be misleading. As we discussed in
Section 3.1, this has several implications that the experi-
menter (and the reader) must be aware of when interpret-
ing the data.

Simplified Instrumentation. We needed to balance our
objective of collecting precise, detailed information with
our subject’s needs to complete their work on time. This is
always important in long running experiments with profes-
sional subjects. To manage these constraints, the subjects
helped us design the data collection forms, trading some
precision for ease of reporting. For example, repair effort

Fig. 14. Effect of repairing in between sessions for 1-Reviewer Teams.
(a) comparing session performance with same team size; (b) difference
in number of defects found between session 1 and session 2; and (c)
counting the duplicates for 2sX1pN inspections.
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for each defect (see Section 2.5.2) is reported as (� 1hr, � 4hr,
� 8hr, or > 8hr) because these categories correspond to less
than one hour, half-day, full day, and more than one day.
Steps like these made it easier for the subjects to fill in the
information even in busy times.

In the following sections we summarize our specific re-
sults and discuss their implications from the points of view
of both practitioners and researchers.

5.2 Main Results
Team Size (H1). We found no difference in the interval or
effectiveness of inspections of two- or four-person teams.
The effectiveness of one-reviewer teams was poorer than
both of the others.

For practitioners this suggests that reducing the default
number of reviewers from four to two may significantly
reduce effort without increasing interval or reducing effec-
tiveness.

The implications of this result for researchers is unclear.
We need to develop a better understanding of why four-
reviewer teams weren’t more effective than two-reviewer
teams. Maybe better inspection techniques would have
found more defects, maybe the code was relatively defect-
free, or maybe problems with group interaction become
more pronounced as team size grows. We will explore this
issue further by tracking the system as it is tested and de-
ployed in the field.

Multiple Sessions (H2). We found that two two-person
teams weren’t more effective than one, two-person team.
We found that two two-person (one-person) teams were
not more effective than one four-person (two-person) team.
We also found that two-session inspections without repair
have the same interval as one-session inspections.

In practice this suggests that two-session inspections
may not be worth their extra effort.

These results are significant for researchers as well.
Multiple session methods such as active design reviews
(ADR) and phased inspections (PI) rely on the assumption
that several one person teams using specially developed
defect detection techniques can be more effective than a
single large team without special techniques. Some of our
experimental treatments mimic the ADR and PI methods
(without special defect detection techniques). This suggests
if these techniques are in fact more effective than simpler
approaches, the improvement will not be due to the struc-
tural organization of the process, but will come from the
defect detection techniques they employ.

Serializing Multiple Sessions (H3). We found that re-
pairing defects in between multiple sessions had no effect
on observed defect density, but in some cases increased
interval dramatically.

In practice, this argues against repairing defects between
multiple sessions. Furthermore, some of the developers in
our study felt that the two-session-with-repair treatments
caused the greatest disruption in their schedule. For example,
they had to explicitly schedule their repairs although they
would normally have used repair to fill slow work periods.

This result raises several research questions as well. In
particular, why did one treatment have such a long inter-
val? And why weren’t we able to predict this effect?

5.3 Other Results
Individual Preparation. Our data indicate that about one-
half of the issues reported during preparation turn out to be
false positives, Approximately 35 to 40 percent pertain to
nonfunctional style and maintenance issues. Finally, only
13 percent concern defects that will compromise the func-
tionality of the delivered system.

For practitioners this suggests that a good deal of effort
is currently being expended on issues that might better be
handled by automated tools or standards.

For researchers this suggests that developing better defect
detection techniques may be much more important than any
of the organizational issues discussed in this article [18].

Meeting Gains. Thirty percent of defects were meeting
gains. These meeting gain rates are higher than those re-
ported by Votta [23] (5 percent) but are consistent with
Humphrey [10] (25 percent). Since meetings are expensive
it’s important for researchers to better understand this is-
sue. Also, it is extremely important that contradictory
findings be examined and resolved. Some possible expla-
nations for this are: 1) Votta’s study focused on design in-
spections rather than code inspections, 2) the average team
size for a design inspection is considerably larger than for
code inspections (so more defects are found in preparation),
or 3) design reviewers may prepare much more thoroughly
since design defects are likely to be more damaging than
code defects. We are currently conducting further experi-
ments to help resolve these discrepancies.

5.4 Interpretation
Our results challenge certain long-held beliefs about the
most cost-effective ways to conduct inspections and raise
some questions about the feasibility of recently proposed
methods.

In particular, two of our major findings are that:

• Although a significant amount of software inspection
research has focused on making structural changes
(team size, number of sessions, etc.) to the process,
these changes did not always have the intended ef-
fect. Consequently, we believe that significant im-
provements to the inspection process are unlikely to
come from just reorganizing the process, but rather
will depend on the development of new defect detec-
tion techniques.

• The 2sX2pR treatment had an interval twice that of
the other treatments. Although we were able to gather
only four observations, the magnitude of this differ-
ence surprises us. Furthermore, it highlights the fact
that although researchers frequently argue for
changes to software development processes, we have
no reliable methods for predicting the effect of these
changes on development interval.

6 FUTURE WORK

Our continuing work will focus on deepening our analysis
in several areas. Some of the questions we will be address-
ing include:
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• How much variation in the observed performance did
our experimental design successfully control?

• How much variation in the observed performance can
be explained by natural variation in factors outside our
control like inspector skill, code quality, and author
skill?

• What factors outside of our experimental control af-
fected inspection interval? For example, the number
of inspections in which each reviewer was already
participating, proximity to project deadlines, etc.

• This work suggests that there are general and identi-
fiable mechanisms, driving the costs and benefits of
inspections. However, we lack a comprehensive the-
ory bringing these principles together. We are cur-
rently exploring this issue.

Finally, we remind the reader that all our results were
obtained from one project, in one application domain, using
one language and environment, within one software or-
ganization. Thus we feel it is important that others attempt
to replicate our work, and we have prepared materials to
facilitate this. These are available online. (See http://
www.cs.umd.edu/users/harvey/experiment) Although
we have rigorously defined our experiment and tried to
limit the external threats to validity, it is only through repli-
cation that we can gain confidence that they have been ade-
quately addressed.

APPENDIX A – RESOLUTION ANALYSIS

In this section, we describe a simulation conducted to deter-
mine the resolution of the experiment, i.e., how different
must two treatments be before the significance tests can tell
them apart? We simulated the data that would have been
generated by inspections using two hypothetical treatments,
under different resolutions, sample sizes and variances, and
for each combination, we performed a power analysis to de-
termine the significance test’s probability of telling apart the
two treatment distributions when they are actually different.
By using different parameters, we were able to determine the
minimum number of data points needed to tell two treat-
ments apart, for a given resolution and variance.

The simulation involves just two treatments, Ta and Tb,
whose defect detection probabilities are pa and pb. It com-
prises three distinct steps:

1) Creation of Code Units. We create a number of code
units with known size and defect density. The defect
density is randomly drawn from a normal distribu-
tion with mean P and standard deviation V. The
number of defects in the code, N, is just the defect
density multiplied by the code size.

2) Application of Treatments. We apply treatments Ta

and Tb to different groups of code units. Each group
contains sets of 5, 10, and 15 code units. The number of
defects found, na, by applying Ta to a code unit con-
taining N defects, is determined by a random draw
from a binomial distribution with parameters N and pa

(pb when applying treatment Tb finds nb defects).

3) Comparison of Results. We use the Wilcoxon rank
sum test [21] to determine the probability that the na’s
are drawn from the same population as the nb’s.9

This process is repeated a hundred times for each ex-
perimental setting. Even though the two treatments have
different detection probabilities, under some conditions the
test may fail to recognize the difference. Running the
simulation in a wide variety of experimental settings helps
us to determine when and how confidently we can say that
two treatments are different.

We created 600 experimental settings consisting of 25
different combinations of means (53, 67, 80, 93, 107) and
standard deviations (3, 7, 13, 27, 40) to generate defect den-
sities, and 24 different pairs of pa (0.2, 0.4, 0.6, 0.8) and pb
(pb = pa + 0.0, 0.025, 0.05, 0.075, 0.1, 0.15).

Fig. 16 shows some (108 out of 600 settings) of the simu-
lation results. The x-axis shows the true difference between
pa and pb and the y-axis shows the probability that the null
hypothesis (pa = pb) will be rejected. Each combination of a
symbol and a line segment represents the outcomes of 100
simulation runs of one experimental setting. The symbol
indicates the median, and the line segment through the
symbol spans the 0.25 through the 0.75 quantiles.

We define the experimental resolution as the value when
more than 50 percent of the 100 outcomes have a signifi-
cance greater than 0.9 (the symbol in Fig. 16 lies above the
resolution line), and the next smaller true difference value
has the symbol with less than 50 percent of the 100 out-
comes greater than 0.9 (the symbol in Fig. 16 lies below the
resolution line).

APPENDIX B – INSPECTION PERFORMANCE OVER TIME

B.1 Chronological Overview
Initially, the experiment involved seven treatments. At the
beginning of 1995, we evaluated the existing results and
discussed them with the project’s management. Although
we would have preferred to gather more data, it would
have been risky for the project to continue performing ex-
pensive or ineffective treatments. Therefore, we discontin-
ued three treatments: 1sX1p, 2sX1pR, and 2sX2pR.

The 1sX1p treatment was dropped because it was inef-
fective relative to the others while the two with-repair
treatments (2sX1pR and 2sX2pR) were dropped because the
authors shared with us that they felt they were doing twice
as much work, thus congesting their schedules unnecessar-
ily, and because we saw that they were no more effective
than the without-repair treatments (Fig. 18). In addition, the
2sX2pR treatment was, by far, the most expensive treatment
in terms of interval. Fig. 17 confirms that the last instances
of these discontinued treatments were held in the first
quarter of 1995.

Our primary concern is that discontinuing treatments may
compromise the experiment’s internal validity (i.e., factors
that affected all treatments early in the experiment, will affect
only the remaining treatments later in the experiment). Con-

9. Although the Wilcoxon rank sum test is not as powerful as a t distri-
bution test, the Wilcoxon rank sum test does not require the na’s and nb’s to
be normally distributed—an assumption that is difficult to test with small
samples of data.
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sequently, we must be careful when we compare treatments
that were discontinued with those that were not.

Figs. 17 and 19 show inspection effectiveness and inter-
val over time, with observations sorted according to the
time at which the code unit became available for inspection.

B.2 Analysis of Inspection Performance Over Time
The data presented in Fig. 17 suggests that there are two
distinct performance distributions. That is, that the first
quarter (July to September 1994)—during which about one-
third of the inspections occurred—has a significantly higher
mean and variance than the remaining quarters (October
1994 to December 1995).

Fig. 17. Inspection performance over time. This is a time series plot
showing the trends in observed defect densities of inspections as time
passed. The vertical lines partition the plot into quarters. Within each
quarter, the solid horizontal line marks the mean of that quarter’s distri-
bution. The dashed lines mark one standard deviation above and be-
low the mean. The treatment used by the inspection is encoded in the
plotting symbol. The plotted numbers represent the team size of the
inspection. The open ones are one-session inspections, the circled
ones are two-session inspections with repair, and the square ones are
two-session inspections with no repair.

Fig. 18. Observed defect density by treatment and phase. These two
plots show the observed defect density for each inspection treatment
during the first and second phase of the project. Across all inspections,
the median observed defect density was 18 defects per KNCSL for the
first phase and 10 defects per KNCSL for the second phase.

One reason for this may be that the end of the first
quarter coincides with the system’s first integration build.
Our records show that with the compiler’s front end in
place, the developers were able to do more thorough unit
testing for the back-end code than they could for front-end
code alone.

Other factors may be that the reviewers had become
more familiar with the programming language as the proj-
ect progressed, that the requirements for the front-end
(language definition, parsing, and intermediate code gen-
eration) were more prone to misinterpretation than the final
code generation and optimization.

In particular, this suggests to us that had we continued
using the 2sX2pR treatment its effectiveness would have
dropped in a manner consistent with the other treatments.

Fig. 16. Resolution of the experiment. This plot shows the results of ap-
plying treatments Ta and Tb to sets of 5, 10, or 15 code units (marked by
the square, circle, and triangle). Each simulated unit has 300 NCSL and
a mean defect density of 53, 80, or 107 defects per 1,000 NCSL, with a
standard deviation of seven or 26 defects per 1,000 NCSL. pa is set to
0.6. The x-axis shows the true difference between pa and pb and the y-
axis shows the probability that the null hypothesis (i.e., that all the treat-
ments have the same effectiveness) will be rejected. Each combination of
a symbol and a line segment represents the outcome of 100 simulation
runs for one experimental setting. The symbol indicates the median and
the line segment runs from the lower to the upper quartile. Symbols plot-
ted above the dotted horizontal line in each panel indicate experimental
situations where true differences in treatment effectiveness can be relia-
bly detected. The simulation results indicate a resolution as fine as 0.05.
The resolution does not become substantially finer as the number of
observations increases; however, it does become finer as the standard
deviation decreases.
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B.3 Analysis of Inspection Interval Over Time
Fig. 19 is a time series plot showing inspection interval as
project progressed. We see that the mean inspection interval
did not vary significantly throughout the project, although
there is a gradual increase as the project nears completion.

Fig. 19. Inspection intervals over time. This is a time series plot show-
ing the trends in inspection intervals as time passed.

Although there were only four 2sX2pR inspections, the
stability of the interval for the other treatments suggests
that had we continued the treatment, its interval would not
have changed significantly.
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