
This approach emphasizes
pinpointing where and when
information needs occu1: At its
core is the Inquiv Cycle model, a
structure for describing and
supporting discussions about
system requirements. The
authors use a case study to
describe the model's conversation
metaphor, which follows anabsis
activities f iom requirements
elicitation and documentation
through refinement.

Inquiry-Based
Requirements
Analysis
COLIN POTTS, Georgia Institute of Technology
KENJI TAKAHASHI, Nippon Telegraph and Telephone Corp.
ANNIE I. ANTON, Georgia Institute of Technology

R equirements analysis
remains one of the most challenging areas
for software developers, and the literature
is filled with proposed methods. Some ap-
proaches emphasize linguistic details,
transformations, and other formalisms as
key to obtaining clear and valid require-
ments. Others, ourselves included, prefer
to view the analysis process as essentially
inquiry-based - a series of questions and
answers designed to pinpoint where infor-
mation needs come from and when.

This inquiry emphasis is appropriate
for both contractual projects and market-
driven product developments. In contrac-
tual projects, the customer usually writes a
requirements document, but it has so
many ambiguities, uncertainties and gaps
that the developers must evaluate it care-
fully, incrementally refining and formaliz-
ing the information until they have pro-
duced a functional specification. In

market-driven projects, there is no easily
identifiable customer and no customer-
sanctioned requirements document. In
this case, the developers (usually in con-
junction with marketing staff> must pro-
duce a specification from a vague state-
ment ofopportunities and goals. This, too,
is an incremental inquiry-based process.

To support requirements identifica-
tion, we have developed the Inquiry Cycle
model, a formal structure for describing
discussions about requirements.' The
model uses a conversation metaphor that
follows analysis activities from require-
ments elicitation and documentation
through refinement. This metaphor di-
rectly addresses what a study of require-
ments practices in 2 3 project organiza-
tions revealed: The principal problems
project teams face are communication,
agreement about requirements, and man-
aging change.'

IEEE S O F T W A R E 074D7459/94/$04 CO 0 1994 IEEE 2 1

Figure 1. The Inquiry Cycle model. Requirements documentation, consisting of
requirements, scenarios and other information, is discussed through questions,
answers, and justzjications. Choices may lead to requested changes, which in turn
modzjj the requirements documentation.

The Inquiry Cycle model is a hyper-
text model because the pieces of infor-
mation recorded and exchanged in re-
quirements discussions are primarily
textual (and therefore informal) but have
well-defined interrelationships. Unlike
most hypertext models, however, the In-
quiry Cycle model is dynamic, capturing
the ongoing elaboration process, not
just a snapshot of the final requirements.
It also directly supports inquiry and
scrutiny, so everyone knows what infor-
mation is missing and what assumptions
are pending.

We have used the Inquiry Cycle model
to analyze the requirements of a simple
automated teller machine (described else-
where') and more recently a meeting
scheduler. We present the results of the
meeting scheduler application here and
describe how scenarios can be used to im-
prove requirements analysis. For tool
support, we used FrameMaker, a com-
mercial document processor with some
hypertext features, although we have re-

prototype tool, which we plan to use in a
development project later h s year.

The meeting-scheduler case study is
a first step toward validating our model
in large-scale studies. Although the
meeting scheduler is a theoretical prob-
lem, not an actual system, much of the
what we learned from it can be applied to
real development projects. We investi-
gated the types of questions asked about
a set of written requirements, how those
questions tend to be answered, and what
role scenarios (particular cases of how
the system is to be used) play in tlus pro-
cess.

The meeting scheduler is a standard
problem, and it let us examine analysis is-
sues for both contractual and market-
driven requirements. It illustrates con-
tractual requirements problems because
the starting point is a short requirements
document that must be understood, made
unambiguous, and refined. It illustrates
market-driven proiect issues because it . ,
leaves open many decisions about what

cently implemented a hypertext-based 1 developers should implement.
~ ~~ ~~

~~~ ___ ~~ 
~~~ 

~~

INQUIRY CYCLE MODEL

Figure 1 shows the Inquiry Cycle
model. Users of the model are called
stakeholders. A stakeholder is anyone
who can share information about the sys-
tem, its implementation constraints, or
the problem domain - including end
users, indirect users, other customer rep-
resentatives, and developers. We prefer
tlus neutral term because although the
model may be used by analysts working
on customer-specific projects with exist-
ing requirements documents, the Inquiry
Cycle is intended to support market-driv-
en projects for whch there may be no
clear customer authority. For h s reason,
we deliberately avoided tying it to con-
ventional roles or job titles.

As the figure shows, the model has
three phases:

+ Requirements documentation. The
stakeholders write down proposed re-
quirements. Each requirement is a sep-
arate node in the hypertext.

Requirements discussion. The stake-
holders challenge proposed require-
ments by attaching typed annotations.

+ Requirements evolution. The stake-
holders attach change requests to the
requirements on the basis of the dis-
cussion, then refine the requirements
when the change requests are ap-
proved.

It is h s integration of requirements
documentation, discussion, and evolution
that distinguishes the Inquiry Cycle
model from simpler conversation
metaphors such as Ibis3 or taxonomies of
design transfo~mations.~

Requirements documentation. Re quire -
ments is the label given to all require-
ments-related information - domain-
specific assumptions, scenarios,
project-planning commitments, and im-
plementation constraints - as well as the
stated requirements themselves.

In some projects, requirements analy-
sis starts with some form of requirements
documentation. In others, there may be a
one- or two-page statement of goals.
However vague the starting point, we as-
sume that the result of using the Inquiry
Cycle model will be a refined, agreed-on

~
~ ~

M A R C H 1 9 9 4 22

specification, essentially a set of require-
ments that describes the desired system. If
there is no requirements document, the
model provides a systematic, incremental
process for writing one.

There are several ways to analyze re-
quirements in the documentation stage. If
you have an existing requirements docu-
ment, you can begin by reviewing that. If
you don't, you must start from scratch to
write down requirements on the basis of
interviews, techcal documentation for
similar systems, and so on.

One valuable technique is scenario
analysis. In the broad sense, a scenario is
simply a proposed specific use of the sys-
tem. More specifically, a scenario is a de-
scription of one or more end-to-end
transactions involving the required sys-
tem and its environment. Scenarios can be
documented in different ways, dependmg
on the level of detail needed. The simplest
form is a me case, which consists merely of
a short description with a number at-
tached. More detailed forms are called
smipts. These are usually represented as ta-
bles or diagrams and involve identifylng
an action and the agent (doer) of the ac-
tion. For this reason, a script can also be
called an adon table.

Although scenarios are useful in ac-
~ quiring and validating requirements, they

are not themselves requirements, because
they describe the system's behavior only in
specific situations; a specification, on the
other hand, describes what the system
should do in general.

Despite the narrower coverage of sce-
narios, we focus on them, because we have
found that scenario analysis and the In-
quiry Cycle model complement each
other. When challenging tentative re-
quirements, stakeholders often pose
what-if questions about the system's in-
teraction with its environment that a sce-
nario analysis can answer. Answering the

l what-if question by analyzing specific sce-
1 narios gives Stakeholders insight into gen-

eral requirements and helps in the reline-
ment process.

Requirements discussion. There are
three elements to this phase.

+ Questions. Most discussions start
because a stakeholder has a question

) HELPS ward a more precise spec-
INMENT' ification through the in-

about a requirement.
+ Annuers. These describe solutions

to problems, in the form of candidate
refinements or revisions that respond
to the questions. A question can gener-
ate many answers. Answers provide
stakeholders with a clearer understand-
ing of the requirements and help them
notice ambiguities, missing require-
ments, and inconsistencies.

+ Reasons. Answers may require jus-
tification if they are not immediately
obvious.

Requirements dis-
cussion can take place
gradually and informal-
ly or in discrete bursts
associated with formal
review procedures.

Requirements evolu-
tion. The ultimate re-
sult of a requirements
discussion is a com-
mitment t o e i ther
freeze a requirement
or change it. A change
request may be traced
backward to a discus-
sion, which constitutes
its rationale, and for-

+ There is no assumption about lan-
guage or expressive style. Because most
requirements information is in natural
language and free-form diagrams, the
model embeds no assumptions about
the specification language or style of
expression. It is quite consistent, how-
ever, with the incremental develop-
ment of formal specifications, object-
oriented analyses, o r structured-
analysis models. For example, in ob-
ject-oriented analysis, the require-

ments document evolves
I from a textual description

ANSWERING of system requirements or
typical use cases to a col-

WHAT- I F lection of object models
QUESTlONS and dynamic models. The

requirements discussion
BY USING consists of identifylng and
SCENARIO challenging candidate ob-

jects, attributes, associa-
ANALYSIS ti on s , and opera t i on s.

With the Inquiry Cycle
GIVES USERS model, whatever the rep-
INSIGHT resentation or method,

AN
REF

ward to the changed requirement once
it has been acted on. Like discussion,
the evolution phase may occur gradual-
ly and informally or in discrete bursts
following a formal review and approval
procedure.

When applying the Inquiry Cycle
model, it is wise to remember several

+ It is not a rigid process model. Stake-
holders need not follow the model slav-
ishly. Shortcuts are always possible. For
example, a requirement may be
changed after little or no discussion. An
answer may be given even when there
is no question, as often happens when
stakeholders articulate assumptions
that are not explicitly documented.
Choices may lack rationale because
stakeholders view the reasons as obvi-
ous. A change request may be executed
directly without a recorded discussion.
All these shortcuts may be perfectly
reasonable in some circumstances.

things:

challenging and changing
requirements.

+ Hypertext technology is useful but
not mandatory. Although the Inquiry
Cycle model is an active hypertext
model, hypertext technology is not
needed to apply its underlying inquiry-
based method. It does help, however,
because the mapping from the model
concepts to typical hypertext sys-tem
concepts is fairly straightforward. Re-
quirements (usually single paragraphs
or sentences from the requirements
document or an informal list), discus-
sion elements (questions, answers, and
reasons), and change requests can be
stored as typed hypertext nodes. Typed
links, corresponding to transitions in
the model, can be added between
nodes. For example, when a stakehold-
er poses a question about a require-
ment, a link is created between the re-
quirement and question nodes. We call
the process of creating links attaching a
node.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
-

Scenario

No conflicts

Slow responder

Late-coming participant

Dropout

Substitute active participant

Self-appointed active participant

Participant changes preferences before meeting is scheduled

Date conflict; initiator extends date range

Date conflict; participants extend date range

Date conflict; participants withdraw

Weak date conflict; participants exclude fewer dates

Room conflict

Scheduled meeting bumped by more important meeting

Participant tries to double-book

Conflict arises after meeting is scheduled

Meeting canceled

No.

1
._

~2
3

4

5

6

7

8

I

1 9

I 10
11

I 12

, 1 3

2 4

Agent Adion

Initiator

Scheduler

Initiator

Initiator

Initiator

Initiator

Scheduler

Ordinary
participant

Active
Participant

Scheduler

Important
participant

Scheduler

Scheduler

Request meeting of a specific type, with meeting info.
(for example agenddpurpose) and date range

Add default (activehmportant) participants, and so on

Determine three participants

Identify one presenter as active participant

Identify initiator’s boss as important participant

Send request for preferences

Send appropriate mail messages to participants (including
additional requests to boss and presenter)

Respond with exclusion and preference sets

Respond with exclusion and preference sets and
equipment requirements

Request required equipment

Respond with exclusion and preference sets and possibly
location preference

Schedule meeting on the basis of responses, policies, and
room availability
Send confirmation message to all participants and
meeting initiator

CASE STUDY

We chose the meeting scheduler as a
case study for the lnquiry Cycle for sev-
eral reasons: First, the research commu-
nity has adopted the meeting scheduling
problem as a benchmark, and there is an
existing two-page requirements docu-
ment, written by Axel van Lamsweerde
and his students of the Catholic Univer-
sity at Louvain. Second, the requirements
illustrate problems typical of require-
ments for real systems. They specify poli-
cies that may not work well in every or-
ganization, there is ample opportunity to
dispute different interpretations, and
many important issues are left unre-
solved.

Finally, we chose &IS case study be-
cause specialized domain knowledge is
not necessary to understand it. Most peo-
ple grasp what it means to attend meet-
ings and juggle a busy schedule, and most
have had some experience using personal
information managers.

Some would argue that the meeting
scheduler is not a real system and in fact
is a mvial exercise because the require-
ments document is only two pages of text.
To this we answer that many significant
real-world problems should be described
as briefly as th ls initially. The real chal-
lenge for requirements analysis at this
point is not to make specifications the size
of Warand Peace more readable or formal.
Rather, it is to turn a very vague and high-
level mission statement into a detailed
specification as early as possible.

Problem description and assumptions.
The meeting scheduler helps people
schedule rooms and equipment for
meetings. Each meeting is called by an
initiator and may have ordinary, active,
and important participants.

The requirements do not clearly de-
fine these terms. We assume that presen-
ters are active participants and may have
special equipment requests. We further
assume that an important participant’s at-
tendance is more crucial than the atten-
dance of an ordinary participant if there is
a scheduling confict. The initiator pro-
poses some time constraints for the meet-
ing, and the potential attendees respond
with their available and preferred times.

M A R C H 1 9 9 4

Sometimes the scheduler can schedule the
meeting; sometimes conflicts arise.

Analysis approach and tool support. We
met regularly to review the require-
ments document and scenarios we con-
structed. To simplify data gathering
and data analysis, we maintained elec-
tronic copies of the requirements, a dis-
cussion document (consisting of ques-
tions, answers and reasons), a change
request list, and a collection of use cases
and scenario scripts. We produced
these using FrameMaker, taking care to
cross-reference related text objects to-
gether. Some of the documentation and
modification was done during meet-
ings. Mostly, however, we resorted to
note-taking, updating the documents
between meetings.

Requirements documentation. We iden-
tified 16 scenarios for the meeting
scheduler, which are presented as use
cases in Table 1. The requirements
were sufficiently detailed to give rise to
14 of the 16 scenarios. Of the remain-
ing two, one scenario (Late-Coming
Participant) arose as we analyzed an-
other, Slow Responder, in which a po-
tential participant does not respond in
time for the meeting to be scheduled.
In Late-Coming Participant, a poten-
tial participant becomes a participant
after the meeting has been scheduled.
The new participant’s schedule may re-
quire that the meeting be rescheduled.
Just as in Slow Responder, an action that
affects an agent (person or thing doing
the action) is delayed, requiring the sys-
tem to recover. In Slow Responder, the
delayed action is the participant’s re-
sponse; in Late-Coming Participant, it is
the initiator’s inclusion of the person in
the participant set. In both cases, the re-
covery action is to reschedule.

Looking for analogies of t h~s type is an
effective way to identify important sce-
narios. The driving question each time is
“What can go wrong with t h ~ ~ action?”

For example, the scenario Self-Ap-
pointed Active Participant, in which a new
active participant is added to the existing
ones, is not covered by the requirements,
but Substitute Active Participant, in
which a new active participant substitutes

Figclre 2. Scenario family for scenario 2 in Table 1 (Slow Responder). A scenario family
has mbcases; in this scenario, they are ordinary (2a), active (2b), and important (24.
These mbcases sharefi.agments - in this case, t h e j m eight actions, but then branch
into different outcomes.

for someone else after scheduling has ’ els of complexity:
commenced, is included. This scenario is + Complete scenarios or families of sce-
similar enough to suggest the Self-Ap- narios. A scenario can have subcases,
pointed Active Participant scenario be- ~ which then makes it a family. Figure 2
cause the only difference between them is ~ shows an example of a scenario family
that, in the first, the new active participant for scenario 2 in Table 1 (Slow Respon-
is substituted; whereas, in the second, he der) The three subcases, ordinary, ac-
or she is added. tive, and important, share an initial set

This discovery strategy seems quite of actions but then branch.
general: whenever a membership-chang- + Epsiodes or phases. The shared ac-
ingactionoccurstoacollectionofentities, tions in different cases are called
stakeholders should consider if the system episodes or phases. Episodes are also
can handle other, similar changes and, if sequences of actions but are more fine-
so, analyze scenarios that explore them. If grained. For example, the initial actions
not, stakeholders should refine the re- of scenario 2 in Figure 2 represent the
quirement to state precisely what input scenario’s initiating and responding
will be rejected. ’ phases. Figure 3 shows five episodes,

two of which (Initiating and Respond-
Representing scenurios. Natural-language ing) have actions identical to those in

summaries are at the extreme of infor- Figure 2 , even though the five episodes
mality. More formal are tabular repre- are for a different scenario (scenario 8
sentations. Table 2 gives a more formal from Table l), in which the initiator re-
representation for the No Conflict use solves a scheduling conflict by suggest-
case (first row) in Table 1. Tables, un- ing other times. This scenario arose be-
like natural language, encode temporal ~ cause the requirements do not stipulate
sequences unambiguously. ’ how long the scheduler should wait or

In our case study, we represented sce- 1 what actions it should take to remind
narios as sequences of actions at two lev- the tardy participant or the initiator.

I E E E S O F T W A R E 2 5

Episode 1 : Initiating
1.1 Initiator determines important, active, ond other participants
1.2 Initiator prescribes date range
1.3 Initiator osks for exclusion and preference set from potential participants
1.4 Initiator asks adive participants for equipment requirements
1.5 Initiitor osks important participants for location preferences

Episode 2 Responding
2.1 Participants respond to request for exclusion and preference sets,
equipment requirements (far active participants), and preferred locations
(for important participants)

Episode 3: Scheduling
3.1 Scheduler chooses meeting time

5.1 initiator determines extended date range

Figure 3. Epi.rodic stmctwe ofscenaj-io 8 in Table 1 (Date coi$ict; initiator extends
date range) and the actio?? stmcture of each episode. F?w of the fiw episodes contain
the same actions as those IT? the scenai-io in Figwe 2. Initiating contains the filst fizle
actions ZIT Figure 2; Responding contains action 6.

i Agent Action

Scheduler

Scheduler

Find meeting times and locations that are in preference set and not
in exclusion set

Notify initiator of available times

Initiator Select time and location L- ~

Agent Action

Scheduler Find meeting times and locations that are in preference set and
not in exclusion set

Notitj initiator of scheduled meeting time anti location time Scheduler

Agent Action

Scheduler Find meeting times and locations that are in preference set and
not in exclusion set

Scheduler Notify initiator of conflict 1

level of d e t d Scenarios may be more
o r less detailed. For exaniple, the
episode Scheduling, during which the
scheduler determines the time and 10-
cation for the meeting, must cover
three cases. l W e s 3 through 5 show
three scripts for those cases. Tables 3
and 4 are successful cases (no conflict):
rnultiple meeting times and one Ineet-
ing time, respectively. In Table 5, there
is no feasible schedule, so the case is un-
successful.

Related to the level of detail is the de-
gree to which the terms used to describe
a scenario represent instances. AI the sce-
narios presented so far are generic because
their agents are not agent instances, like
specific names, hut agent types, like par-
ticipant and initiator. When agents of the
same type interact, or when several agents
of one type interact with one agent of an-
other type, it is more useful to have agent
instances to avoid confusion. Each agent
instancc must then be given a nanie ancl
properties.

The same argument applies to data ob-
jects. The term “meeting” would hardly
be satisfactory if six or seven meetings of
the same type are being scheduled. Stake-
holders should replace such generic terms
with instances, like weekly progress meet-
ing.

Consider the unsuccessful use case in
which no meeting is feasible. A more spe-
cific case is Anrue Out Of Town, in which
an initiator, Esther, has scheduled a partic-
ular meeting that requires the attendance
of h i e (active), Kenji (important), and
Colin (ordinary). The meedng must be
held next week, but Kenji and Colin can
attend only on days when Annie is out of
town. This is a much more concrete sce-
nario than the scenarios considered so far.

However, introducing instances into
scripts has the drawback of doubling their
size and possibly introducing irrelevant
details. Single actions in the generic sce-
narios translate into multiple action in-
stances in the instantiated scenario. (We
found 51 actions in the script for Annie
Out Of Town, for example, as compared
with 2 1 actions in the scheduling episode.)
Compare the initiating episode of Figure
3 with the detailed script in‘Iable 6, for ex-
ample.

2 6

1

M A R C H 1 9 9 4

But size is not the only factor to con-
sider in weighing the effects of using in-
stances. Instances make scenarios more
concrete, whch may make requirements
discussion easier and help resolve conflicts
more quickly. We are currently investi-
gating thls possibility.

Requirements discussion. Figure 4
shows how a requirements discussion
evolves. Here the requirements infor-
mation being challenged is not a re-
quirement, but a fragment of a scenario
(Sc8.3) that explores the planning of a

replanning phase of the Slow Respon-
der scenario described earlier.

The scenario hgment is Esther's ac-
tion of determining that the drop-dead
date for scheduling the meeting should be
Friday noon. (We introduced the concept
of a drop-dead date to avoid the situation
in whch the scheduler has not received all
the participants' preferences by the time
the meeting should have occurred. At the

an answer to an unstated question (the
answer is actually an assumption). Q33
asks when the drop date can be relative
to the date range for meeting that Esther
originally proposed. In other words,
when exactly is the latest time that the
decision about scheduling the meeting
must be made? This question is resolved
by answer A26. A9 answers the unstated
question about when meetings can be

Figure 4. Sample requirements discussion for the meeting scheduler: The infomation being challenged is a scenario j i -apen t
(Sc8.3), not a requirement. Sc standsfor scenario, Rq for requirement, Q for question, A for answer, and Cfor change request.

Agent

Esther

Esther

Esther

Esther

Esther

Esther

Esther

Scheduler

Scheduler

Scheduler

Scheduler

Adion

Creates new meeting

Determines that Kenji is an important participant

Determines that Annie will be presenting

Determines that Colin is an ordinary participant

Types meeting description

Sets data range to be Monday - Friday next week (It’s Wednesday
p.m. now)

Determines drop-dead date is Friday noon

Sets timeout to be Fri 9am

Sends boilerplate message to Colin requesting constraints

Sends boilerplate message to Kenji requesting constraints and
preferred location

Sends boilerplate message to Annie requesting constraints and
equipment requirements

held by restricting meeting times to
weekdays only.

The resolution of question Q3 3 leads
to two change requests: C17 (which adds
a new requirement), and C29 (which ex-
tends an existing requirement). The new
requirement, Rq8.4.2, is subsumed by
the more general requirement Rq8.4,
which must therefore also be changed.

This example illustrates several
points about the Inquiry Cycle model.

+ You do not have to initiate re-
quirements discussions by analyzing
documented requirements. In this ex-
ample, we analyzed a scenario, yet it still
produced changes to the requirements.

+ Shortcuts are useful and in-
evitable. The assumption A9 answered
a question that was not worth stating.
Furthermore both it and the resolution
of another question, A26, were obvious
enough to skip any explicit rationale.

+ Not all discussion elements lead
immediately to changes but they should
be addressed eventually. The assump-
tion A9 was recorded, but it had no ef-
fect on the requirements in this itera-
tion of the cycle. Until we got around
to changing the requirements to reflect
the assumption, they were essentially
incomplete.

A resolution may lead to several
nonlocal changes. Answer A26 led to
changes to two separate requirements
(Rq 8.4 and Rq3).

2 8

+ A requirement may be the resul
of several, differently motivate(
changes. Here, requirement Rq8.L
stems from five separate changes, eacl-
resulting from a discussion about somc
requirement or scenario fragment.

+ Requirements are themselve!
structured. The requirements in thir
example are numbered in sequencc
(Rq3 comes after Rq8) and hierarchi.
cally (Rq8.4 subsumes the more specifi
ic Rq8.4.2).

Effectiveness of scenarios. As the previous
example supports, scenarios are at least
as effective as the requirements docu-
ment in prompting questions about re-
quirements. About half the questions
(55 percent) about the meeting sched-
uler were raised while analyzing or con-
structing scenarios. Recording ques-
tions definitely helps keep track of open
issues. All the questions were answered,
one of them directly by a scenario; the
others by answers. Most answers (94
percent) explicitly answered questions,
rather than being assumptions or facts
attached to requirements.

Most of the discussion consisted of
raising possibilities that existing require-
ments did not cover, rather than deliber-
ating among alternatives or argumg about
the rationale for decisions. The average
question gave rise to only 1.3 answers.
Only about one-third of the recorded an-

swers represented alternatives that had
been rejected.

Reasons were given for about half the
answers (43 percent of the selected an-
swers, 50 percent of the rejected ones).

Kinds of questions. Requirements discus-
sions were triggered by several distinct
types of questions.

What-is. These questions request
more information about a requirement
(not a scenario) and are usually resolved
by a definition. One of the meeting
scheduler’s original requirements was
that it keep the participants involved in
the scheduling process. We asked the
what-is question, “What is meant by
‘keeping participants involved’?”

+ How-to. These questions ask how
some action is performed. They arise
from requirements and scenarios and
may be resolved by analyzing a sce-
nario. To effectively create meeting-
scheduler scenarios, we had to know
how the organization handles conflicts
because the original requirements left
the choice of conflict-handling method
open.

+ Who. These questions request
confirmation about the responsible
agent. Stakeholders can answer them
through scenario analysis by looking a t
the agents listed in scripts. We found
scenarios particularly helpful in clarify-
ing policy issues and the division of re-
sponsibility between the system and
users. In looking a t meeting-scheduler ~

scenarios, we found ourselves asking
who determines if the type of partici- 1 1
pant is ordinary, active, or important?

What-kinds-of: These questions
request further refinements of some
concepts. T h e meeting scheduler’s
original requirements did not state
what kinds of meetings should be sup-
ported, for example, so we had to ask.

+ When. These questions ask about
the timing constraints on some event or 1
events. We did not know in many sce-
narios at what point the scheduler
should stop waiting for a participant to
respond and just go ahead and schedule
the meeting. On the one hand, the
meeting cannot be scheduled until at
least some potential participants have
responded; on the other hand, schedul-

1

1

I1

M A R C H 1994

ing can certainly not be delayed until
after the proposed meeting time. By
asking this “when” question, we discov-
ered that the original requirements had
failed to account for the concept of a
drop-dead date - the time the sched-
uler makes its best schedule on the in-
formation available. This concept was
essential to a more detailed specifica-
tion of the scheduling requirements.
Stakeholders may disagree about how
the system determines the drop-dead
date or if it is fixed, but they cannot es-
cape the conclusion that a drop-dead
date is needed.

+ Relationship. These questions ask
how one requirement is related to an-
other. The drop-dead date just men-
tioned has implications for the inter-
pretation of other requirements. For
example, are there constraints on the
drop-dead date, given the current date
and the initiator’s proposed date range
for the meeting? Obviously a fixed
drop-dead date of seven days is going to
be unworkable in a system that must
call meetings a t shorter notice.

Although most of the questions raised
were about the term or idea being ana-
lyzed at the moment, there were also
many instances in which analyzing one re-
quirement or scenario suddenly prompt-
ed a question about something else.

It is not practical to untangle the train
of thought in most such cases, and we do
not try. The results of the train of thought,
however, are very useful and should not be
lost. We call these serendipitous discus-
sion elements parenthetical insights.

Parenthetical insights can be recorded
in the same way as more logical discussion
elements. For example, if a stakeholder
asks a question about drop-dead dates
wMe inspecting a scenario that does not
feature the setting or expiration of a drop-
dead date, that question should still be at-
tached to the current scenario because it
is the current focus of inquiry. This
method of a t t achg questions to the cur-
rent focus is less burdensome than having
to explicitly switch context. Of course, if a
stakeholder does not act on the discussion
quickly by revising the requirements to
include the concept of a drop-dead date,
another stakeholder may encounter the
same need in another scenario and rec-

ommend an alternative, conflicting I of the communication medium?
change. Stakeholders seldom justify their as-

Questions that lead to parenthetical sumptions or consider alternatives. As-
insights are raised in two ways, both of sumptions, like answers to explicit ques-
which occurred equally often in the ex- tions, may be retracted. Given the
periment when analyzing the require- insidious nature of unrecognized but false
ments directly and when analyzing sce- assumptions and their tentative nature,
narios: you should flag all as-

sumptions carefully and
make an extra effort to
justify and authorize as-
sumptions, consider al-

SHOULD FLAG them occasionally. Be-
cause A9 in Figure 4 an-

rectly and does not
answer an explicit ques-

that it records an assump-
tion. Our prototype hy-

aries (particularly the degree of automa-

+ What-if questions.
It is especially informa-
tive toaskaboutcasesin INSlDlOUS
which an action could
go wrong or its precon- NATURE, YOU ternatives,andreconsider
ditions could be unsat-
isfied. Pursuing this
type of question often ASSUMPTIONS notates a requirement di-
leads to insights about
apparently unrelated
system features. ~n ex- ALTERNATIVES. tion, you can clearly see
ample is, what would
happen if t he late-
comer responds with preferences after pertext system provides standard queries
the meeting has already been scheduled for stakeholders to list unchallenged as-
and the preferences conflict with the sumptions.
schedule? This question can prompt Assumptions seem commonest when
the team to investigate the relative sta- discussing implementation constraints or
tus of meeting participants when theboundaries betweentheproposedsys-
scheduling conflicts arise and if this has tem and its environment - especially in
any bearing on whether or not a partic- market-driven projects, where bound-
ipant is important.

+ Follow-on questions. These stem tion) are often fuzzier than in contractual
from other pending questions. An im- projects. For example, the original meet-
portant category of follow-on question ing scheduler requirements did not state
is where one question generalizes an- if the system is mediated by electronic
other. The answer to the new, broader mail or uses a shared calendar database.
question, may lead to changes in the re- ~ They also did not state if the scheduler
quirements in places other than the one , should communicate with the partici-
that led to the question. Consider the 1 pants or just display the schedule infor-
question, is an important participant’s I mation to the initiator.
attendance vital? In other words, can a We found scenarios useful in challeng-
meeting go ahead without an important ing assumptions about the system bound-
participant? This suggests the follow- aries and in helping us make a commit-
on question: Is an active participant’s ment to a range of options. In this case, we
attendance vital? You can generalize decided to make the scheduler itself an e-
both these questions into a second fol- mail participant. An equally valid inter-
low-on question: What are the precon- pretation would have been to have a sin-
ditions for holding a meeting? gle user invoke the scheduler and have

that user be responsible for sending mes-
sages and interpreting replies.

Stakeholders must draw the proposed
system’s boundary by surfacing assump-
tions such as h s , because progress be-
comesimpossibleunlessanassumptionor
decision is made. Without a real customer
(for example, when end users or customer
representatives are temporarily unavail-

GIVEN THEIR

AND CONSIDER I

Assumptions. Stakeholders often make
assumptions - that is, they answer a
tacit question about the requirements
without articulating the question. For
example, an assumption about the
meeting scheduler’s communication
medium could be construed as an an-
swer to the question, what is the nature

I E E E S O F T W A R E 2 9

Fimre 5. Reszclts ofanalyzing the requirements fir the meeting schedulel: The ovals
de& instances of; particula; element ofInqu&y Cycle model; the numbers on the
arrows are the instances of that partinclar transition ?om one element to anothel:
Some of the arrows represent shortcuts - they cut across the circular flow depicted in
Figure 1. The numbers on these arrows indicate bow ofen a particular shortcut
occurred.

able, or when the developers are design-
ing a product for a market), such assump-
tions may lead to the questions being an-
swered tentatively in several different
ways. The stakeholders can then pursue
the consequence of each plausible system
boundary.

Requirements evolution. We found that
there are three types of change re-
quests: mutation, restriction, and edito-
rial. A mutation request calls for a
change or addition to the requirements
themselves. Thus, when such a change
is enacted, the system being described
changes.

ArRFtrictirm request, on the other hand,
calls for a change to the requirements doc-
ument, expressed as the addition of a clar-
ification or definition. The system is fur-
ther constrained and potential
ambiguities are removed, but the o r i p a l
intent is unchanged.

An editorial request is a request to re-
word or rewrite some requirement. It is
not intended to remove ambiguity, but to
correct grammatical 01

to introduce consistent
as changing “potential
tential participant.”

. spelGg errors or
terminology, such
attendee” to “po-

In our experiment, about two-thirds of

these changes (65 percent) were part of a
full inquiry cycle consisting of questions,
answers, reasons and a change. Of the
shortcuts to the inquiry, about half the dis-
cussions (54 percent) omitted questions,
the changes in these cases resulting from
discussion about assumptions (which in
turn clarified requirements) that were at-
tached directly to the requirements docu-
ment or scenario. The rest (56 percent)
omitted answers, too. The changes in
these cases arose directly from require-
ments analysis.

Also, more than half the changes to
the meeting-scheduler requirements (58
percent) stemmed from analyzing sce-
narios rather than reviewing the re-
quirements document itself. About a
quarter of the questions (28 percent)
that arose while analyzing the require-
ments document itself could not be an-
swered except by constructing and ana-
lyzing scenarios.

Despite the number of changes, the
number of requirements increased by
only one, from 38 to 39. Most change re-
quests applied to requirements, not sce-
narios (by a margin of 28 to three). This is
to be expected: the purpose of the Inquiry
Cycle is to improve requirements; the
purpose of scenarios is to make them
clearer.

~

30

ANALYSIS OF RESULTS

Figure 5 shows the number of times
each type of model element and transition
occurred for the meeting scheduler. The
ovals show the number of instances of that
element type; the arcs show the number
of instances of that transition type. We as-
signed numbers to all paragraphs and sub-
paragraphs of the requirements docu-
ment to get 38 distinct requirements in
the original version. Later, we revised the
requirements to 39.

The figure shows that stakeholders
raised 3 3 questions about 1 1 requirements
and 22 scenario fragments. Of the 38
change requests, only 29 were acted on,
resulting in 41 separate modifications to
the original requirements. These modifi-
cations had the net effect of adding a re-

~ quirement.
Usefulness of scenarios. There is little

doubt that scenarios can be useful for
elaborating requirements. In our expe-
rience, some questions about require-
ments are not easily answered except by
resorting to scenario analysis. About
half the improvements to a set of re-
quirements came from analyzing sce-
narios, not from analyzing require-
ments documents themselves.

We have only begun to investigate dif-
ferent forms of scenario analysis and their
effectiveness in clarifying and improving
requirements. We are especially interest-
ed in comparing the value of general, the-
matic descriptions of scenarios with de-
tailed, instantiated scenarios. Intuition
suggests that increased detail is more ap-
propriate once you know more about the
svstem. Paradoxicallv. however. our me- ,, I 1

liminary work suggests that fully instanti-
ated scenarios are equally useful early in
requirements analysis. Perhaps the effort
required to construct them forces stake-
holders to surface and discuss assumptions

,

that would otherwise be hiddLn for
longer. A team of stakeholders may even
go as far as role-playing a concrete sce-
nario (as we did in the case of Annie Out
Of Town).

Suitability of model. Our experience
convinces us that the Inquiry Cycle vo-

M A R C H 1 9 9 4

cabulary is expressively adequate for
the types of discussions held during re-
quirements analysis. Intelligent tool
support would require a more explicit
and formal model of the domain (meet-
ing scheduling) and a richer theory of
speech acts and transformations. How-
ever, increased formality would defeat
the object of using the Inquiry Cycle
model as a foundation for directing and
systematizing exploratory thought dur-
ing the requirements phase.

Because our goal is to devise guidelmes
and principles that help analyze require-
ments for real systems - with a balance
between regimenting an inherently infor-
mal and situated activity and providing no
guidance at all -we believe that the In-
quiry Cycle model's level of abstraction is
an appropriate one.

The Inquiry Cycle model makes it eas-
ier to record discussion information in
two ways:

+ I t is artifact-based. Unlike most
idea-generation and issue-based meth-
ods, the Inquiry Cycle is directed at re-
viewing existing artifacts. Therefore,
discussion always centers around the
current requirements.

t Shortcuts are always possible. For ex-
ample, a stakeholder may record an as-
sumption about implementation con-
straints by annotating the appropriate
requirement without having to raise a
spurious question first.

Because discussions are attached to re-
quirements or scenario components and
may be consolidated into rationale ob-
jects,' we assume that the rationale for re-
quirements should be fairly easy to re-
trieve. But because our emphasis has been
on keeping track of ephemeral reasoning
to improve requirements analysis, not to
justify reasoning for subsequent imple-
menters, we have not investigated how re-
quirements discussions are used in later
stages of development. We do believe,
however, that stakeholders (especially
maintenance programmers) might find it
very useful to know the reasons for a re-
quirement.

Level of effort. Extrapolating from our
experiment, we estimate that a full elab-
oration of all 16 scenarios for the meet-

~
~

I E E E S O F T W A R E

ing scheduler, several iterations of the
inquiry cycle, and a formal revision
process would take approximately 500
to 1,000 person-hours.

If we had developed the resulting
product in what Barry Boehm calls a
semidetached development mode and de-
livered about 32,000 lines of code, his
Basic Cocomo model estimates a project
effort of 146 Derson-

structures (obtained through inter-
views, reading, and observation), re-
solve structural conflicts among the I '
structures, assign role responsibilities
to the goals, and propose the introduc- i
tion of information technology to sup-
port specific responsibilities.

Different types of scenarios occur in
several parts of this strategy. We are

currentlv analyzing. the
months.' Since aLsemide-
tached project typically
spends seven percent of its
total development effort
in requirements and plan-
ning, about half of whch
is actually spent doing re-
quirements analysis, the
requirements effort
would require 4.7 person-
months, or about 750 per-
son-hours.

. -
~~

financial services orga-
THE INQUIRY nization ofan academic

institution to elaborate '
MODEL MAY the strategy.
NOT REQUIRE t Transition to design. 1

Following work in the 1
MORE EFFORT, object-oriented analy-

sis/object-oriented de-
sign communities, we REFOCUSING are looking at the tran-

OF EFFORT. sition from scenario-

JUST A

Another sanity check
is to compare our projected effort with
that required to perform a Joint Applica-
tion Design session.6 If the session lasts for
one week and involves 10 stakeholders
full-time, with two person-weeks of
preparation and two of follow-up, the
total effort would be 800 person-hours.

Obviously, these estimates are only
very rough. However, that our numbers
are in agreement with both other devel-
opment modes shows that the Inquiry
Cycle model may not require more effort,
just refocused effort.

he Inquiry Cycle model has been T a satisfactory framework for investi-
gating requirements-analysis issues. Since
this case study, we have been working to
refine it and pursue larger scale applica-
tions. Topics we have selected for addi-
tional effort include

+ Scenario types. We are investigat-
ing the representations and values of
different types of scenarios. We are also
investigating goal-based heuristics that
suggest what scenarios to analyze and
which of those to elaborate further.
The relationship between goals and
scenarios seems to be particularly direct
and fruitful in exploring business-pro-
cess reengineering. Our approach is to
analyze different stakeholders' goal

based requirements 1
analysis to object iden-

tification and responsibility-driven de-
sign.

+ Tool support. Although our empha-
sis is on process, not tools, our experi-
ence shows that tool support is an im-
por tan t factor in the success of
inquiry-based requirements analysis.
We chose a commercial document pro-
cessor for our case study over a proto-
type tool that we had developed our-
selves.' That tool, which was based on
Emacs, was not very usable. To follow
an inquiry-based approach, we believe
that the user must have access to an ef-
fortless annotation environment.

We have recently implemented Tu-
iqiao, a hypertext support tool for the In-
quiry Cycle model, to provide a more
transparent annotation environment.' AI-
though the inquiry cycle is best described
from a bird's eye view (as in Figure 4), in
which the types of information and their
relationships are viewed from above, our
experience suggests that the view provid-
ed by a support tool should center on re-
quirements documentation. Tuiqiao ac-
cordingly presents requirements
discussion, rationale, and change requests
as cascading annotations to the require-
ment or scenario. This means that while
mspecting a requirement (or fragment of
a scenario), a user can easily call up the

~~ ~~~~~~

31

SL-GMS
. . . for unprecedented
performance
Build precision, animated
screens for visual display
and interactive control of
real-time applications.
Since 1984 SL has offered true object-
oriented graphics develo ment tools and
software components-- t i e most advanced
available--to help build state-of-the art, high
performance dynamic gra h i d applications.
They dramatically simpli6 the work needed
to create interface screens of any complexity
and animate them with your data.

rn Real-time equipment status-Banbury Mixer

Oil refinery tank farm

Supported systems:
nearly all varieties of U N I X on S U N ,
HP, IBM, MIPS, DEC (V M A I p h a ,
OpenVMSIOSF-1) , also X Window,
Intel: Windows NT, 0 9 2 . For SGI
SL generates display pipe-line code
to reach real-time native speeds.

Call: 4151927-1724

Sherrl Il-LuDlnski

SL Corporation
Suite 110 Hunt Plaza
240 Tarnal Vista Boulevard
Corte Madera, CA 94925
Q 1994 Sherrill-Lubinski Corporation

open questions or assumptions that have
been posted about it, any change requests
referring to it, and its rationale (what ear-
lier decisions led to it).

Tuiqiao supports the use of link re-
versal and querying to help users find
requirements information. To support
rationale management, it lets users find
reasons for current rationale by navi-
gating backward through a version his-
tory of requirements, scenario-ele-
ment, and discussion-element nodes. It
also lets users plan and monitor the
analysis process by checking for in-
validly linked nodes that may represent
unchallenged assumptions or unimple-
mented changes.

+ Case stzldy research. Although the
meeting scheduler is a rich and realistic
problem, the “stakeholders” really
don’t have a stake in the solution to the
degree that real stakeholders in a com-
mercial or industrial system do. To
broaden our practical experience with
the model, we plan to apply it and pro-
totype tools to real system develop-
ment projects in the telephone industry
starting immediately. We plan to apply
Tuiqiao to the requirements-analysis
phases of several projects including
LANWAN design, telecommunica-
tions system development, and the de-
velopment of CASE environments for
telecommunication systems. In these
case studies, we will seek to answer how
scenarios are used to challenge the re-
quirements of more dttailed systems,
and how the model’s components are
used during an extended project in-
volving many people. +

Colin Potts is an associate
professor in the College of
Computing at Georgia In-
stitute of Technology,
where he is a member of
the Software Research
Center and the Graphics,
Visualization and Usability
Center. His research inter-
ests include the definition

and design of interactive systems and computer-
supported cooperative work.

Potts received a PhD in cognitive psychology
from Sheffield University. He is a member of the
IEEE Computer Society and ACM.

Annie I. Anton is a PhD
candidate in computer sci-
ence at the Georgia Insd-
tute of Technology, where
she is a member of the
Software Research Center
and the Center for Infor-
mation Management Re-
search. Her research inter-
ests include the definition

of information-system requirements, computer-sup-
ported cooperative work, and software processes.

Ant6n received an MS in computer science from
the Georgia Institute of Technology She is a mem-
ber of the IEEE Computer Society and ACM.

and an M S in computer science from Toyko Insti-
tute of Technolom.

Address questions about this article to Potts at
Georgia Institute of Technology, College of Com-
puting, Atlanta, GA 303!2-0280; pottsQcc.gatech.
edu.

REFERENCES
I. C. Potts and K. Takahashi, “An 4ctive Hypertext Model for System Requirements,” Pror. Workshop

2 . M. Lubars, C. Potts, and C. Richter, “Developing Initial 004 Models,” Proc. Int’l Conf: Sojiuure

3 . W Kunz and H. Rittel, “Issues as Elements of Information Systems,” Working Paper 13 1, Inst. Urban

4. N. Goldman, “Three Dimensions of Design Development” Pror. A.441, h e r . Assoc. for Artificial In-

5. B. Boehm, SoflUinre Engineering economic^, Prentice-Hall, Engleuood Cliffs, NJ., 1981.
6. J. U700d and D. Silver,~obinr,4pplication Design, John Uiley L% Sons, New York, 1989.
7. K. Takahaski and C. Potts, “Tuiqiao: A Hypertext loo1 for Requirements .4nalysis” Tech. Report GIT-

Sofc2.um Specification nnd Deslgn, IEEE CS Press, Los Alamitos, Calif., 1993, to appear.

Eng., IEEE CS Press, Los Alamitos, Calif., 1993.

and Regional Development., Univ. Calif. at Berkeley, Berkeley, Calif., 1970.

telligence, 1983.

I

CC-94107, Georgia Inst. of Technology, Atlanta, 1994.
I

Reader Service Number 5 M A R C H 1 9 9 4

