
An Empirical Study of Regression Test Selection TechniquesTodd L. Graves�Mary Jean HarroldyJung-Min KimzAdam PorterxGregg Rothermel{April 28, 2000AbstractRegression testing is the process of validating modi�ed software to detect whether new errors havebeen introduced into previously tested code, and provide con�dence that modi�cations are correct. Sinceregression testing is an expensive process, researchers have proposed regression test selection techniquesas a way to reduce some of this expense. These techniques attempt to reduce costs by selecting andrunning only a subset of the test cases in a program's existing test suite. Although there have been someanalytical and empirical evaluations of individual techniques, to our knowledge only one comparativestudy, focusing on one aspect of two of these techniques, has been reported in the literature. Weconducted an experiment to examine the relative costs and bene�ts of several regression test selectiontechniques. The experiment examined �ve techniques for reusing test cases, focusing on their relativeabilities to reduce regression testing e�ort and uncover faults in modi�ed programs. Our results highlightseveral di�erences between the techniques, and expose essential tradeo�s that should be considered whenchoosing a technique for practical application.1 INTRODUCTIONAs developers maintain a software system, they periodically regression test it, hoping to �nd errors causedby their changes, and provide con�dence that their modi�cations are correct. To support this process,developers often create an initial test suite, and then reuse it for regression testing.The simplest regression testing strategy, retest all, reruns every test case in the initial test suite. Thisapproach, however, can be prohibitively expensive { rerunning all test cases in the test suite may requirean unacceptable amount of time. An alternative approach, regression test selection, reruns only a subsetof the initial test suite. Of course, this approach is imperfect as well { regression test selection techniquescan have substantial costs, and can discard test cases that could reveal faults, possibly reducing faultdetection e�ectiveness.This tradeo� between the time required to select and run test cases and the fault detection ability ofthe test cases that are run is central to regression test selection. Because there are many ways in whichto approach this tradeo�, a variety of test selection techniques have been proposed (e.g., [1, 4, 7, 8, 12,15, 20]). Although there have been some analytical and empirical evaluations of individual techniques[4, 18, 20, 21], to our knowledge only one comparative study, focusing on one aspect of two of thesetechniques, has been reported in the literature [16].We hypothesize that di�erent regression test selection techniques create di�erent tradeo�s betweenthe costs of selecting and executing test cases, and the need to achieve su�cient fault detection ability.Because there have been few controlled experiments to quantify these tradeo�s, we conducted such a�National Institute of Statistical Sciences, and Software Production Research Department, Bell Laboratories, 1000 E. War-renville Rd., Naperville, IL 60566, graves@bell-labs.com.yDepartment of Computer and Information Science, Ohio State University, harrold@cis.ohio-state.edu.zDepartment of Computer Science, University of Maryland at College Park, jmkim@cs.umd.edu.xDepartment of Computer Science, University of Maryland at College Park, aporter@cs.umd.edu.{Department of Computer Science, Oregon State University, grother@cs.orst.edu.



study. Our results indicate that the choice of regression test selection algorithm signi�cantly a�ects thecost-e�ectiveness of regression testing. Below we review the relevant literature, describe the test selectiontechniques we examined, and present our experimental design, analysis, and conclusions.2 REGRESSION TESTING SUMMARY AND LITER-ATURE REVIEW2.1 Regression TestingLet P be a procedure or program, let P 0 be a modi�ed version of P , and let T be a test suite for P . Atypical regression test proceeds as follows:1. Select T 0 � T , a set of test cases to execute on P 0.2. Test P 0 with T 0, establishing P 0's correctness with respect to T 0.3. If necessary, create T 00, a set of new functional or structural test cases for P 0.4. Test P 0 with T 00, establishing P 0's correctness with respect to T 00.5. Create T 000, a new test suite and test execution pro�le for P 0, from T , T 0, and T 00.Each of these steps involves important problems. Step 1 involves the regression test selection problem: theproblem of selecting a subset T 0 of T with which to test P 0. Step 3 addresses the coverage identi�cationproblem: the problem of identifying portions of P 0 or its speci�cation that require additional testing.Steps 2 and 4 address the test suite execution problem: the problem of e�ciently executing test suitesand checking test results for correctness. Step 5 addresses the test suite maintenance problem: theproblem of updating and storing test information. Although each of these problems is signi�cant, werestrict our attention to the regression test selection problem.Note that regression test selection is applicable both in cases where the speci�cations have notchanged, and where they have changed. In the latter case, it is necessary to identify the test casesin T that are obsolete for P 0 prior to performing test selection. (Test case t is obsolete for programP 0 if and only if t speci�es an input to P 0 that is invalid for P 0, or t speci�es an invalid input-outputrelation for P 0.) Having identi�ed these test cases and removed them from T , regression test selectioncan be performed on the remaining test cases. Note further that the identi�cation of obsolete test casesis necessary if any test case reuse is desired (whether by test selection or retest-all), because if we cannote�ectively determine test obsolescence, we cannot e�ectively judge test correctness.2.2 Regression Test Selection TechniquesA variety of regression test selection techniques have been described in the research literature. A survey byRothermel and Harrold [19] describes several families of techniques; we consider three such families, alongwith two additional approaches often used in practice. We here describe these families and approaches,and provide a representative example of each; Rothermel and Harrold [19] and the references for thecited techniques themselves provide additional details. Later, in Section 3.2.3, we provide details on thespeci�c techniques that we use in our experiments.2.2.1 Minimization TechniquesMinimization-based regression test selection techniques (e.g., [5, 8]), hereafter referred to as minimizationtechniques, attempt to select minimal sets of test cases from T , that yield coverage of modi�ed or a�ectedportions of P .For example, the technique of Fischer et al. [5] uses systems of linear equations to express relationshipsbetween test cases and basic blocks (single-entry, single-exit sequences of statements in a procedure). Thetechnique uses a 0-1 integer programming algorithm to identify a subset T 0 of T that ensures that everysegment that is statically reachable from a modi�ed segment is exercised by at least one test case in T 0that also exercises the modi�ed segment. 2



2.2.2 Data
ow TechniquesData
ow-coverage-based regression test selection techniques (e.g., [7, 15, 22]), hereafter referred to asdata
ow techniques, select test cases that exercise data interactions that have been a�ected by modi�ca-tions.For example, the technique of Harrold and So�a [7] requires that every de�nition-use pair that isdeleted from P , new in P 0, or modi�ed for P 0 be tested. The technique selects every test case in Tthat, when executed on P , exercised deleted or modi�ed de�nition-use pairs, or executed a statementcontaining a modi�ed predicate.2.2.3 Safe TechniquesMost regression test selection techniques | minimization and data
ow techniques among them | arenot designed to be safe. Techniques that are not safe can fail to select a test case that would haverevealed a fault in the modi�ed program. In contrast, when an explicit set of safety conditions can besatis�ed, safe regression test selection techniques guarantee that the selected subset, T 0, contains all testcases in the original test suite T that can reveal faults in P 0.Several safe regression test selection techniques have been proposed (e.g., [4, 11, 20, 23]); the theorybehind safe test selection and the set of conditions required for safety have been detailed in Rothermeland Harrold [19]. For example, the technique of Rothermel and Harrold [20] uses control-
ow-graphrepresentations of P and P 0, and test execution pro�les gathered on P , to select every test case in Tthat, when executed on P , exercised at least one statement that has been deleted from P , or at least onestatement that is new in or modi�ed for P 0.2.2.4 Ad Hoc / Random TechniquesWhen time constraints prohibit the use of a retest-all approach, but no test selection tool is available,developers often select test cases based on \hunches", or loose associations of test cases with functionality.One simple approach is to randomly select a predetermined number of test cases from T .2.2.5 Retest-All TechniqueThe retest-all technique simply reuses all existing test cases. To test P 0, the technique e�ectively \selects"all test cases in T .2.3 Previous Empirical WorkUnless test selection, program execution with the selected test cases, and validation of the results takeless time than rerunning all test cases, test selection will be impractical. Therefore, cost-e�ectiveness isone of the �rst questions researchers in this area have studied.Rosenblum and Weyuker [17, 18] and Rothermel and Harrold [20, 21] have conducted empirical studiesto investigate whether certain regression test selection techniques are cost-e�ective relative to retest all.Rosenblum and Weyuker applied their regression test selection algorithm, implemented in a tool calledTestTube, to 31 versions of the KornShell and its associated test suites. For 80% of the versions, theiralgorithm required 100% of the test cases. The authors note, however, that the test suite for KornShellcontained a relatively small number (16) of test cases, many of which caused all components of the systemto be exercised.In contrast, Rothermel and Harrold applied their regression test selection algorithm, implemented ina tool called DejaVu, to a variety of 100-500 line programs, for which savings averaged 45%, and to alarger (50,000 line) software system, for which savings averaged 95%.Thus, although our understanding of the issue is incomplete, there is some evidence to suggest thattest selection can provide savings. Therefore, further empirical investigation of test selection is warranted.The only comparative study of regression test selection techniques [16] that we are aware of in theliterature to date was performed by Rosenblum and Rothermel and compared the test selection resultsof TestTube and DejaVu. Their study showed that TestTube was frequently competitive with DejaVuin terms of its ability to reduce the number of test cases selected, but that DejaVu sometimes substan-tially outperformed TestTube. The study did not consider relative fault detection abilities, or comparetechniques other than safe techniques. 3



2.4 Open QuestionsNone of the studies just described examined non-safe techniques, and none compared more than twotechniques. Because non-safe techniques can discard fault-revealing test cases in T (test cases in T thatwould reveal faults in the modi�ed program), whereas safe techniques, provided certain conditions aremet, do not discard such test cases, the tradeo�s between test selection and fault detection should beexplored, and these techniques should be compared.Several questions arise when we compare safe and non-safe techniques:� How do techniques di�er in terms of their ability to reduce regression testing costs?� How do techniques di�er in terms of their ability to detect faults?� What tradeo�s exist between test suite size reduction and fault detection ability?� When is one technique more cost-e�ective than another?� How do factors such as program design, location and type of modi�cations, and test suite designa�ect the e�ciency and e�ectiveness of test selection techniques?It is these questions that we wish to address through our empirical studies.3 THE EXPERIMENT3.1 Operational ModelTo answer our questions we needed to measure the costs and bene�ts of each regression test selectiontechnique. To do this we constructed two models: one for calculating the cost of using a regressiontest selection technique, and another for calculating the fault detection e�ectiveness of the resulting testsuite. We here restrict our attention to the costs and bene�ts de�ned by these models, but there aremany other costs and bene�ts these models do not capture. Some possible additions to the models arementioned in Section 5.3.1.1 Modeling CostLeung and White [13] present a cost model for regression test selection techniques. Their model considersboth test selection and identi�cation of inadequately tested components; we adapt it to consider just thecost of a regression test selection technique relative to that of the retest-all approach.In our model, the cost of regression test selection is A+ E(T 0), where A is the cost of the analysisrequired to select test cases and E(T 0) is the cost of executing and validating the selected test cases. Thecost of the retest-all technique is E(T ), where E(T ) is the cost of executing and validating all test cases.This model makes several simplifying assumptions. It assumes that the cost of executing test casesis the same under regression test selection and the retest all approach, and that test cases have uniformcosts [13]. It also assumes that all sub-costs can be expressed in equivalent units, whereas, in practice,they are often a mixture of CPU time, human e�ort, and equipment costs [18].Given this model, we needed to measure two things: the reduction in the cost of executing andvalidating test cases, and the average analysis cost. Given our assumptions, the former can be measured interms of test suite size reduction, as ( jT 0 jjT j ). For several reasons, however, we did not measure analysis costsdirectly. Most important, we did not possess implementations of all techniques, and instead were requiredto simulate techniques for which we had no implementations. Furthermore, because the experimentaldesign required us to run over 264,400 test suites, we used several machines. We did not believe thatthe performance metrics taken from di�erent machines were comparable. Instead we try to estimate howlarge analysis costs can be before they outweigh reductions in test suite size (see Section 4.3).3.1.2 Modeling Fault Detection E�ectivenessTest selection techniques attempt to lower costs by selecting a subset of an existing test suite, butthis approach may allow some fault-revealing test cases to be discarded. Because an important bene�tof testing is that it detects faults, it is important to understand whether, and to what extent, testselection reduces fault detection. We considered two methods for calculating reductions in fault detectione�ectiveness.On a per-test-case basis: One way to measure a reduction in the fault detection e�ectiveness ofa regression test selection technique, given program P and faulty version P 0, is to identify those test4



cases that are in T and reveal at least one fault in P 0, but that are not in T 0. This quantity can thenbe normalized by the number of fault-revealing test cases in T . One problem with this approach is thatmultiple test cases may reveal a given fault. In this case some test cases could be discarded withoutreducing fault detection e�ectiveness; however, this measure penalizes such a decision.On a per-test-suite basis: Another approach is to classify the results of test selection into one ofthree outcomes: (1) no test case in T is fault-revealing, and, thus, no test case in T 0 is fault-revealing;(2) some test case in both T and T 0 is fault-revealing; or (3) some test case in T is fault-revealing, butno test case in T 0 is fault-revealing. Outcome 1 denotes situations in which the test suite is inadequate.Outcome 2 indicates test selection that does not reduce fault detection, and outcome 3 captures thosecases in which test selection compromises fault detection.We selected the second method for use in our analysis. Under this approach, for each program, ourmeasure of fault detection e�ectiveness is: one minus the percentage of cases in which T 0 contains nofault-revealing test cases (i.e., outcome 3 occurs).It is important to note that both of these approaches measure a test suite's ability to detect at leastone fault. They do not measure the exact number of faults detected. As we shall discuss further below,this distinction is unimportant for all but one of our subject programs, as they have versions that eachcontain exactly one fault.3.2 Experimental InstrumentationProgram Number of Lines Number of Test Pool Average TestName Functions of Code Versions Size Suite Sizereplace 21 516 32 5542 398print tokens 18 402 7 4130 318print tokens2 19 483 10 4115 389schedule2 16 297 10 2710 234schedule 18 299 9 2650 225totinfo 7 346 23 1054 199tcas 9 138 41 1608 83space 136 6218 33 13585 4361player 766 49316 5 1033 154Table 1: Subjects.3.2.1 ProgramsFor our study, we used nine C programs, with a number of modi�ed versions and test suites for eachprogram. The subjects come from three sources:� a group of seven C programs collected and constructed initially by Hutchins et al. [9] for use inexperiments with data
ow- and control-
ow-based test adequacy criteria,� an interpreter for an array de�nition language, used within a large aerospace application, space,� one large subsystem, player, from the internet game Empire.We slightly modi�ed some of the programs and versions in order to use them with our tools. Table 1describes these subjects, showing the number of functions, lines of (non-comment) code, distinct versions,test pool size, and the size of the average test suite. We describe these and other data in the followingparagraphs.The Siemens Programs. Seven of our subject programs originated with a previous experimentperformed by Hutchins et al. [9]. These programs are written in C, and range in size from 7 to 21functions, and from 138 to 516 lines of code.For each of these programs Hutchins et al. constructed a test pool of black-box test cases [9] usingthe category partition method and Siemens Test Speci�cation Language tool [2, 14]. They then addedadditional white-box test cases to ensure that each exercisable statement, edge, and de�nition-use pairin the base program or its control 
ow graph was exercised by at least 30 test cases.Hutchins et al. also created faulty versions of each program (between 7 and 41 versions) by modifyingcode in the base version; in most cases they modi�ed a single line of code, and in a few cases theymodi�ed between 2 and 5 lines of code. Next, they discarded modi�cations that they considered either5



too easy to �nd (found by more than 350 test cases) or too di�cult to �nd (found by fewer than three)with their previously developed test cases.Space. Space has been used as a subject for several empirical studies of testing [23, 24, 25]. As Table 1indicates, it contains 136 C functions and 6,218 lines of (non-comment) code. The program functions asan interpreter for an array de�nition language (ADL): it reads a �le that contains several ADL statementsand checks the contents of the �le for adherence to the ADL grammar and to speci�c consistency rules.If the ADL �le is correct, space outputs a data �le containing a list of array elements, positions, andexcitations; otherwise the program outputs error messages.Space has 33 versions, each containing a single fault that was discovered during the program's devel-opment or later by the authors of this paper.The test pool for space was constructed in two stages. First we obtained a pool of 10,000 test casesfrom Vokolos and Frankl, who had constructed the pool for another study by randomly generating testcases [24]. We then added new test cases until every executable edge in the control 
ow graph wasexercised by at least 30 test cases.1 This process yielded a test pool of 13,585 test cases.Player. Player is the largest subsystem of the internet game Empire. As Table 1 indicates, it con-tains 766 functions (all written in C) and 49,316 lines of (non-comment) code. Player is essentially atransaction manager that operates as a server. Its main routine consists of initialization code followedby a �ve-statement event loop in which execution pauses and waits for receipt of a user command. Userscommunicate with the server by running a small client program that takes user input and passes it ascommands to player. When player receives a command it processes the command | usually by in-voking one or more subroutines | and then waits for another command. While processing commands,player may return data to the user's client program for display on the user's terminal, or write data toa local database (a directory of ASCII and binary �les) that keeps track of game state. The event loopand the program terminate when a user issues a \quit" command.Since its creation in 1986, the Empire code has been enhanced and corrected many times, with mostchanges involving the player subsystem. For this experiment we located a \base" version of player with�ve distinct modi�ed versions (see Table 2). Each version had been created by merging, multiple, oftenunrelated, changes made by one or more independent coders. These versions, therefore, do not forma sequence of modi�cations of the base program; rather, each is a unique modi�ed version of the baseversion. Version Functions Modi�ed Lines of Code Changed1 3 1142 2 553 11 7264 11 625 42 221Table 2: Modi�ed versions of player.Player is an interesting subject for several reasons. First, the program is part of an existing softwaresystem that has a long history of maintenance at the hands of numerous coders, and in this respect,the system is similar to many existing commercial software systems. Second, as a transaction man-ager, player is representative of a large class of software systems that receive and process interactiveuser commands, such as database management systems, operating systems, menu-driven systems, andcomputer-aided drafting systems. Third, we were able to locate real modi�ed versions of one base versionof player. Finally, although not huge, the program is not trivial.There were no test cases available for player. Therefore, we created our own test cases using theEmpire information �les as an informal speci�cation. These �les describe the 154 player commands anddescribe the parameters and special e�ects associated with each.The test cases we constructed exercise each parameter, special e�ect, and erroneous condition de-scribed in the information �les. Because the complexity, parameters, and e�ects of commands varywidely, we had to create between one and 30 test cases for each, ultimately producing a test pool of 1033test cases. To avoid a possible source of bias, we constructed this test pool prior to examining the codeof the modi�ed versions.1We treated 17 edges exercisable only on malloc failures as nonexecutable.6



Each test case is a sequence of between one and 28 lines of ASCII text representing potential usercommands. To use these test cases, however, some additional sca�olding was needed. Therefore wecreated a testing script and several accompanying tools.Note that, unlike the Siemens programs and space, the modi�ed versions of player do involve spec-i�cation changes. In our test case creation, however, we ensured that no test cases in the test pool wereobsolete for any of the player versions. (Section 2.1 describes the necessity of this.) Thus, regressiontest selection can be applied to all of these test cases, on each of the versions.3.2.2 Tests, Test Pools, Versions, and Test SuitesWe used the test pools for the Siemens programs and space to create two types of test suites for each ofthose programs: edge-coverage-adequate and random. To obtain edge-coverage-adequate test suites, weused the test pools for the base programs, and test coverage information that we gathered for the testcases, to generate 1000 edge-coverage-adequate test suites for each program. More precisely, to generatea test suite T for base program P from test pool Tp, we considered each edge in the control 
ow graphG for P . For each such edge E, we obtained a list of test cases Tp(E) � Tp that had exercised that edge.We then used the C pseudo-random-number generator \rand", seeded initially with the output of the C\time" system call, to obtain an integer which we treated as an index i into Tp(E) (modulo jTp(E)j).We added test case i from Tp(E) to T if it was not already present in T . For each program we generated1000 such test suites; Table 1 lists the average sizes of the test suites generated.To create test suites for player we used a di�erent approach. We viewed each player command asa unit of functionality, and created function-coverage-adequate test suites by selecting, from the set oftest cases for each command, one test case. We generated 100 such test suites, each containing 154 testcases.For each of the nine programs we also generated a set of random test suites, one for each coverage-based suite generated for the program. To generate the kth random test suite T for base program P(1 � k � 1000), we determined n, the number of test cases in the kth coverage-based test suite, and thenchose test cases randomly from the test pool for P and added them to T until T contained n test cases.This process yielded random test suites of the same size as the coverage-based suites.These test cases di�er in their ability to detect faults. Figure 1 uses boxplots2 to depict the distributionof the proportion of fault-revealing test cases for all test suites used in our studies over all programs. Wesee that the e�ectiveness of these test suites di�ers substantially across di�erent programs.Test cases for the Siemens programs �nd known faults with probability between .06% and 19.77%,while those for space �nd faults with probability between .04% and 94.35%. While the range is widefor space, the percentage of fault detecting test cases range from .77% to 4.55% for player. Over allversions, the median percentage of test cases detecting a fault is less than 7%.3.2.3 Test Selection TechniquesTo perform the experiments, we required implementations or simulations of several regression test selec-tion techniques. Note that in all cases in which simulation was necessary, our simulations were designedto ensure that we could obtain exact results with respect to test cases selected, allowing exact test suitesize reduction measures, and exact fault detection e�ectiveness measures.Minimization Technique. As a minimization technique, we created a simulator tool that selectsa minimal test suite T 0, such that T 0 is edge-coverage-adequate for a set of edges, in the control 
owgraphs for P or P 0, that are associated with code modi�cations. In this context, we considered an edgeto be associated with a code modi�cation if its sink is a node corresponding to a statement that has beendeleted or modi�ed for P 0, or added to P 0.To perform this process on the Siemens programs and space, we used Rothermel and Harrold'sregression test selection tool DejaVu (described below in reference to our safe technique), which selectsexactly the desired edges in cases (such as these) where programs do not contain multiple modi�cations.We then used test case execution information obtained through pro�ling to determine the test casesassociated with each edge, and we selected one test case through each such edge.2In a boxplot, a box represents a data distribution. The box's height spans the central 50% of the data and its upper andlower ends mark the upper and lower quartiles. The bold dot within the box denotes the median. The T-shaped whiskersindicate the 10% and 90% quantiles, respectively. All other detached points are \outliers". For comparing the averages of data,the median is more appropriate than the mean since it is less in
uenced by outliers.7
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Figure 1: Percentage of fault-revealing test cases across all program versions.On player we required a di�erent approach due to its inclusion of multiple modi�cations. We hand-instrumented the code of player, at the entry to each modi�cation point (at each location correspondingto an edge entering that point), to report the set of test cases that reached that point. We then selectedone test case through each point for inclusion in T 0, and when all selection was complete we eliminatedduplicate test cases.Data
ow Technique. As a data
ow technique, we simulated a tool by manually inspecting programmodi�cations, and generating a list of tuples that represent the de�nition-use pairs that are a�ected bythe modi�cations. In this context, we considered a de�nition-use pair to be a�ected by a modi�cation ifit had been deleted from P in obtaining P 0, or if it involved a de�nition or use contained in a statementor predicate that had been modi�ed in creating P 0.We used a data
ow testing tool [6] to identify the test cases in the test suite for each program thatsatis�ed the a�ected de�nition-use pairs for each version of that program. For each version, we createda set of selected test cases T 0 that contained all such test cases.The �rst step of this simulation process was human-labor-intensive, and it was not feasible to performthis process on the space and player programs; thus, we were able to apply this technique only to theSiemens programs.Safe Technique. As a safe technique, we used an implementation of Rothermel and Harrold's regres-sion test selection algorithm, implemented as a tool called DejaVu, and integrated with the Aristotleprogram analysis system. 3 We provide a brief overview of the approach here; Rothermel and Harrold[20] presents the underlying test selection algorithm and tool in detail, with cost analyses and examplesof its use.DejaVu constructs control-
ow graph representations of the procedures in two program versions Pand P 0, in which individual nodes are labeled by their corresponding statements. The approach assumesthat a test history is available that records, for each test case t in T and each edge e in the control 
owgraph for P , whether t traversed e. This test history is gathered by instrumentation code that is insertedinto the source code of the system under test.DejaVu performs a simultaneous depth-�rst graph walk on a pair of control 
ow graphs for eachprocedure and its modi�ed version in P and P 0, keeping pointers to the current node reached in eachgraph. During this walk, the algorithm examines the statements associated with the nodes in the two3Our experiments used the original tool on the Siemens programs and space; on player, it was necessary to simulate aportion of the tool's operations; however, the use of this simulation a�ects only tool analysis time, not test selection, and thusdoes not impact our results. 8



graphs, and the edges (representing control 
ow) leaving those nodes. When these are identical, thealgorithm continues its walk at the successor nodes; when these are non-identical, the algorithm placesthe edge it just followed into a set of \dangerous edges" and returns to the source of that edge, endingthat trail of recursion. After the algorithm has determined all the dangerous edges that it can reach bycrossing non-dangerous edges, it terminates. At this point, any test case t 2 T is selected for retestingP 0 if the execution trace for t { a listing of the edges, in the control 
ow graph for P , that were traversedby t when it was executed previously on P { contains a dangerous edge.DejaVu guarantees safety as long as equivalent execution traces on P and P 0 for identical inputsimply that P and P 0 will produce equivalent behaviors. As long as the three assumptions discussedin Rothermel and Harrold [20] hold, this condition is met and DejaVu is safe, necessarily selecting atleast all test cases in T that could, if executed on P 0, reveal faults in P 0. (In brief, the three necessaryassumptions are that (1) the test cases in T produced correct results when executed on P , (2) any testcases in T that are obsolete for P 0 (no longer represent speci�ed input-output relations for P 0) havebeen removed from T , and (3) the testing environment can be controlled such that P and P 0 executedeterministically on T .) For the programs and test suites that we studied, these conditions were met.Random Technique. As a random technique we created a tool that, given a selection percentagen and a test suite T , randomly selects n% of the test cases from T , outputting T 0, a reduced test suitecontaining only the selected test cases.Retest-All Technique. The retest-all technique required no implementation.3.3 Experimental Design3.3.1 VariablesThe experiment manipulated three independent variables:1. the subject program (9 programs, each with many modi�ed versions);2. the test selection technique (safe, data
ow, minimization, random(25), random(50), random(75),retest all); and3. test suite composition (coverage-based or random).On each run, with program P , version P 0, technique M , and test suite T , we measured:1. the ratio of the number of test cases in the selected test suite T 0 to the number of test cases in theoriginal test suite T ; and2. whether one or more test cases in T 0 reveals at least one fault in P 0.For each combination of program, version, technique,4 and test suite composition type we used 100 ofthe associated test suites. From these 100 data points we computed two dependent variables.1. average reduction in test suite size, and2. fault detection e�ectiveness (1 minus the percentage of test suites in which T would have revealedat least one fault in P 0, but T 0 did not).3.3.2 DesignThis experiment uses a full-factorial design with 100 repeated measures. That is, for each subjectprogram, we selected 100 coverage-based and 100 random test suites from the test-suite universe. Thenfor each program version we applied each applicable test selection technique to each of the 200 test suites.Finally, we evaluated the fault detection e�ectiveness of the resulting test suites.4Actually, for each applicable technique: recall from Section 3.2.3 that we did not apply the data
ow technique to space orto player. 9



3.3.3 Threats to Internal ValidityThreats to internal validity are in
uences that can a�ect the dependent variables without the researcher'sknowledge. Our greatest concern is instrumentation e�ects that can bias our results.Instrumentation e�ects are caused by di�erences in the test process inputs: the code to be tested, thelocality of the program change, or the composition of the test suite. In this study, we use two di�erentcriteria for composing test suites: one in which test suites are randomly selected from the test pool,and one in which the test suite must provide coverage. However, at this time we do not control for thestructure of the subject programs, nor for the locality of program changes. To limit problems related tothis, we run each test selection algorithm on each test suite and each subject program.3.3.4 Threats to External ValidityThreats to external validity are conditions that limit our ability to generalize the results of our experimentto industrial practice. We considered two sources of such threats: (1) artifact representativeness, and (2)process representativeness.Artifact representativeness is a threat when the subject programs are not representative of programsfound in industrial practice. There are several such threats in this experiment. First, most of the subjectprograms (the Siemens programs) are of small size. As discussed earlier, there is some evidence tosuggest that larger programs allow greater test suite size reduction, although at higher cost, than smallerprograms do. Thus, larger programs may be subject to di�erent cost-bene�t tradeo�s. We have begunto address this problem by studying the larger space and player programs. As we collect other largeprograms with versions and test cases we will be able to further limit, but not eliminate, these problems.Also, in most of the programs (Siemens and space) there is exactly one fault in every subject program.Industrial programs have much more complex fault patterns. Again, we will have to obtain furtherexperimental subjects and improve our measurement infrastructure in order to capture exactly whichof several faults are discovered by a test suite. We have begun to explore such improved measurementtechniques in our research [10].Threats regarding process representativeness arise when the testing process we use is not represen-tative of the industrial one. This may also endanger our results because our test suites may be more orless comprehensive than those created in practice. Also, our experiment mimics a corrective maintenanceprocess, but there are many other times in which regression testing might be used.3.3.5 Threats to Construct ValidityThreats to construct validity arise when measurement instruments do not adequately capture the conceptsthey are supposed to measure. For example, in this experiment our measures of cost and e�ectivenessare very coarse. For instance, they treat all faults as equally severe. Another problem is that ourmeasure of fault detection e�ectiveness captures the ability of a test suite to identify at least one fault.Ideally, this measure should, instead, capture a test suites' ability to detect all faults in a system. Forthe Siemens programs and space, which have exactly one fault in each version, these de�nitions areequivalent. For player, our e�ectiveness measures may be in
ated. As we discussed earlier, we arecurrently experimenting with new approaches to gathering this information.3.3.6 Analysis StrategyOur analysis strategy has three steps. First we summarize the data. Then we compare the ability ofthe test selection techniques to reduce test suite size, and we compare the fault detection e�ectivenessof the resulting test suites. Finally, we make several comparisons between program-analysis-based (i.e.,minimization, safe, and data
ow) and random techniques. For example, in one analysis we explore howlarge analysis costs can become before the program-analysis-based techniques become less cost-e�ectivethan random ones.4 DATA AND ANALYSISTwo sets of data are important for this study: the test selection and the fault detection summaries. Thisinformation is captured for every test suite, every subject program, and every test selection technique.The test selection summary gives the size (in number of test cases) of T and T 0. From this informationwe calculate the percentage reduction in test suite size. The fault detection summary shows whether10



T and T 0 contain any fault-revealing test cases. From this information we determine whether the testselection technique compromised fault detection e�ectiveness.5In addition to our use of boxplots to display data (as described in Section 3.2.2), we also use arraysof boxplots (a type of Trellis display [3]) to show data distributions that are conditioned on one or moreother variables (e.g., Figure 2). By conditioned, we mean that data are partitioned into subsets, suchthat the data in each subset have the same value for the conditioning variable. For example, Figure 3depicts the fault detection e�ectiveness for test suites created by di�erent techniques, conditioned on theprogram on which the test suite was run. That means that the data is partitioned into nine subsets; onefor each program. And then we draw one boxplot for each subset.4.1 Test Suite Size ReductionFigure 2 depicts the ability of each technique to reduce test suite size, conditioned on program. Forthese programs, we see that the random techniques extract a constant percentage of the test cases (byconstruction) and that minimization (by nature of the modi�cations made to the subjects) almost always(in 84% of the cases, most of the exceptions occuring for player) selects only 1 test case. The safe andthe data
ow techniques behave similarly on the Siemens programs (median reduced suite size is 60% forcoverage-based suites and 54% for random). Interestingly, the safe technique performs best on the twolarge programs: median reduced suite size is roughly 5% for player and 20% for space.4.2 Fault DetectionFigure 3 depicts the fault detection e�ectiveness of test suites selected with each technique, conditionedon program. Overall, we found that minimization had the lowest fault detection e�ectiveness. The e�ec-tiveness of the random techniques increased with test suite size, but that the rate of increase diminishedas size increased. Again the safe and data
ow techniques exhibited similar median performances on theSiemens programs, but the data
ow distribution has several outliers (e.g., for the schedule, schedule2,and print tokens2 programs). This occurs because in some cases the data
ow technique allows faultsto go undetected, while the safe technique does not.One interesting observation is that the fault detection e�ectiveness of test suites chosen by the mini-mization technique is particularly high for player. One reason for this is that versions of player containmultiple modi�cations. Thus, the average size of the selected test suite is larger for player than for otherprograms, giving these test suites more chances to identify faults.4.3 Cost-Bene�t Tradeo�sFigure 4 depicts tradeo�s between test suite size reduction versus fault detection e�ectiveness of eachselection technique. Each panel in Figure 4 is a scatterplot depicting the performances of one regressiontest selection technique. Each scatterplot contains a number of points and one \X" symbol. Eachpoint represents the performance of the associated regression test selection technique when applied to aprogram-version and test suite pair. Each point is plotted at position (x,y), where x is the reduced testsuite size and y is the fault detection e�ectiveness of the reduced test suite. The x-coordinate of the \X"symbol is equal to the median reduced test suite size for the observations depicted in the scatterplot.The y-coordinate is equal to the median fault detection e�ectiveness.For random techniques the selected test suite size is predetermined, while its e�ectiveness is unknownin advance. Random techniques were very e�ective in general (median 88% for random25). Overall, asthe selection ratio grows, e�ectiveness also tends to grow, but the rate of growth diminishes.The safe technique always had 100% e�ectiveness, but its reduced test set sizes vary widely (from 0%to 100%). Data
ow shows very similar performance, but since it is not safe, it can fail to select somefault detecting test cases.Minimization, on the other hand, chose very few test cases, while its e�ectiveness varied widely (0%to 100%).If we do not consider the analysis costs of non-random techniques, then the decision to use a particularregression test selection technique will depend on the penalty for missing faults in relation to the cost ofrunning more test cases. This will obviously depend on many context-speci�c factors.In this section we explore the e�ect of analysis costs for non-random techniques on the relationshipsin Figure 4. To do this we examine how each non-random technique compares to random techniques5Readers who wish to examine the data should contact Adam Porter.11
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Figure 2: Test suite size reduction by selection technique, conditioned on program.
rand25

rand50

rand75

retest

min

dflow

safe

player

0 20 40 60 80 100

print_tokens print_tokens2

0 20 40 60 80 100

rand25

rand50

rand75

retest

min

dflow

safe

replace schedule schedule2
rand25

rand50

rand75

retest

min

dflow

safe

space tcas

0 20 40 60 80 100

tot_info

Fault Detection Effectiveness After Selection(%)

T
es

t S
el

ec
tio

n 
M

et
ho

d

Figure 3: Fault detection e�ectiveness by selection technique, conditioned on program.12
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Figure 4: Fault detection e�ectiveness and test suite size, irrespective of analysis cost.and to each other. We assume that the analysis costs for non-random techniques can be stated in termsof the cost to run a single test case (analysis costs for random techniques are nearly 0), and then wecharacterize how many test cases can be run (i.e., how long analysis can take) before the non-randomtechnique becomes less cost-e�ective than random ones.We begin with minimization, the rule with the smallest test suites and lowest fault detection e�ec-tiveness. We will compare its detection rate to that of a randomized rule calibrated to have the sametotal computational cost. Our goal is to �nd an upper bound, k, on the analysis cost of minimization.That is, if the analysis costs are greater than the cost of running k test cases, then there exists a randomtechnique that is less expensive and has the same fault detection e�ectiveness.We then perform similar analyses comparing the safe technique to other randomized rules and toretest all. Conceivably, we could perform a similar analysis comparing the data
ow technique to otherrandomized rules as well. In our experiment, however, the safe and data
ow techniques behaved similarlyon the Siemens programs: their fault detection e�ectiveness results were nearly identical, and for manyversions they chose the same average numbers of test cases per test suite. Moreover, we are not able toapply the data
ow technique to space or player. Consequently, in the next section we analyze only thesafe technique.After each comparison we discuss our interpretations and their limitations.4.3.1 Minimization versus RandomizationThe test suites selected by minimization were both the smallest and the least e�ective of all selectedtest suites. In 84% of the cases minimization chose exactly one test case and it never chose more thantwelve.6 On the median, minimization test suites found 16% of the faults that would have been foundby retest-all.Techniques other than minimization typically selected test suites with on the order of 100-200 testcases, and were much more e�ective at detecting faults. Because minimization does choose very few testcases, there may be situations in which its use is appropriate { namely when test cases are very expensiveto run and missed faults are not considered excessively costly. Therefore, further study is warranted. In6Of course, this is to be expected since most program versions contained exactly one change. For programs with multiplechanges, larger minimization suites would be selected, as with player.13



Coverage Suites (k = 2:7)player print tokens print tokens2 replace schedule schedule2 space tcas tot infoRandom 0 4 1 12 7 9 3 36 13Min 5 3 9 20 2 1 30 5 10Random Suites (k = 4:65)player print tokens print tokens2 replace schedule schedule2 space tcas tot infoRandom 0 4 1 12 4 8 10 31 14Min 5 3 9 20 5 2 23 10 9Table 3: The number of program versions for which the modi�ed Random and Minimization techniquesoutperformed each other.particular, we are also interested in knowing how much analysis cost minimization can incur before arandom technique would be preferable.In this analysis we assume that a technique's analysis time is equivalent to the cost of running ktest cases. We then determine a critical value of k for which there is a random reduction rule whoseperformance is as good as or better than minimization's. If analysis costs exceed this critical value, thena random reduction rule may be more cost-e�ective.Ideally we would like to compare minimization to a rule that chooses 100p% test cases at random,where this is equal to the average size of minimization test suites. In our experiment we constructedrandom test suites only with p 2 f0:25; 0:5; 0:75; 1g (and, in e�ect, p = 0). So we simulate the long-runbehavior of an arbitrarily-sized random technique by randomizing over values of p for which we have testsuites. For instance, if we want to simulate random(5), we use random(25) with probability 0.2, and dono regression testing at all (random(0)) with probability 0.8 (our experiments suggest that this approachunderestimates the e�ectiveness of the true random technique, and, thus, overestimates the value of kthat we are looking for).7For a �xed trial value of k, and program version, we computed the average test suite size usingminimization (call this x). We then used either random(25) or random(0), with the distribution chosento ensure that the average size of these test suites was x+k. We then compared the detection e�ectivenessof the two techniques. We continued to adjust k until the detection e�ectiveness was equal.For coverage-based test suites, we found that for k = 2:7, the randomized rule had higher detectionrates in 85 program-versions and minimization had higher detection rates in 85 program-versions. Forrandom test suites, we found that for k = 4:65, the randomized rule had higher detection rates in 84program-versions and minimization had higher detection rates in 86 program-versions (see Table 3).These results suggest that, for the programs we studied, the analysis costs for minimization must bevery small (less than the cost of running �ve test cases on the average) in order for minimization to becost-e�ective.4.3.2 Safe versus RandomizationThe analysis here is similar to the previous analyses, except that the safe technique always found the faultif a fault-revealing test case existed. Therefore no random technique has the same detection e�ectivenessas the safe technique. Instead, we look for random techniques that found a �xed percentage (100(1�p)%)of the faults. Then, we again determine a value of k, such that there is a randomized technique with thesame total cost as the safe technique and 100(1� p)% of the detection e�ectiveness.We found that for coverage-based test suites there exists a randomized rule with the same averagetest suite size (i.e., k = 0) as the safe technique that �nds faults 96.7% (p = 0:033) as often in half theprogram-versions as the safe technique does. When k = 0:1 there is a randomization rule as costly asthe safe technique that detects faults 99% as often in half the program-versions.For random test suites p = 0:11 when k = 0: a random rule with the same size test suites as safe �nds89% of the faults that safe did in half the program-versions. When p = 0:05, k = 10 and when p = 0:01,k = 25 (see Table 4).These results suggest that, for the programs we studied, the analysis costs that the safe techniquecan incur before becoming cost-ine�ective depend on the level of fault detection e�ectiveness we wouldaccept from a randomly selected test suite. The higher the e�ectiveness, the more analysis costs weshould be willing to incur.7Note that our simulation is not a practical selection rule because it assumes that we know a priori how many test cases willbe selected. Nevertheless, it does provide a measure of the usefulness of test selection algorithms.14



Coverage Suites (k = 0; p = 0:033)player print tokens print tokens2 replace schedule schedule2 space tcas tot infoRandom 0 5 6 13 5 9 15 10 22Safe 5 2 4 19 4 1 18 31 1Random Suites (k = 0; p = 0:11)player print tokens print tokens2 replace schedule schedule2 space tcas tot infoRandom 0 5 6 13 4 9 15 12 22Safe 5 2 4 19 5 1 18 29 1Table 4: The number of program versions for which the modi�ed Random and Safe techniques outperformedeach other.4.3.3 Safe versus Retest-allThe safe technique always found all faults that could be found given the test suites used. Therefore,a safe technique is preferable to running all test cases in the test suite if and only if analysis costs areless than the costs of running the unselected test cases. Figure 2 contains data showing the sizes of testsuites selected by the safe technique. It demonstrates that test suite reduction depends dramatically onthe program: selected test suites for schedule2 were typically 99% as large as the original suites, whilethose for player are about 5% as large.5 SUMMARY AND CONCLUSIONSIn this article we present initial results of an empirical study of regression test selection techniques. Thisstudy examined some of the costs and bene�ts of several regression test selection techniques. Our results,although preliminary, highlight several di�erences among the techniques, expose essential tradeo�s, andprovide an infrastructure for further research by ourselves and others.As we discussed earlier, this experiment, like any other, has several limits to its validity. Keeping thisin mind, we draw several observations from this work.� Minimization produced the smallest and the least e�ective test suites. Although fault detection isobviously important, there are cases where testing is very expensive. In these cases minimizationmay be cost-e�ective. Nevertheless, for the programs and test suites we studied, random selectionof just slightly larger suites (less than �ve more test cases) yielded fault detection results equivalentto those of minimization (on average) with little analysis costs. One limitation here is that \onthe average" applies to long-run behavior. Half of the time the random technique was as e�ectiveas minimization, half of the time it was not. If greater con�dence is required, then the randomtechniques will need to select more than �ve additional test cases. One approach to understandingthis issue better would be to restructure the analyses of Section 4.3 to include a desired con�dencelevel.Another limitation is that, in practice, we cannot know how many test cases minimization (or anyother regression test selection algorithm) would pick without actually running it. One approachto tackling this issue might be found in developing prediction models for regression test selectiontechniques (e.g., as in Rosenblum and Weyuker [18]).� The safe and data
ow techniques had nearly equivalent average behavior in terms of cost-e�ectiveness,typically detecting the same faults, and selecting the same size test suites. However, becausedata
ow techniques require at least as much analysis as the two most e�cient safe techniques[4, 20], we saw little reason to recommend data
ow if test selection alone is the goal. However,data
ow techniques can be useful in other components of regression testing, such as in identi�cationof portions of P 0 that are not adequately tested by T . In other words, our model does not captureall possible costs or bene�ts of regression test selection techniques, and thus, may be too coarse forsome situations.� The safe technique found all faults for which we had fault-revealing test cases while selecting 60%of the test cases on the median. However, we saw that for several programs it could not reduce thetest suites at all. Also, we found that, on the average, only slightly larger random test suites couldbe nearly as e�ective. Again, we have to remember that we are making a probabilistic assessment.This raises an important measurement question. That is, when should we analyze techniques likethese on a case by case basis, and when is an amortized analysis more appropriate. We are currentlyexploring alternate analysis techniques [10]. 15



� We found that our results were sensitive not only to the regression test selection techniques weused, but also to the programs, the characteristics of the changes, and the composition of the testsuites. We believe that it is important to understand more precisely how these factors a�ect ourtechniques. Without this information, we may mistake the e�ect of a non-representative workloadfor di�erences in techniques. This problem is related to the problem of developing prediction modelsfor regression test selection techniques. It will also be important to examine a broader range ofsubject programs.We are continuing this family of experiments. In the future, we plan to (1) improve our cost modelsto include factors such as testing overhead and to better handle analysis costs, (2) extend our analysis tomultiple types of faults, (3) develop time-series-based models, capturing notions of amortized analysis andnon-constant fault densities, and (4) rerun these experiments using larger programs with more complexfault distributions.6 ACKNOWLEDGMENTSThis work was supported in part by grants from Microsoft, Inc. to Ohio State University and OregonState University, by National Science Foundation National Young Investigator Award CCR-9696157 toOhio State University, by National Science Foundation Faculty Early Career Development Award CCR-9501354 to University of Maryland, by National Science Foundation Faculty Early Career DevelopmentAward CCR-9703108 to Oregon State University, by National Science Foundation Award CCR-9707792to Ohio State University, University of Maryland, and Oregon State University, by National ScienceFoundation Grant SBR-9529926 to the National Institute of Statistical Sciences, and by an Ohio StateUniversity Research Foundation Seed Grant. Siemens Laboratories supplied several of the subject pro-grams. Alberto Pasquini, Phyllis Frankl, and Filip Vokolos provided space and many of its test cases.Chengyun Chu assisted with further preparation of the space program and development of its test cases.Rui Wu and Lei Cao collected some of the data for the data
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