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Abstract 

Process data capture is the activity of obtaining in- 
formation about an existing software process. Process 
analysis is the manipulation of that information for 
purposes of problem identification. Capture and anal- 
ysis are key elements in any strategy for software PTO- 

cess improvement. We have developed a model of the 
software process that is based on a notion of events 
characterizing identifiable, instantaneous milestones 
in a process. We have also developed capture and 
analysis techniques suited to that model. This paper 
reports on a study that was undertaken to gain expe- 
rience with both the model and the capture and analy- 
sis techniques. In that study, we captured event data 
on several actual enactments of the build process of a 
large, complex software project within AT6T.  We en- 
tered the captured event data into a database and ran 
several queries against the data. The queries imple- 
ment a variety of analyses on the event data by  ex- 
amining relationships among events, such as depen- 
dencies and time intervals. The output of the queries 
are statistical data that can be used to guide the de- 
sign of process improvements. While the data we col- 
lected in the study are incomplete, our initial results 
demonstrate the viability of this approach to capture 
and analysis. 

1 Introduction 

Organizations are paying more and more attention 
to the processes they use to  carry out software devel- 
opment projects. One way to  attempt to improve a 
process is to  improve the underlying technology used 
in that  process, such as through faster computing 
hardware and more sophisticated development tools. 
Ultimately, however, it becomes necessary to study 
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and improve the dynamic interactions of the process 
itself, such as the steps that are carried out in the pro- 
cess, the roles and responsibilities assigned to project 
personnel, the manner and frequency of communica- 
tion in the process, and so on. In order to improve 
processes, or even to design new ones, it  is necessary to 
obtain concise, accurate and meaningful information 
about existing processes that can be used to  identify 
and eliminate problems and to develop and validate 
improvements. We refer to the activity of obtaining 
the necessary information as process data capture, and 
we refer to the manipulation of the captured informa- 
tion for problem identification as process analysis. 

We distinguish two kinds of process analysis, 
namely deductive analysis and retrospective analysis. 
Deductive analysis is concerned with analyzing an ab- 
stract specification of a process in some formal logic, 
with the goal of discovering inconsistencies or other 
anomalies that would be present in enactments of 
the process. The choice of formal notation governs 
what kinds of deductive analysis techniques can be 
applied to the specified process. A number of for- 
mal notations and associated deductive analysis tech- 
niques have been designed specifically for process spec- 
ification and analysis, including APPL/A [16], In- 
teract/Intermediate [lo], Marvel/MSL [2] and FUN- 
SOFT nets [SI. In addition, a number of formal no- 
tations and associated deductive analysis techniques 
for describing software systems have been adapted 
to process specification and analysis, including Petri 
Nets [l], CSP [6], LOTOS [13] and Statecharts 191. 

Retrospective analysis, on the other hand, is con- 
cerned with analyzing empirically gathered data  from 
several enactments of a process, with the goal of dis- 
covering patterns of anomalous behavior that can be 
eliminated in future enactments. A “post-mortem” is 
a typical kind of informal retrospective analysis that 
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is usually performed on a single data point (e.g., the 
most recently completed process enactment) in hopes 
nf finding egregious problems that can be easily elimi- 
nated in the future. We seek a more formal framework 
within which multiple data  points can be analyzed and 
compared through more powerful and objective ana- 
lytical techniques. 

We hypothesize that process problems ultimately 
lead to wasted intervals of time. We further hypothe- 
size that the causes of wasted time are best revealed by 
retrospective analysis of characteristic time intervals. 
For instance, a long period of idleness between the 
time a meeting is scheduled and the time it takes place 
may reveal poor planning for activities that  require a 
1c;ng preparation time. Bradac, Perry and Votta have 
also begun to  explore these hypotheses [5]. 

In order to  analyze a process’s characteristic time 
intervals, it is first necessary to capture the relevant 
data  about the significant events of the process, in- 
cluding the times at which those events occur. In 
deciding what information to  capture, it must be re- 
membered that the level of detail at which the pro- 
cess is modeled and captured determines the level of 
specificity with which process improvements can be 
prescribed. 

Capture techniques typically have been either 
purely manual or purely automated. Basili and Weiss 
describe a methodology for manual, forms-based col- 
lection of data  for use in evaluating and comparing 
software development methodologies [4]. Amadeus is 
a system for automated collection and analysis of pro- 
cess metrics within the Arcadia process-centered en- 
vironment [14]. Amadeus contains an event-action 
component for automating the generation and feed- 
back of metrics into the process in response to process 
events. Yeast is a general event-action system that 
is being used to  automate event capture in a vari- 
ety of processes in the UNIX@ environment [12]. We 
feel that  a hybrid approach to capture is necessary 
because purely automated approaches are inherently 
biased towards the computerized aspects of processes, 
while purely manual approaches are inefficient for high 
volumes of data. (For related views, see Basili and 
Rombach [3], and Sutton [15].) 

In this paper we describe an event-based software 
process model and techniques for data capture and 
retrospective analysis that are suited to the model. 
We also describe our initial results from a study in 
which we captured and analyzed the build process 
of a large, complex software project within AT&T. 

QUNIX is a registered trademark of UNIX System Labora- 
tories, Inc. 

Our event-based model is a general model that  can 
be used in conjunction with a variety of different cap- 
ture and analysis techniques. The capture technique 
we developed for our study is a hybrid of manual and 
automated approaches, while our analysis technique 
is based on statistical analysis of the time intervals 
contained in the captured process data. We entered 
the captured event data into a relational database sys- 
tem, allowing us to implement our analysis objectives 
as database queries. While the database aids us in car- 
rying out formal analysis, we have also found the data 
to be suitable for more informal analyses, in particular 
graphical display for process visualization. 

In Section 2 we describe in detail our event-based 
process model. In Section 3 we describe the build 
process that is the subject of our study. In Section 4 
we describe how this process is characterized within 
our event-based model, and we describe our work in 
capturing event data from actual enactments of the 
process. In Section 5 we describe two of the formal 
analysis queries we developed and the results of those 
queries. In Section 6 we conclude with a discussion 
of our plans for future work on capture and analysis 
techniques for event-based process models. 

2 The Event-Based Model 

As mentioned in Section 1, our model of software 
processes is based on a simple notion of events that  
occur at specific points in time. In this section we 
define what an event is in more detail, and we describe 
a general taxonomy of process events. 

2.1 Events and Event Intervals 

Figure 1 depicts the fundamental notions of events 
and event intervals, and their correspondence with 
process activities. The figure depicts three different 
activities, which are carried out in parallel by one or 
more persons or machines as part of a software pro- 
cess. The heavy, solid bars denote the periods of time 
during which separate instances of the activities occur. 

An event is an instantaneous happenstance that oc- 
curs during an activity a t  a specific, identifiable point 
in time; events are depicted in Figure 1 as solid circles. 
An event interval is the period of time between a pair 
of events. Any arbitrary pair of events can potentially 
define an interesting event interval. To date, we have 
found four kinds of event intervals to be particularly 
useful in process analysis. 

The first of these involves the events occurring 
within a single instance of a particular activity. Two 
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Figure 1: Events and Event Intervals. 

special kinds of events are the beginning and ending 
events, which we refer to as the BEGIN and END 
events, respectively. Figure 1 illustrates this kind of 
interval for the instance of Activity A carried out be- 
tween the BEGIN and END events at times t5 and 
t7. The BEGIN/END interval is intended to indicate 
the period of time during which the main purpose of 
the activity is being carried out. For some activities, 
however, this main period may be preceded by an ini- 
tial setup period and/or followed by a final wrapup 
period. It is often desirable to keep such setup and 
wrapup intervals as short as possible. Consider, for 
example, a meeting. The time between the scheduling 
of the meeting and the actual beginning of the meet- 
ing is the setup period. After the end of the meeting, 
a record of the meeting is generated and distributed 
during the wrapup period. In a sense, the meeting ac- 
tivity spans these setup, main, and wrapup time peri- 
ods. The instance of Activity B in Figure l illustrates 
this kind of activity, with the event interval associated 
with that  activity extending from the SETUP event a t  
time t4 to the WRAPUP event at time t9. 

The second kind of event interval is the complement 
of the event interval characterizing an instance of an 
activity. In particular, it is the period of time between 
the last event of one instance of the activity and the 
first event of the next instance of that  same activity. 
Such event intervals are often indications of idle, and 
possibly wasted, time. Figure 1 illustrates this kind of 
interval between the END event of the second instance 
of Activity A at time t7 and the BEGIN event of the 
third instance of Activity A at time t8. 

The third kind of event interval corresponds to the 

period of time throughout a sequence of instances of 
an activity. For instance, an activity that must be 
repeated until some goal has been met can be charac- 
terized by the interval between the first event of the 
first instance of the activity and the last event of the 
last instance of that activity; such an interval charac- 
terizes the amount of time needed to achieve the goal 
associated with the activity. Figure 1 illustrates this 
kind of interval between the BEGIN event of the first 
instance of Activity A at time tl  and the END event 
of the third instance of Activity A at time t l O .  

The fourth kind of event interval is an interval be- 
tween events of different activities. This kind of inter- 
val typically corresponds to the time taken between 
sequential steps in a process. Figure 1 illustrates this 
kind of interval between the END event of the first in- 
stance of Activity A a t  time t2 and the SETUP event 
of Activity B at time t4. 

While in our experience most activities involve mul- 
tiple events, there are some activities that are consid- 
ered to occur instantaneously and thus have a single 
event associated with their instances. We refer to the 
event of an instantaneously occurring activity as a DO 
event, as illustrated in the figure by the instances of 
Activity C at times t3 and t7. 

2.2 Event Taxonomy 

In order to  provide a more insightful event-based 
characterization of some process of interest, and to 
provide a richer level of detail in the information that 
is captured about that process, we have designed a 
general taxonomy of events characterizing the different 
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activities that  are carried out in a software process. 
The taxonomy comprises six categories of events: 

1. communication events; 

2. automation events; 

3. analysis events; 

4. work events; 

5. workday events; and 

6.  decision events. 

An instance of this taxonomy for a particular process 
will contain a number of event kinds within each cat- 
egory characterizing the particular activities of that 
process. Section 4 describes the instantiation of this 
taxonomy for the build process we studied. 

The first category of events is communication 
events. Communication plays a central role in large 
processes, for it is primarily through coordination of a 
sizable and sometimes geographically dispersed group 
of people that  large software systems are built. An 
instance of a communication activity can be charac- 
terized by the period of time between its initiation 
(the BEGIN event) and termination (the END event). 
Several kinds of communication may take place before 
actual communication between humans can occur; for 
instance, it  may be necessary to leave voice-mail mes- 
sages when some intended parties to a communication 
are unavailable. For clarity, we further identify the 
BEGIN events of communication intervals as either 
BEGIN-Send events or BEGIN-Receive events. 

The second category of events is automation events, 
which demarcate intervals of activity in which a com- 
puter performs some task, such as a compilation. In 
some cases, an automation activity is initiated by a 
setup procedure to  prepare the computer for the au- 
tomation task. For instance, job requests may be 
placed in a queue in order to  allocate computer re- 
sources more efficiently. In this case, the instances of 
the automation activity would be characterized by an 
interval starting with a SETUP event (denoting the 
beginning of the period during which the job is in the 
queue), followed by a BEGIN event (denoting the be- 
ginning of the requested task), and followed finally by 
an END event (denoting the completion of the task). 
Some automation activities may be terminated before 
they would complete normally. Thus, we further iden- 
tify the END events of automation intervals as either 
END-Normal events or END-Abort events. 

The next three categories of events are straightfor- 
ward characterizations of process activities carried out 

over intervals between corresponding pairs of BEGIN 
and END events. Analysis events identify intervals 
in which the results of a previous process chore are 
analyzed for validation or problem resolution; typi- 
cal analysis event intervals correspond to code inspec- 
tions, debugging sessions, and the like. Work events 
identify intervals in which a person is performing tasks 
such as fixing code, writing documentation, mount- 
ing a tape, and so on. Workday events correspond 
to  times at which a person stops or resumes work in 
the process; typical workday events include arriving 
at work, going to lunch, starting work on some other 
assignment not related to the process, and so on. 

The final category of events is decision events. De- 
cision events correspond to a person synthesizing the 
results of a number of previously completed activities 
and using information about those results to  select 
from a set of possible new activities to begin. Decision 
events are extremely sensitive to their inputs (i.e., the 
results of previous activities) and can thus provide a 
great deal of information about the efficiency of a pro- 
cess. For example, a decision may be made based on 
information gleaned from previously completed analy- 
sis intervals and in anticipation of an imminent work- 
day event. Retrospective analysis can reveal where 
additional information could have led to a better de- 
cision. Decisions are considered to be made instan- 
taneously and are thus characterized by a single DO 
event rather than by an event interval. 

3 Overview of the Subject Process 

The initial subject of our study was a software build 
process employed in a large project under development 
at AT&T. This process is an ideal one to examine be- 
cause it is regularly repeated with little change in its 
basic, day-to-day activities. The group responsible for 
official builds enacts the several-day process once ev- 
ery few weeks. The software that they build during 
one of these cycles consists of several million lines of 
source code partitioned into several dozen subsystems. 
Three major tools are used to build the software; we 
refer to them below simply as Buildl, Build2, and 
Build3. At the conclusion of the process, a small set 
of executable products have been built from the sub- 
systems and installed in system labs or test execution 
environments. Each product is targeted to  a different 
hardware component of the system. 

The build process involves several roles. The build 
owner coordinates the process, tracks down build 
problems, and communicates with developers located 
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around the world. The build administrator, at  the di- 
rection of the build owner, sets up the actual builds 
for execution according to  a written guidebook. The 
build owner also typically has several build assistants 
to  whom problem-tracking chores can be delegated. 

4 Capture of the Subject Process 

A critical aspect of this study was to determine how 
best to  capture, in some practical way, the full range of 
events in the taxonomy described in Section 2.2. We 
began by interviewing members of the group respon- 
sible for the build process under study and observing 
some of their activities during an actual enactment 
of the process. This allowed us to to  become famil- 
iar with the personnel involved (and they with us) as 
well as with the details of their activities and interac- 
tions. From these early experiences we learned several 
important things: 

0 It  is impossible to capture all events automati- 
cally, as desirable as that may be. Moreover, it 
would be inadequate to  capture only those events 
that could be captured automatically. 

the names of the affected files. This appears consistent 
with the way that the build owners themselves view 
their activities. We designed a simple log sheet, shown 
in Figure 2, to allow the observer to  easily capture the 
important information about an event. In particular, 
the observer is expected to record each event on a 
single line of the log sheet, giving a unique numeric 
identifier to the event (UIE) and noting the kind of 
the event, the date and time the event occurred, the 
names of the subsystems and products associated with 
the event, and the people involved in or contributing to 
the event. In addition, the observer is expected to  re- 
late this event to any other relevant, preceding events 
(in the field “Other UIE(s)”) and to indicate any other 
information contributing to the understanding of the 
event (in the field “Comments”). To make the task of 
assigning event kinds easier, we predefined a specific 
set of event kinds that we found relevant to the process 
under study; this set is an instantiation of the taxon- 
omy of Section 2.2. The event kinds are presented in 
Table 1, along with the codes used to identify them in 
the log sheets. On the whole, we found the log sheet 
to  be highly useful both for making the recorded data 
informative and for keeping it concise. 

The observer was responsible for recording events 
of all kinds except automation events. The automa- 
tion events were instead automatically derived from 
the log files produced by the build tools. This deriva- 
tion is performed “off-line”, which poses the problem 
of how to relate the automation events to the other, 
manually captured events. The solution we adopted 
was to assume that each automation event interval 
for a given subsystem is related to the analysis event 
interval for that subsystem beginning soonest in time 
after the automation interval. We record this assumed 
relationship in the “Other UIE(s)” field of the analysis 
events. 

0 It  is inappropriate to capture events by asking 
the members of the group themselves to either 
record the events as they occur or to log the events 
sometime later, such as at the end of the workday. 

0 It  is important to  decide upon an appropriate 
level of granularity for the captured events. At 
too fine a grain, it would be extremely difficult, if 
not impossible, to capture all necessary informa- 
tion about the events as they occurred. At too 
coarse a grain, we would likely miss important 
information that would contribute to our under- 
standing of the process. 

Based on these early experiences, we designed a tech- 
nique for process capture that relies upon indepen- 
dent, direct observation to  record those events whose 
capture could not be automated, and we developed 
tools to automatically derive event data from the log 
files generated by the build tools. 

We decided to place an observer alongside the build 
owner, since the build owner is clearly the focus of ac- 
tivity during the process. To avoid overloading the 
observer, we chose a granularity based on the sub- 
system. Thus, for example, events of the same kind 
occurring on multiple files of a particular subsystem 
would be recorded with the event kind and the name of 
the subsystem, but would not be distinguished by, say, 

5 Analysis of the Subject Process 

There are many kinds of properties one might want 
to discover about or enforce within a software process 
and, therefore, many kinds of analysis one might per- 
form. Some properties, such as satisfaction of safety 
or liveness requirements (e.g., freedom from deadlock), 
are difficult or impossible to detect through retro- 
spective analysis; deductive analysis is better suited 
to discovering the existence or non-existence of such 
properties. The kinds of analysis best suited to em- 
pirically gathered data include analysis of fairness in 
resource allocation, real-time performance of process 
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Figure 2: Log Sheet Used for Capture of the Build Process. 

n COMMUNICATION 

c1 
c 2  
c3 
c 4  
c 5  
C6 
c 7  
C8 
c 9  
c10 
c11 
c12 
C13 

BEGIN-Send-Call 
BEGIN- Send- VoiceMaiI 
BEGIN-Send-EMail 
BEGIN-Send-Fax 
BEGIN-Send-Visit 
BEGIN-Send-Hangup 
BEGIN-Send-Visit Not In 
BEGIN-Receive-Call 
BEGIN-Receive-VoiceMail 
BEGIN-Receive-EMail 
BEGIN-Receive-Fax 
BEGIN-Receive-Visi t 
END-Communication 

B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 

SETUP-Build1 
BEGIN-Build1 
SETUP-Build2 
BEGIN-Build2 
SETUP-Build3 
BEGIN-Build3 
END-Build-Normal 
END-Build- Abort 

A1 BEGIN-Analysis 
A2 END-Analysis 

WORK 

W1 BEGIN-Work 
W2 END-Work 

WORKDAY 

01 BEGIN-Other 
0 2  END-Other 

DECISION 

D1 DO-Decision 11 
Table 1: Event Kinds for the Build Process. 
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activities, resource utilization, and degree of concur- 
rency. Many such analysis tasks are naturally charac- 
terized in terms of relationships among process events. 

The basic approach in our analysis of the subject 
process has been to enter the captured event informa- 
tion into a relational database and to perform queries 
on the database that  analyze the relationships among 
the events to  reveal interesting characteristics of the 
process. The database system we use for our analysis 
experiments is DataShare [7], whose query language, 
Cymbal, provides powerful facilities for analyzing re- 
lationships among data  records. 

By way of example, this section describes two anal- 
ysis queries we have developed. The analysis queries 
are based on the following hypothesis: There are some 
subsystems that  are continual sources of build prob- 
lems from enactment to  enactment. Such problems 
may arise from a corruption of the original architec- 
ture of the subsystem, or from a large amount of 
special-case code required to  tailor system features to  
different configurations. Such problems produce faults 
that  may not be discovered until build time, resulting 
in two classes of undesirable phenomena at build time: 

1. There can be an inordinately large number re- 
builds of the same subsystem. This could be due 
to  a large number of faults discovered at build 
time, or a large number of unsuccessful attempts 
to eliminate a fault. 

2. There can be inordinately large amounts of time 
required to  eliminate faults. This could be due 
to the inherit difficulty of analyzing the code of 
the subsystem for fault isolation and elimination, 
or the lack of sufficient resources allocated to the 
subsystem for problem resolution. 

Such “problem subsystems” can be identified by ana- 
lyzing the event data  from at least two perspectives: 

1. From an automation-oriented perspective, prob- 
lem subsystems are revealed by large numbers 
of SETUP-Build or BEGIN-Build events for the 
subsystem (corresponding to phenomenon (1) de- 
scribed above) and/or long intervals of time be- 
tween builds of the subsystem (corresponding to 
phenomenon (2) described above). 

2. From a communication-oriented perspective, 
problem subsystems are revealed by long 
problem-solving communication intervals during 
the intervals between builds (again corresponding 
to phenomenon (2) described above). 

If the event data  revealed such phenomena in the same 
subsystem across several enactments, that subsystem 

would be a good candidate for an improvement of 
some kind. For instance, the subsystem could be given 
a higher priority during builds in subsequent enact- 
ments, or the development organization responsible 
for the subsystem could undertake root-cause analy- 
sis, an architecture redesign, or some other activity 
aimed at process improvement. 

The sections below describe the two queries we de- 
veloped to detect these phenomena. The queries ana- 
lyze the process event data from the two complemen- 
tary perspectives of automation and communication. 

5.1 Sample Analysis 1: Time Between 
Builds 

We developed the query SubsysInterbld to compute 
the average time between instances of each kind of 
build (Buildl, Build2 and Build3), for each subsys- 
tem; the query presents these averages for the three 
kinds of builds for all subsystems. 

To compute the averages, the query only analyzes 
the relationships between related groups of automa- 
tion events. In particular, an inter-build interval is 
identified by an END event for the particular kind of 
build on a particular subsystem, followed by a subse- 
quent corresponding SETUP event, or a subsequent 
corresponding BEGIN event if the next build had no 
SETUP event. The results of this query for one en- 
actment of the process are presented in Table 2. 

The statistics in Table 2 can be somewhat diffi- 
cult to analyze because of an inherent interdependency 
among the build tools. Scanning through the Buildl 
averages for the subsystems, we note that most sub- 
systems required at least six complete build cycles 
starting with Buildl, all possibly due to a number 
of fixes with widespread impact across subsystems. 
Thus, the Build2 averages for those subsystems are 
skewed somewhat by the fact that they involve pairs 
of Build2 intervals containing intervening Buildl in- 
tervals. By analyzing the statistical correlation be- 
tween different kinds of builds on the same subsystem, 
and between builds on different subsystems, one could 
more accurately characterize the effect of the interde- 
pendency among the build tools. 

Despite this interdependency, we see that the five 
subsystems with the greatest number of Build2s-s3, 
s4, s10, s32 and s37-all required roughly the same 
relatively short average time between BuildZs, even 
though they required different numbers of, and widely 
varying times between, their Buildls. In contrast, 
the subsystems with the fewest number of Build2s 
also had large average inter-build times for Build2. 
Furthermore, the number of Build2s for these latter 
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I d  Olh 22m (14) 
Od 22h 02m (16) 
I d  05h 59m (12) 
Od l l h  10m (30) 
Od 18h 52m (19) 
2d 13h40m (6) 
Od 23h 48m (15) 
I d  02h 57m (12) 
l d 2 0 h  l l m  (9) 
OdOOhOOm (0) 
I d  10h 39m (10) 
2d 15h 36m (6) 
Od OOh OOm (0) 
Od 15h 38m (21) 
I d  04h 28m (12) 
I d  14h30m (9) 
Id  05h 02m (15) 
Od 18h 21m (19) 
Od 21h OOm (16) 
I d  13h 15m (10) 
Od 19h l l m  (18) 
Od 22h 21m (15) 
Od 14h 02m (23) 
I d  l l h  41m (10) 
Od 18h 32m (19) 
Od 08h 12m (42) 
Od 17h 07m (19) 
Od 23h 15m (15) 
Od 15h Olm (20) 
I d  OOh O9m (14) 
Od l l h  46m (29) 
Od 22h 21m (16) 
2d 07h 17m (7) 
Od 15h 39m (22) 
2d l l h 4 7 m  (6) 
2d03h26m (7) 
Id  05h 02m (15) 
Od l l h  20m (27) 
I d  08h 42m (10) 
2d 13h27m (6) 
Od 20h 49m (16) 
Od 18h 28m (18) 
I d  04h 27m (12) 
I d  12h 26m (101 

Build3 
Od 07h 14m (16) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
Od OOh OOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
OdOOhOOm (0) 
l d 0 5 h 5 0 m  (5) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
Od OOh OOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
Od 03h 08m (37) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
OdOOhOOm (0) 
Od OOh OOm (0) 
Od OOh OOm (0) 
Od OOh OOm (0) 
OdOOhOOm f0) 

Table 2: Average Time Between Builds (and Number of Builds) for One Enactment of the Build Process. 
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subsystems nearly matched the corresponding num- 
ber of Bui ldis ,  suggesting a number of possible ex- 
planations. For example, it  may be that  Bui ldls  for 
these latter subsystems were performed more to ac- 
count for changes to  global interfaces than as a direct 
result of fixes being made to  those subsystems. Cor- 
relation analysis would reveal the proper explanations 
for these phenomena. 

Based on these preliminary observations, we con- 
clude that  the subsystems with the greatest number 
of Build2s are the subsystems that required the great- 
est amount of problem resolution in this version of the 
software. If these observations were correlated across 
multiple enactments for the same subsystems, they 
would be objective evidence of the need for some kind 
of process improvement targeted to those subsystems. 

5.2 Sample Analysis 2: Duration of Com- 
munication Threads 

For purposes of our second analysis, we define a 
communication thread as a group of related commu- 
nication events all devoted to discussion of a sin- 
gle problem. For instance, consider the following 
scenario, each item of which would be identified by 
a BEGIN-Send/END-Communication or a BEGIN- 
Receive/END-Communication event interval: 

1. The build owner sends e-mail to developer X, who 
is responsible for the portion of code in which the 
build owner found a problem. 

2. After waiting an hour for a reply to  the e-mail, 
the build owner places a phone call to developer 
X; the developer does not answer, so the build 
owner leaves a voice-mail message. 

3. Some time later, developer X returns the build 
owner's phone call, during which time the build 
owner describes the problem to the developer. 

4 .  The developer telephones the build owner again 
to declare the problem solved. 

We identify this communication thread by the interval 
between the BEGIN-Send-EMail event of event inter- 
val (1) and the END-communication event of event 
interval (4). 

We developed the query SubsysComm to compute 
the average duration of a communication thread for 
each subsystem. The query presents these averages 
for all subsystems on which communication took place, 
along with the number of communication threads for 
those subsystems. 

Subsystem 
NONE 
81 
85 
s6 
810 
s13 
s17 
818 
828 
829 
835 
538 
s44 

OdOlh53m (3) 
Od OOh 05m (1) 
Od OOh40m (1) 
Od Olh 26m (10) 
Od OOh40m (1) 
OdOOh36m (3) 
Od OOh 03m (1) 
OdOOh52m (2) 
Od 02h 12m (1) 
OdOOh27m (2) 
Od OOh Olm (1) 
OdOOh17m (6) 

Table 3: Average Duration (and Number) of Com- 
munication Threads for Two Days of an Enactment 
of the Build Process. 

Table 3 presents the results of this query for two 
days of an enactment of the build process. Communi- 
cation threads that did not involve a specific subsys- 
tem are combined into a single item called NONE. 
The subsystems in Table 3 fall into two classes- 
subsystems that required communication threads of 
less than an hour to resolve problems, and subsystems 
that  required communication threads of more than an 
hour to resolve problems. These latter subsystems- 
si, s i 0  and s29-are potential problem subsystems. 
If such statistics were revealed for the same subsys- 
tems in a larger sample and were correlated across 
multiple enactments, they would be objective evidence 
of the need for some kind of process improvement tar- 
geted to those subsystems. 

6 Conclusion 

This paper has described an event-based software 
process model and associated process data capture 
and analysis techniques. The paper has also described 
a study in which we applied the capture and analy- 
sis techniques to  the build process of a large software 
project within AT&T. Our experience has demon- 
strated the viability of this approach to  process data  
capture and analysis. The greatest strengths of our 
approach are its objectivity and its focus on the dy- 
namic aspects of process. However, we feel that the 
manual side of process data  capture needs to be im- 
proved because it is currently a costly and labor- 
intensive undertaking. While all manual capture tech- 
niques suffer these inherent limitations, we feel that  we 
have minimized their effect through the design of our 
log sheets and our streamlining of the captured data. 

We are currently studying other build processes 



within AT&T. In the future we would also like to  
apply our model and techniques to other kinds of pro- 
cesses, such as testing and product-distribution pro- 
cesses. For the build process we studied, our event 
kinds and analysis queries were designed in a rather 
ad hoc manner. In the future we would like to  use a 
system such as TAME [3, 111 to  help make the design 
of the analysis queries more systematic. 

[SI Volker Gruhn and Rudiger Jegelka. An evaluation of 
FUNSOFT nets. In J. C. Derniame, editor, Proceed- 
ings of the Second European Workshop on Software 
Process Technology, number 635 in Lecture Notes in 
Computer Science, pages 196-214. Springer-Veralag, 
September 1992. 

(91 Mark I. Kellner. Software process modeling support 
for management planning and control. In Mark Dow- 
son. editor. Proceedings of the 1st International Con- 
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