
A Study in Software Process Data Capture and Analysis

Alexander L. Wolf

Department of Computer Science
University of Colorado

Boulder, CO 80309 USA
(alw Qcs. color ado. edu)

Abstract

Process data capture is the activity of obtaining in-
formation about an existing software process. Process
analysis is the manipulation of that information for
purposes of problem identification. Capture and anal-
ysis are key elements in any strategy for software PTO-

cess improvement. We have developed a model of the
software process that is based on a notion of events
characterizing identifiable, instantaneous milestones
in a process. We have also developed capture and
analysis techniques suited to that model. This paper
reports on a study that was undertaken to gain expe-
rience with both the model and the capture and analy-
sis techniques. In that study, we captured event data
on several actual enactments of the build process of a
large, complex software project within AT6T. We en-
tered the captured event data into a database and ran
several queries against the data. The queries imple-
ment a variety of analyses on the event data by ex-
amining relationships among events, such as depen-
dencies and time intervals. The output of the queries
are statistical data that can be used to guide the de-
sign of process improvements. While the data we col-
lected in the study are incomplete, our initial results
demonstrate the viability of this approach to capture
and analysis.

1 Introduction

Organizations are paying more and more attention
to the processes they use to carry out software devel-
opment projects. One way to attempt to improve a
process is to improve the underlying technology used
in that process, such as through faster computing
hardware and more sophisticated development tools.
Ultimately, however, it becomes necessary to study

David S. Rosenblum

Advanced Software Technology Department
AT&T Bell Laboratories

Murray Hill, NJ 07974 USA
(dsr@research.att .com)

and improve the dynamic interactions of the process
itself, such as the steps that are carried out in the pro-
cess, the roles and responsibilities assigned to project
personnel, the manner and frequency of communica-
tion in the process, and so on. In order to improve
processes, or even to design new ones, it is necessary to
obtain concise, accurate and meaningful information
about existing processes that can be used to identify
and eliminate problems and to develop and validate
improvements. We refer to the activity of obtaining
the necessary information as process data capture, and
we refer to the manipulation of the captured informa-
tion for problem identification as process analysis.

We distinguish two kinds of process analysis,
namely deductive analysis and retrospective analysis.
Deductive analysis is concerned with analyzing an ab-
stract specification of a process in some formal logic,
with the goal of discovering inconsistencies or other
anomalies that would be present in enactments of
the process. The choice of formal notation governs
what kinds of deductive analysis techniques can be
applied to the specified process. A number of for-
mal notations and associated deductive analysis tech-
niques have been designed specifically for process spec-
ification and analysis, including APPL/A [16], In-
teract/Intermediate [lo], Marvel/MSL [2] and FUN-
SOFT nets [SI. In addition, a number of formal no-
tations and associated deductive analysis techniques
for describing software systems have been adapted
to process specification and analysis, including Petri
Nets [l], CSP [6], LOTOS [13] and Statecharts 191.

Retrospective analysis, on the other hand, is con-
cerned with analyzing empirically gathered data from
several enactments of a process, with the goal of dis-
covering patterns of anomalous behavior that can be
eliminated in future enactments. A “post-mortem” is
a typical kind of informal retrospective analysis that

115
0-8186-3600-9/93 $3.00 0 1993 IEEE

is usually performed on a single data point (e.g., the
most recently completed process enactment) in hopes
nf finding egregious problems that can be easily elimi-
nated in the future. We seek a more formal framework
within which multiple data points can be analyzed and
compared through more powerful and objective ana-
lytical techniques.

We hypothesize that process problems ultimately
lead to wasted intervals of time. We further hypothe-
size that the causes of wasted time are best revealed by
retrospective analysis of characteristic time intervals.
For instance, a long period of idleness between the
time a meeting is scheduled and the time it takes place
may reveal poor planning for activities that require a
1c;ng preparation time. Bradac, Perry and Votta have
also begun to explore these hypotheses [5].

In order to analyze a process’s characteristic time
intervals, it is first necessary to capture the relevant
data about the significant events of the process, in-
cluding the times at which those events occur. In
deciding what information to capture, it must be re-
membered that the level of detail at which the pro-
cess is modeled and captured determines the level of
specificity with which process improvements can be
prescribed.

Capture techniques typically have been either
purely manual or purely automated. Basili and Weiss
describe a methodology for manual, forms-based col-
lection of data for use in evaluating and comparing
software development methodologies [4]. Amadeus is
a system for automated collection and analysis of pro-
cess metrics within the Arcadia process-centered en-
vironment [14]. Amadeus contains an event-action
component for automating the generation and feed-
back of metrics into the process in response to process
events. Yeast is a general event-action system that
is being used to automate event capture in a vari-
ety of processes in the UNIX@ environment [12]. We
feel that a hybrid approach to capture is necessary
because purely automated approaches are inherently
biased towards the computerized aspects of processes,
while purely manual approaches are inefficient for high
volumes of data. (For related views, see Basili and
Rombach [3], and Sutton [15].)

In this paper we describe an event-based software
process model and techniques for data capture and
retrospective analysis that are suited to the model.
We also describe our initial results from a study in
which we captured and analyzed the build process
of a large, complex software project within AT&T.

QUNIX is a registered trademark of UNIX System Labora-
tories, Inc.

Our event-based model is a general model that can
be used in conjunction with a variety of different cap-
ture and analysis techniques. The capture technique
we developed for our study is a hybrid of manual and
automated approaches, while our analysis technique
is based on statistical analysis of the time intervals
contained in the captured process data. We entered
the captured event data into a relational database sys-
tem, allowing us to implement our analysis objectives
as database queries. While the database aids us in car-
rying out formal analysis, we have also found the data
to be suitable for more informal analyses, in particular
graphical display for process visualization.

In Section 2 we describe in detail our event-based
process model. In Section 3 we describe the build
process that is the subject of our study. In Section 4
we describe how this process is characterized within
our event-based model, and we describe our work in
capturing event data from actual enactments of the
process. In Section 5 we describe two of the formal
analysis queries we developed and the results of those
queries. In Section 6 we conclude with a discussion
of our plans for future work on capture and analysis
techniques for event-based process models.

2 The Event-Based Model

As mentioned in Section 1, our model of software
processes is based on a simple notion of events that
occur at specific points in time. In this section we
define what an event is in more detail, and we describe
a general taxonomy of process events.

2.1 Events and Event Intervals

Figure 1 depicts the fundamental notions of events
and event intervals, and their correspondence with
process activities. The figure depicts three different
activities, which are carried out in parallel by one or
more persons or machines as part of a software pro-
cess. The heavy, solid bars denote the periods of time
during which separate instances of the activities occur.

An event is an instantaneous happenstance that oc-
curs during an activity a t a specific, identifiable point
in time; events are depicted in Figure 1 as solid circles.
An event interval is the period of time between a pair
of events. Any arbitrary pair of events can potentially
define an interesting event interval. To date, we have
found four kinds of event intervals to be particularly
useful in process analysis.

The first of these involves the events occurring
within a single instance of a particular activity. Two

116

I Event Interval i I Event Interval I Event Interval I
: y : -........... ~_.. c: ._._.... ~ ~ &

; I - ; - 0-• Activity A
BEGIN END I BEGIN END BEGIN END
Event Event Event Event Event Event

0 4 0 Activity B
SETUP BEGIN END WRAPUP
Event Event Event Event

0
DO

Event

0
DO

Event

Activity C

I I I I I I I I I I .r

tl t2 t3 t4 15 t6 t7 t8 19 tI0 time

Figure 1: Events and Event Intervals.

special kinds of events are the beginning and ending
events, which we refer to as the BEGIN and END
events, respectively. Figure 1 illustrates this kind of
interval for the instance of Activity A carried out be-
tween the BEGIN and END events at times t5 and
t7. The BEGIN/END interval is intended to indicate
the period of time during which the main purpose of
the activity is being carried out. For some activities,
however, this main period may be preceded by an ini-
tial setup period and/or followed by a final wrapup
period. It is often desirable to keep such setup and
wrapup intervals as short as possible. Consider, for
example, a meeting. The time between the scheduling
of the meeting and the actual beginning of the meet-
ing is the setup period. After the end of the meeting,
a record of the meeting is generated and distributed
during the wrapup period. In a sense, the meeting ac-
tivity spans these setup, main, and wrapup time peri-
ods. The instance of Activity B in Figure l illustrates
this kind of activity, with the event interval associated
with that activity extending from the SETUP event a t
time t4 to the WRAPUP event at time t9.

The second kind of event interval is the complement
of the event interval characterizing an instance of an
activity. In particular, it is the period of time between
the last event of one instance of the activity and the
first event of the next instance of that same activity.
Such event intervals are often indications of idle, and
possibly wasted, time. Figure 1 illustrates this kind of
interval between the END event of the second instance
of Activity A at time t7 and the BEGIN event of the
third instance of Activity A at time t8.

The third kind of event interval corresponds to the

period of time throughout a sequence of instances of
an activity. For instance, an activity that must be
repeated until some goal has been met can be charac-
terized by the interval between the first event of the
first instance of the activity and the last event of the
last instance of that activity; such an interval charac-
terizes the amount of time needed to achieve the goal
associated with the activity. Figure 1 illustrates this
kind of interval between the BEGIN event of the first
instance of Activity A at time tl and the END event
of the third instance of Activity A at time t l O .

The fourth kind of event interval is an interval be-
tween events of different activities. This kind of inter-
val typically corresponds to the time taken between
sequential steps in a process. Figure 1 illustrates this
kind of interval between the END event of the first in-
stance of Activity A a t time t2 and the SETUP event
of Activity B at time t4.

While in our experience most activities involve mul-
tiple events, there are some activities that are consid-
ered to occur instantaneously and thus have a single
event associated with their instances. We refer to the
event of an instantaneously occurring activity as a DO
event, as illustrated in the figure by the instances of
Activity C at times t3 and t7.

2.2 Event Taxonomy

In order to provide a more insightful event-based
characterization of some process of interest, and to
provide a richer level of detail in the information that
is captured about that process, we have designed a
general taxonomy of events characterizing the different

117

activities that are carried out in a software process.
The taxonomy comprises six categories of events:

1. communication events;

2. automation events;

3. analysis events;

4. work events;

5. workday events; and

6. decision events.

An instance of this taxonomy for a particular process
will contain a number of event kinds within each cat-
egory characterizing the particular activities of that
process. Section 4 describes the instantiation of this
taxonomy for the build process we studied.

The first category of events is communication
events. Communication plays a central role in large
processes, for it is primarily through coordination of a
sizable and sometimes geographically dispersed group
of people that large software systems are built. An
instance of a communication activity can be charac-
terized by the period of time between its initiation
(the BEGIN event) and termination (the END event).
Several kinds of communication may take place before
actual communication between humans can occur; for
instance, it may be necessary to leave voice-mail mes-
sages when some intended parties to a communication
are unavailable. For clarity, we further identify the
BEGIN events of communication intervals as either
BEGIN-Send events or BEGIN-Receive events.

The second category of events is automation events,
which demarcate intervals of activity in which a com-
puter performs some task, such as a compilation. In
some cases, an automation activity is initiated by a
setup procedure to prepare the computer for the au-
tomation task. For instance, job requests may be
placed in a queue in order to allocate computer re-
sources more efficiently. In this case, the instances of
the automation activity would be characterized by an
interval starting with a SETUP event (denoting the
beginning of the period during which the job is in the
queue), followed by a BEGIN event (denoting the be-
ginning of the requested task), and followed finally by
an END event (denoting the completion of the task).
Some automation activities may be terminated before
they would complete normally. Thus, we further iden-
tify the END events of automation intervals as either
END-Normal events or END-Abort events.

The next three categories of events are straightfor-
ward characterizations of process activities carried out

over intervals between corresponding pairs of BEGIN
and END events. Analysis events identify intervals
in which the results of a previous process chore are
analyzed for validation or problem resolution; typi-
cal analysis event intervals correspond to code inspec-
tions, debugging sessions, and the like. Work events
identify intervals in which a person is performing tasks
such as fixing code, writing documentation, mount-
ing a tape, and so on. Workday events correspond
to times at which a person stops or resumes work in
the process; typical workday events include arriving
at work, going to lunch, starting work on some other
assignment not related to the process, and so on.

The final category of events is decision events. De-
cision events correspond to a person synthesizing the
results of a number of previously completed activities
and using information about those results to select
from a set of possible new activities to begin. Decision
events are extremely sensitive to their inputs (i.e., the
results of previous activities) and can thus provide a
great deal of information about the efficiency of a pro-
cess. For example, a decision may be made based on
information gleaned from previously completed analy-
sis intervals and in anticipation of an imminent work-
day event. Retrospective analysis can reveal where
additional information could have led to a better de-
cision. Decisions are considered to be made instan-
taneously and are thus characterized by a single DO
event rather than by an event interval.

3 Overview of the Subject Process

The initial subject of our study was a software build
process employed in a large project under development
at AT&T. This process is an ideal one to examine be-
cause it is regularly repeated with little change in its
basic, day-to-day activities. The group responsible for
official builds enacts the several-day process once ev-
ery few weeks. The software that they build during
one of these cycles consists of several million lines of
source code partitioned into several dozen subsystems.
Three major tools are used to build the software; we
refer to them below simply as Buildl, Build2, and
Build3. At the conclusion of the process, a small set
of executable products have been built from the sub-
systems and installed in system labs or test execution
environments. Each product is targeted to a different
hardware component of the system.

The build process involves several roles. The build
owner coordinates the process, tracks down build
problems, and communicates with developers located

118

around the world. The build administrator, at the di-
rection of the build owner, sets up the actual builds
for execution according to a written guidebook. The
build owner also typically has several build assistants
to whom problem-tracking chores can be delegated.

4 Capture of the Subject Process

A critical aspect of this study was to determine how
best to capture, in some practical way, the full range of
events in the taxonomy described in Section 2.2. We
began by interviewing members of the group respon-
sible for the build process under study and observing
some of their activities during an actual enactment
of the process. This allowed us to to become famil-
iar with the personnel involved (and they with us) as
well as with the details of their activities and interac-
tions. From these early experiences we learned several
important things:

0 It is impossible to capture all events automati-
cally, as desirable as that may be. Moreover, it
would be inadequate to capture only those events
that could be captured automatically.

the names of the affected files. This appears consistent
with the way that the build owners themselves view
their activities. We designed a simple log sheet, shown
in Figure 2, to allow the observer to easily capture the
important information about an event. In particular,
the observer is expected to record each event on a
single line of the log sheet, giving a unique numeric
identifier to the event (UIE) and noting the kind of
the event, the date and time the event occurred, the
names of the subsystems and products associated with
the event, and the people involved in or contributing to
the event. In addition, the observer is expected to re-
late this event to any other relevant, preceding events
(in the field “Other UIE(s)”) and to indicate any other
information contributing to the understanding of the
event (in the field “Comments”). To make the task of
assigning event kinds easier, we predefined a specific
set of event kinds that we found relevant to the process
under study; this set is an instantiation of the taxon-
omy of Section 2.2. The event kinds are presented in
Table 1, along with the codes used to identify them in
the log sheets. On the whole, we found the log sheet
to be highly useful both for making the recorded data
informative and for keeping it concise.

The observer was responsible for recording events
of all kinds except automation events. The automa-
tion events were instead automatically derived from
the log files produced by the build tools. This deriva-
tion is performed “off-line”, which poses the problem
of how to relate the automation events to the other,
manually captured events. The solution we adopted
was to assume that each automation event interval
for a given subsystem is related to the analysis event
interval for that subsystem beginning soonest in time
after the automation interval. We record this assumed
relationship in the “Other UIE(s)” field of the analysis
events.

0 It is inappropriate to capture events by asking
the members of the group themselves to either
record the events as they occur or to log the events
sometime later, such as at the end of the workday.

0 It is important to decide upon an appropriate
level of granularity for the captured events. At
too fine a grain, it would be extremely difficult, if
not impossible, to capture all necessary informa-
tion about the events as they occurred. At too
coarse a grain, we would likely miss important
information that would contribute to our under-
standing of the process.

Based on these early experiences, we designed a tech-
nique for process capture that relies upon indepen-
dent, direct observation to record those events whose
capture could not be automated, and we developed
tools to automatically derive event data from the log
files generated by the build tools.

We decided to place an observer alongside the build
owner, since the build owner is clearly the focus of ac-
tivity during the process. To avoid overloading the
observer, we chose a granularity based on the sub-
system. Thus, for example, events of the same kind
occurring on multiple files of a particular subsystem
would be recorded with the event kind and the name of
the subsystem, but would not be distinguished by, say,

5 Analysis of the Subject Process

There are many kinds of properties one might want
to discover about or enforce within a software process
and, therefore, many kinds of analysis one might per-
form. Some properties, such as satisfaction of safety
or liveness requirements (e.g., freedom from deadlock),
are difficult or impossible to detect through retro-
spective analysis; deductive analysis is better suited
to discovering the existence or non-existence of such
properties. The kinds of analysis best suited to em-
pirically gathered data include analysis of fairness in
resource allocation, real-time performance of process

119

[U I E I Date I Time I Event I Product I Subsystem I Contacts(.) I Other UIE(s) I Comments I
00 I I I I I I I I
1 1 I

AUTOMATION

3 1 I I I I 1 I I
4 1

ANALYSIS

L I ! -- ! -! 1 - I I I I
10 I I I I I I I 1
1 1

I I I I I I I I

t 3 I I I I I I I
I I I I I I I I

9 1 I I I I I I I
ao I I 1

a 1 I 1 I I I I I
3 1 I I
. I I I I I I I
8 1 I I I I I I I
9 1 I

?n I I I I I I I

2 1 I I I I I I I
3 1 I I
A I I I I I I

Figure 2: Log Sheet Used for Capture of the Build Process.

n COMMUNICATION

c1
c 2
c3
c 4
c 5
C6
c 7
C8
c 9
c10
c11
c12
C13

BEGIN-Send-Call
BEGIN- Send- VoiceMaiI
BEGIN-Send-EMail
BEGIN-Send-Fax
BEGIN-Send-Visit
BEGIN-Send-Hangup
BEGIN-Send-Visit Not In
BEGIN-Receive-Call
BEGIN-Receive-VoiceMail
BEGIN-Receive-EMail
BEGIN-Receive-Fax
BEGIN-Receive-Visi t
END-Communication

B1
B2
B3
B4
B5
B6
B7
B8

SETUP-Build1
BEGIN-Build1
SETUP-Build2
BEGIN-Build2
SETUP-Build3
BEGIN-Build3
END-Build-Normal
END-Build- Abort

A1 BEGIN-Analysis
A2 END-Analysis

WORK

W1 BEGIN-Work
W2 END-Work

WORKDAY

01 BEGIN-Other
0 2 END-Other

DECISION

D1 DO-Decision 11
Table 1: Event Kinds for the Build Process.

120

activities, resource utilization, and degree of concur-
rency. Many such analysis tasks are naturally charac-
terized in terms of relationships among process events.

The basic approach in our analysis of the subject
process has been to enter the captured event informa-
tion into a relational database and to perform queries
on the database that analyze the relationships among
the events to reveal interesting characteristics of the
process. The database system we use for our analysis
experiments is DataShare [7], whose query language,
Cymbal, provides powerful facilities for analyzing re-
lationships among data records.

By way of example, this section describes two anal-
ysis queries we have developed. The analysis queries
are based on the following hypothesis: There are some
subsystems that are continual sources of build prob-
lems from enactment to enactment. Such problems
may arise from a corruption of the original architec-
ture of the subsystem, or from a large amount of
special-case code required to tailor system features to
different configurations. Such problems produce faults
that may not be discovered until build time, resulting
in two classes of undesirable phenomena at build time:

1. There can be an inordinately large number re-
builds of the same subsystem. This could be due
to a large number of faults discovered at build
time, or a large number of unsuccessful attempts
to eliminate a fault.

2. There can be inordinately large amounts of time
required to eliminate faults. This could be due
to the inherit difficulty of analyzing the code of
the subsystem for fault isolation and elimination,
or the lack of sufficient resources allocated to the
subsystem for problem resolution.

Such “problem subsystems” can be identified by ana-
lyzing the event data from at least two perspectives:

1. From an automation-oriented perspective, prob-
lem subsystems are revealed by large numbers
of SETUP-Build or BEGIN-Build events for the
subsystem (corresponding to phenomenon (1) de-
scribed above) and/or long intervals of time be-
tween builds of the subsystem (corresponding to
phenomenon (2) described above).

2. From a communication-oriented perspective,
problem subsystems are revealed by long
problem-solving communication intervals during
the intervals between builds (again corresponding
to phenomenon (2) described above).

If the event data revealed such phenomena in the same
subsystem across several enactments, that subsystem

would be a good candidate for an improvement of
some kind. For instance, the subsystem could be given
a higher priority during builds in subsequent enact-
ments, or the development organization responsible
for the subsystem could undertake root-cause analy-
sis, an architecture redesign, or some other activity
aimed at process improvement.

The sections below describe the two queries we de-
veloped to detect these phenomena. The queries ana-
lyze the process event data from the two complemen-
tary perspectives of automation and communication.

5.1 Sample Analysis 1: Time Between
Builds

We developed the query SubsysInterbld to compute
the average time between instances of each kind of
build (Buildl, Build2 and Build3), for each subsys-
tem; the query presents these averages for the three
kinds of builds for all subsystems.

To compute the averages, the query only analyzes
the relationships between related groups of automa-
tion events. In particular, an inter-build interval is
identified by an END event for the particular kind of
build on a particular subsystem, followed by a subse-
quent corresponding SETUP event, or a subsequent
corresponding BEGIN event if the next build had no
SETUP event. The results of this query for one en-
actment of the process are presented in Table 2.

The statistics in Table 2 can be somewhat diffi-
cult to analyze because of an inherent interdependency
among the build tools. Scanning through the Buildl
averages for the subsystems, we note that most sub-
systems required at least six complete build cycles
starting with Buildl, all possibly due to a number
of fixes with widespread impact across subsystems.
Thus, the Build2 averages for those subsystems are
skewed somewhat by the fact that they involve pairs
of Build2 intervals containing intervening Buildl in-
tervals. By analyzing the statistical correlation be-
tween different kinds of builds on the same subsystem,
and between builds on different subsystems, one could
more accurately characterize the effect of the interde-
pendency among the build tools.

Despite this interdependency, we see that the five
subsystems with the greatest number of Build2s-s3,
s4, s10, s32 and s37-all required roughly the same
relatively short average time between BuildZs, even
though they required different numbers of, and widely
varying times between, their Buildls. In contrast,
the subsystems with the fewest number of Build2s
also had large average inter-build times for Build2.
Furthermore, the number of Build2s for these latter

121

S u b s y s t e m
3 1

32
93
94
9 5

96
97
98
99
910
9 1 1
812
s13
914
815
916
s17
818
B19
820
821
822
823
s24
825
826
827
828
829
830
831
832
833
S34
S 3 5
s36
837
838
839
840
a41
842
843
a44
845
846
s47
848
s49
850

Build1
OdOOhOOm (0)
2d 19h 25m
I d 23h 55m
I d 17h 59m
I d 23h 45m
2d 08h 07m
2d 07h 42m
I d 10h 50m
Od OOh OOm
I d 17h 32m
2d 07h 27m
Od OOh OOm
2d 07h 22m
2d 07h 18m
Od OOh OOm
2d 18h 58m
I d 17h 37m
2d 08h Olm
Od OOh OOm
I d 23h 42m
2d 07h 37m
I d 17h 43m
I d 12h 38m
2d 18h 22m
2d 07h 55m
I d 09h 37m
I d 23h 44m
I d 23h 47m
I d 14h 20m
2d OOh 02m
2d 07h 51m
Od OOh OOm
I d 23h 48m
I d 23h 38m
I d 13h 18m
2d 07h 29m
I d 17h 48m
2d 08h 03m
2d 07h 56m
I d 23h 45m
2d 07h 53m
Od OOh OOm
Od OOh OOm
I d 18h Olm
I d 23h 54m
Od OOh OOm
I d 17h 59m
2d 07h 57m
2d 07h 53m
2dOOh09m (8)

Build2
OdOOhOOm (0)
Od 15h 53m (22)
Od 09h 05m (38)
Od 10h 07m (32)
Od 12h 53m (25)
Od 17h 43m (20)
I d Olh 22m (14)
Od 22h 02m (16)
I d 05h 59m (12)
Od l l h 10m (30)
Od 18h 52m (19)
2d 13h40m (6)
Od 23h 48m (15)
I d 02h 57m (12)
l d 2 0 h l l m (9)
OdOOhOOm (0)
I d 10h 39m (10)
2d 15h 36m (6)
Od OOh OOm (0)
Od 15h 38m (21)
I d 04h 28m (12)
I d 14h30m (9)
Id 05h 02m (15)
Od 18h 21m (19)
Od 21h OOm (16)
I d 13h 15m (10)
Od 19h l l m (18)
Od 22h 21m (15)
Od 14h 02m (23)
I d l l h 41m (10)
Od 18h 32m (19)
Od 08h 12m (42)
Od 17h 07m (19)
Od 23h 15m (15)
Od 15h Olm (20)
I d OOh O9m (14)
Od l l h 46m (29)
Od 22h 21m (16)
2d 07h 17m (7)
Od 15h 39m (22)
2d l l h 4 7 m (6)
2d03h26m (7)
Id 05h 02m (15)
Od l l h 20m (27)
I d 08h 42m (10)
2d 13h27m (6)
Od 20h 49m (16)
Od 18h 28m (18)
I d 04h 27m (12)
I d 12h 26m (101

Build3
Od 07h 14m (16)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
Od OOh OOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
OdOOhOOm (0)
l d 0 5 h 5 0 m (5)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
Od OOh OOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
Od 03h 08m (37)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
OdOOhOOm (0)
Od OOh OOm (0)
Od OOh OOm (0)
Od OOh OOm (0)
OdOOhOOm f0)

Table 2: Average Time Between Builds (and Number of Builds) for One Enactment of the Build Process.

122

subsystems nearly matched the corresponding num-
ber of Bui ldis , suggesting a number of possible ex-
planations. For example, it may be that Bui ldls for
these latter subsystems were performed more to ac-
count for changes to global interfaces than as a direct
result of fixes being made to those subsystems. Cor-
relation analysis would reveal the proper explanations
for these phenomena.

Based on these preliminary observations, we con-
clude that the subsystems with the greatest number
of Build2s are the subsystems that required the great-
est amount of problem resolution in this version of the
software. If these observations were correlated across
multiple enactments for the same subsystems, they
would be objective evidence of the need for some kind
of process improvement targeted to those subsystems.

5.2 Sample Analysis 2: Duration of Com-
munication Threads

For purposes of our second analysis, we define a
communication thread as a group of related commu-
nication events all devoted to discussion of a sin-
gle problem. For instance, consider the following
scenario, each item of which would be identified by
a BEGIN-Send/END-Communication or a BEGIN-
Receive/END-Communication event interval:

1. The build owner sends e-mail to developer X, who
is responsible for the portion of code in which the
build owner found a problem.

2. After waiting an hour for a reply to the e-mail,
the build owner places a phone call to developer
X; the developer does not answer, so the build
owner leaves a voice-mail message.

3. Some time later, developer X returns the build
owner's phone call, during which time the build
owner describes the problem to the developer.

4 . The developer telephones the build owner again
to declare the problem solved.

We identify this communication thread by the interval
between the BEGIN-Send-EMail event of event inter-
val (1) and the END-communication event of event
interval (4).

We developed the query SubsysComm to compute
the average duration of a communication thread for
each subsystem. The query presents these averages
for all subsystems on which communication took place,
along with the number of communication threads for
those subsystems.

Subsystem
NONE
81
85
s6
810
s13
s17
818
828
829
835
538
s44

OdOlh53m (3)
Od OOh 05m (1)
Od OOh40m (1)
Od Olh 26m (10)
Od OOh40m (1)
OdOOh36m (3)
Od OOh 03m (1)
OdOOh52m (2)
Od 02h 12m (1)
OdOOh27m (2)
Od OOh Olm (1)
OdOOh17m (6)

Table 3: Average Duration (and Number) of Com-
munication Threads for Two Days of an Enactment
of the Build Process.

Table 3 presents the results of this query for two
days of an enactment of the build process. Communi-
cation threads that did not involve a specific subsys-
tem are combined into a single item called NONE.
The subsystems in Table 3 fall into two classes-
subsystems that required communication threads of
less than an hour to resolve problems, and subsystems
that required communication threads of more than an
hour to resolve problems. These latter subsystems-
si, s i 0 and s29-are potential problem subsystems.
If such statistics were revealed for the same subsys-
tems in a larger sample and were correlated across
multiple enactments, they would be objective evidence
of the need for some kind of process improvement tar-
geted to those subsystems.

6 Conclusion

This paper has described an event-based software
process model and associated process data capture
and analysis techniques. The paper has also described
a study in which we applied the capture and analy-
sis techniques to the build process of a large software
project within AT&T. Our experience has demon-
strated the viability of this approach to process data
capture and analysis. The greatest strengths of our
approach are its objectivity and its focus on the dy-
namic aspects of process. However, we feel that the
manual side of process data capture needs to be im-
proved because it is currently a costly and labor-
intensive undertaking. While all manual capture tech-
niques suffer these inherent limitations, we feel that we
have minimized their effect through the design of our
log sheets and our streamlining of the captured data.

We are currently studying other build processes

within AT&T. In the future we would also like to
apply our model and techniques to other kinds of pro-
cesses, such as testing and product-distribution pro-
cesses. For the build process we studied, our event
kinds and analysis queries were designed in a rather
ad hoc manner. In the future we would like to use a
system such as TAME [3, 111 to help make the design
of the analysis queries more systematic.

[SI Volker Gruhn and Rudiger Jegelka. An evaluation of
FUNSOFT nets. In J. C. Derniame, editor, Proceed-
ings of the Second European Workshop on Software
Process Technology, number 635 in Lecture Notes in
Computer Science, pages 196-214. Springer-Veralag,
September 1992.

(91 Mark I. Kellner. Software process modeling support
for management planning and control. In Mark Dow-
son. editor. Proceedings of the 1st International Con-

Acknowledgments

We wish to thank the following people for their
contributions to this study: Randee Fabrizius, Mary
Caruso, Randy Hackbarth, Harry Harabedian, Steve
Gryl, Malissia Williams, Rowena Johnson, Lori Ann
Thorson, Rick Greer and Dave Belanger.

References

111 Sergio Bandinelli, Carlo Ghezzi, and Angelo
Morzenti. A multi-paradigm Petri net based ap-
proach to process description. In Ian Thomas, editor,
Proceedings of the 7th International Software Process
Workshop, October 1991.

[2] Naser S. Barghouti and Gail E. Kaiser. Scaling up
rule-based development environments. In A. van Lam-
sweerde and A. Fuggetta, editors, Proceedings of the
3rd European Software Engineering Conference, num-
ber 550 in Lecture Notes in Computer Science, pages
380-395. Springer-Verlag, October 1991.

[3] Victor R. Basili and H. Dieter Rombach. The TAME
project: Towards improvement-oriented software en-
vironments. IEEE Transactions on Software Engi-
neering, SE-14(6):758-773, June 1988.

[4] Victor R. Basili and David M. Weiss. A methodology
for collecting valid software engineering data. IEEE
lYansactions on Software Engineering, SE-10(6):728-
738, November 1984.

[5] Mark G. Bradac, Dewayne E. Perry, and Lawrence G.
Votta. Prototyping a process monitoring experiment.
Internal AT&T Bell Laboratories Memorandum; sub-
mitted for external publication, 1992.

[6] R. Mark Greenwood. Using CSP aud system dynam-
ics as process engineering tools. In J. C. Derniame, ed-
itor, Proceedings of the Second European Workshop on
Software Process Technology, number 635 in Lecture
Notes in Computer Science, pages 138-145. Springer-
Veralag, September 1992.

[7] Richard Greer, April 1992. Internal AT&T Bell Lab-
oratories Memorandum.

- -
fere’nce on the Software Process: Manufacturing Com-
plez Systems, pages 8-28. IEEE Computer Society,
October 1991.

(101 Dewayne E. Perry. Policy-directed coordination and
cooperation. In Ian Thomas, editor, Proceedings of the
7th International Software Process Workshop, Octo-
ber 1991.

[ll] H. Dieter Rombach. Specification of software process
measurement. In Dewayne E. Perry, editor, Ezperi-
ence with Software Process Models: Proceedings of the
5th International Software Process Workshop, pages
127-179. IEEE Computer Society, October 1989.

[12] David S. Rosenblum and Balachander Krishna-
murthy. An event-based model of software configu-
ration management. In Peter H. Feiler, editor, Pro-
ceedings of the 3rd International Workshop on Soft-
ware Configuration Management, pages 94-97. ACM
SIGSOFT, 1991.

[13] Motoshi Saeki, Tsuyoshi Kaneko, and Maskai
Sakamoto. A method for software process model-
ing and description using LOTOS. In Mark Dowson,
editor, Proceedings of the 1st International Confer-
ence on the Software Process: Manufacturing Com-
plez Systems, pages 90-104. IEEE Computer Society,
October 1991.

(14) Richard W. Selby, Adam A. Porter, Doug C. Schmidt,
and Jim Berney. Metric-driven analysis and feedback
systems for enabling empirically guided software de-
velopment. In Proceedings of the 13th International
Conference on Software Engineering, pages 288-298.
IEEE Computer Society, May 1991.

[15] Stanley M. Sutton, Jr. Accommodating manual activ-
ities in automated process programs. In Ian Thomas,
editor, Proceedings of the 7th International Software
Process Workshop, October 1991.

[l6] Stanley M. Sutton, Jr., Dennis Heimbigner, and
Leon J. Osterweil. Language constructs for man-
aging change in process-centered environments. In
Richard N. Taylor, editor, Proceedings of the 4th
Symposium on Software Development Environments,
pages 206-217. ACM SIGSOFT, December 1990.

124

