
A Survey of Coverage-Based Testing

Tools

QIAN YANG*, J. JENNY LI AND DAVID M. WEISS

Avaya Labs Research, 233 Mt Airy Road, Basking Ridge, NJ 07920, USA

*Corresponding author: yangqian@research.avayalabs.com

Test coverage is sometimes used to measure how thoroughly software is tested and developers and

vendors sometimes use it to indicate their confidence in the readiness of their software. This survey

studies and compares 17 coverage-based testing tools primarily focusing on, but not restricted to,

coverage measurement. We also survey features such as program prioritization for testing, assist-

ance in debugging, automatic generation of test cases and customization of test reports. Such fea-

tures make tools more useful and practical, especially for large-scale, commercial software

applications. Our initial motivations were both to understand the available test coverage tools

and to compare them to a tool that we have developed, called eXVantage (a tool suite that includes

code coverage testing, debugging, performance profiling and reporting). Our study shows that each

tool has some unique features tailored to its application domains. The readers may use this study to

help pick the right coverage testing tools for their needs and environment. This paper is also valu-

able to those who are new to the practice and the art of software coverage testing, as well as those

who want to understand the gap between industry and academia.

Keywords: code coverage, coverage-based testing tool, prioritization, test case generation, dominator

analysis

Received 30 August 2006; revised 11 April 2007

1. INTRODUCTION

In strongly competitive industries where software is the only

or a key component of a product, customer satisfaction may

be highly correlated with software quality. In some industries,

such as automobile manufacturing or avionics, software

defects may jeopardize human life, introduce considerable

negative financial consequences and ruin customer relations.

As a result, there is a continuing pressure in such industries

to improve software quality, particularly to have quantitative

evidence of such improvement.

Software testing is a practice often used to indicate software

quality. Because it usually does not contribute directly to

adding new features, testing may be considered overhead

that must be as effective as possible. Indeed, testing is a

very labor and resource intensive process that often accounts

for between 40 and 80% of the total cost of software develop-

ment [1]. Understanding the time and resources that should be

allocated to testing involves a trade-off among budget, time

and quality [2]. In unsystematic development processes,

testing continues until time runs out [3]. Where development

is more systematic, organizations seek measures of testing

completeness and goodness to establish test completion cri-

teria. Code coverage is one such measure [4].

Our objective in this paper is to help practitioners’ select

coverage tools appropriate for their needs and environment,

and also to give some indication of the state of the technology

in coverage tools. This paper is also valuable to those who are

new to the practice and the art of software coverage testing, as

well as those who want to understand the gap between industry

and academia.

We first noticed the increased interest in code coverage tools

several years ago in our software development organizations. In

project assessments [5], internal symposia and informal discus-

sions, we discovered several significant issues as follows.

(1) Developers and testers had no good way of knowing

how much of their code had been covered in testing.

Development managers were particularly interested in

knowing how well the tested code was when it passed

through development milestones such as completion

of unit testing, integration testing or system testing.

(2) The cycle of change, build and test was generally inef-

ficient and ineffective. There were too many manual

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on May 25, 2007 doi:10.1093/comjnl/bxm021

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

steps in the cycle and too many defects slipped through

to the field. (Exact numbers are proprietary, but dissa-

tisfaction was driven by schedule slippage and the inci-

dence of field errors evidenced in customer complaints.)

(3) Developers were so enmeshed in firefighting, that they

did not have time to search for tools to automate their

processes [6].

Accordingly, we set out to help introduce better build and

test processes using automation. As one element of our

approach, we focused on code coverage, a measure that was

easy to understand by developers and managers, and that

had some intuitive appeal, even if the underlying theory of

its effectiveness in detecting defects was lacking. Note that

we helped to introduce other techniques as well, such as archi-

tecture reviews [7], but we have limited the scope of this paper

to code coverage tools and the features they offer, since such

tools were a major draw for our working software developers

and their managers. This focus also drove our research into

how such tools might be improved, leading to extensions

and improvement of eXVantage,1 our in-house coverage tool

[8].

This paradigm of observing and working closely with soft-

ware engineers as a way to drive our research is in the tradition

of Pasteur’s Quadrant [9]. Often, one obtains surprising

insights using such a paradigm. For example, we initially

thought that developers were not interested in off-line over-

head, such as the time and space needed to instrument their

code to obtain coverage results. This turned out to be untrue

in several of our development organizations, which are

engaged in tight optimization of their development resources,

such as processor time and disk space.

The results and observations presented in this paper are

driven by our empirical observations of our developers and

their needs, and by discussions, driven by those same obser-

vations, with developers of commercial code coverage tools.

For example, presenting our development community with a

survey and comparison of code coverage tools and their appli-

cability to real-time systems helped them to decide which

tools would be best for them. We also limited our analysis

of tools only to those available to our development commu-

nity, i.e. commercially available tools, open source tools and

our in-house tool, eXVantage.

Based on this empirically derived methodology, we focus

this survey on tools that measure testing coverage. Finding

an effective and efficient software-testing tool could be a

major benefit for a project or a company. Yet, there is no

single test tool suitable for all possible systems and industry

sectors. Deciding what criteria to apply when selecting a

specific tool for a project is tricky. For example, some tools

integrate seamlessly with your choice of IDE (e.g. Eclipse)

and provide user-friendly interfaces to ease unit testing in

the development stage, but have scalability issues. Those

tools are suitable for a small project, but not a large-scale com-

mercial application that sometimes includes a large percentage

of legacy code. Other tools provide fine testing granularity, but

the performance overhead inevitably prevents them from

being useful in real-time or embedded systems.

We selected only test tools with code coverage capabilities.

We found 17 tools, including one in-house, that fit our cat-

egory and for which information is available in the public

domain. Besides studying the 16 external coverage-based

test tools, our goal was also to evaluate our in-house tool

suite, eXVantage (a tool suite for code coverage testing,

debugging and performance profiling). We contacted all com-

panies whose tools are included in our comparison, and had

further direct conversations with several of them. For

example, one question we asked is how much instrumentation

overhead tools incurred. We also sent this paper to all vendors

for review. The Appendix contains the request we sent to all

the companies, including the questions we asked.

In addition to coverage measurement, test tools often

provide other functions, such as rule checking, profiling and

debugging assistance. We exclude tools that only perform

static analysis, load testing or functional testing without cover-

age measurement. We compiled descriptions of each test tool

based on the information in the public domain. Our descrip-

tions were reviewed by some but not all of the venders provid-

ing the software, at their discretion. The descriptions are

factored into several different categories covering important

functions and features of the testing tools.

The rest of this paper is organized as follows. Section 2 pro-

vides an overview of coverage with its pros and cons. Section

3 discusses some important aspects of coverage measurement,

including programming languages, overhead and auxiliary

features to code coverage. Section 4 presents various coverage

criteria supported by each tool. Section 5 discusses different

approaches to prioritization, illustrating how some of the

tools use prioritization to get ‘good test cases’ in an efficient

way for complex software suites. Section 6 covers automating

test case generation in the context of coverage-based testing,

and covers the user interfaces of the tools. GUI and batch-

mode versions provide different benefits. A comprehensive

reporting component facilitates communication among the

team members or to the customers. Our summary appears in

Section 7 along with a table summarizing the major aspects

of our analysis.

2. OVERVIEW OF COVERAGE

Coverage-based testing measures the percentage of the soft-

ware that is exercised in the process of testing. It is applicable

to any stage of testing, including unit testing, integration

testing or system testing. Test coverage can be based on a

1eXVantage stands for eXtreme Visual-Aid Novel Testing And GEner-

ation. eXVantage is a testing tool jointly developed by Avaya Labs Research

and the University of Texas at Dallas.

590 Q. YANG et al.

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

functional specification (black-box testing) or on internal

program structure (white-box testing). Because functional

specification-based coverage relies on the availability of spe-

cifications, structure-based coverage is more commonly

used. Such testing can measure coverage at various granulari-

ties, including statements, lines, blocks, conditions, methods

and classes. It provides a way to quantify the degree of thor-

oughness of white-box testing. Coverage testing has the fol-

lowing advantages and disadvantages.

First, reliability seems to increase with test coverage [2].

Malaiya et al. [10] presents a logarithmic–exponential

model to estimate defect density based on testing coverage

measures. Its motivation is to use measurable test coverage

to model reliability, because evaluating and projecting

reliability growth can help developers or teams optimally allo-

cate resources to meet a deadline with target reliability.

Second, code coverage provides quantification of

coverage-related test progress. Selecting tests that provide

the largest incremental gain in coverage is one way to priori-

tize testing. Coverage tools frequently allow detection of

redundant test cases, which are candidates for removal from

a test suite because executing them takes time and resources

without effectively improving defect detection [11].

Third, based on our observations in industry, increasing code

coverage becomes a motivation for improving tests. Coverage

provides a quantitative measure that can be used to report

testing progress. Developers or quality assurance organizations

are then more driven to improve the testing process using the

guidance of test coverage. We observe developers, and their

managers, comparing the coverage they have achieved, compet-

ing to see who can get the most coverage earliest.

Because coverage is a quantitative measure, goals for cover-

age can be established and applied at different testing phases.

Developers who strive to achieve the goals, or who are competing

to see who can get the highest coverage, are sometimes motivated

to run more tests, and gain greater coverage, earlier. We believe

that one result is that they find bugs earlier, when the bugs are less

expensive to fix. Accordingly, introducing coverage and cover-

age goals may reduce the cost of correcting errors.

Unfortunately, there is no known underlying theory that

predicts how much quality improves with coverage. In prac-

tice, very little data or only data for small programs are avail-

able that map from coverage measurement to code quality

[12]. However, intuitively most developers feel that increasing

coverage increases defect detection. Few developers like to

deliver code with, say 20% coverage. Unfortunately, we

cannot quantify how many more defects are likely to be

found by increasing coverage. Full coverage (100%) does

not guarantee the absence of defects. There is always a

balance between usability and thoroughness when picking a

measure. For example, statement coverage is simple but insen-

sitive to conditions. Path coverage is not only too expensive,

but lower coverage caused by infeasible paths makes the

results hard to explain. If a competition develops based on

who can get the most coverage, those whose code checks for

unlikely but erroneous conditions, i.e. rare exceptions, may

have the hardest time getting high coverage, but may have

better quality code.

There is also no good mapping yet known between coverage

level and testing effort. We have observed informally that high

coverage takes considerable effort and the relation between

coverage gained and testing effort seems non-linear. Until

more data, and/or better theory, becomes available, we can

at best suggest guidelines, such as 70% statement coverage

seems achievable with reasonable effort, but it is a struggle

to get significantly more than that.

As with other development tools, developers need to learn

how to use tools to conduct coverage testing and how to inter-

pret coverage test results. Managers must learn the pitfalls of

coverage testing. More machine resources, such as disk space

to store coverage reports may also be needed. In other words,

just as with other tools, introducing coverage tools requires an

investment.

It is easy to be decoyed into focusing on coverage rather

than effective testing, if too much emphasis is put on coverage

testing and target coverage percent. For example, focusing on

writing test cases that cover error-handling code is more diffi-

cult [13] and could consume a good portion of developers’

time. It is a misuse of coverage testing to write less error-

handling code in order to get a better code coverage result.

3. COVERAGE MEASUREMENT

All tools included in this survey have coverage measurement

capability. This section compares these tools for three impor-

tant coverage tool characteristics: (i) supported programming

languages, (ii) program instrumentation overhead and (iii)

additional features complementary to code coverage.

3.1. Supported languages

Coverage testing tools may apply only to a limited set of

programming languages, some to C/Cþþ only, some to

Java only, some to both and some to other languages such as

FORTRAN, COBOL or JavaScript. Table 1 shows a complete

list of the tools and the languages that they support.

The selection of supported languages reflects each company’s

target industries. For example, Dynamic Systems focuses on C/

Cþþ because their customers develop real-time systems.

Another very market-conscious decision for C/Cþþ tool

suppliers is the selection of supported platforms, which is

not an issue for Java testing tools. Dynamic Memory

Systems’ customers are mostly medium to large Solaris soft-

ware development shops [18], thus they only support

Solaris. BullseyeCoverage supports a wide range of platforms

among code coverage analyzers. Semantic Designs has a

general foundation and process for instrumenting source

SURVEY OF COVERAGE-BASED TESTING TOOLS 591

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

code in not-widely-used languages on a variety of platforms

[30].

3.2. Instrumentation overhead

Coverage-testing tools capture coverage information by moni-

toring program execution. Execution is monitored by inserting

probes into the program before or during its execution. A

probe is typically a few lines of code that, when executed, gen-

erate a record or event that indicates that program execution

has passed through the point where the probe is located.

There are two kinds of overhead associated with instrumenting

a program with probes: the off-line overhead of inserting

probes into the program, and the run time overhead of execut-

ing the probes to record the execution trace.

3.2.1. Off-line program analysis and instrumentation

overhead

Source code instrumentation, used by most of the tools includ-

ing BullseyeCoverage, Parasoft Insureþþ, Intel Code Cover-

age Tool, Semantic Designs and TestWork, requires

recompilation, but provides more direct results and is more

adaptable to a wide variety of processors and platforms. It

cannot be used when the source code is not available, as is

often the case for third party code. C/Cþþ tools such as

Dynamic Memory Systems’ Dynamics, use runtime instru-

mentation, which makes them feasible in a production

environment. They may be more efficient in terms of compi-

lation time, but less portable. The Java coverage tool Koalog

Code Coverage does not require instrumentation, and there-

fore no recompilation is needed [25]. It operates with the pro-

duction binaries using the Java Debug Interface, which is part

of the Java Platform Debugger Architecture (JPDA). Koalog

Code Coverage is platform independent, but requires a

JPDA compliant Java Virtual Machine (JVM). Agitar’s Agita-

tor runs the code in a modified JVM, also using a dynamic

instrumentation approach. eXVantage uses source code instru-

mentation for C/Cþþ and bytecode instrumentation for Java.

As compared to the other 16 tools, it has the highest off-line

instrumentation overhead because it analyzes the program in

such a way that it can select the least number of probes to

be inserted into the target program.

3.2.2. Run-time instrumentation overhead

Companies that provide tools for system software or

embedded software tend to focus more on reducing run-time

overhead, so that their tools can be usable in real-time environ-

ments, e.g. CodeTEST [18]. TCAT claims that its TCAT C/

Cþþ Version 3.2 maintains its overhead for execution size

ratio at 1.1–1.8 and execution speed ratio at 1.1–1.5 [29];

Semantic Designs claims 1.1–1.3, varying according to

language and compiler, among the best in our survey.

Clover claims that their execution speed overhead is highly

variable, depending on the nature of the application under

test, and the nature of the tests. Typical execution speed

ratio is 1.2–1.5. eXVantage has different versions for different

platforms, but claims a ratio of 1.01 for versions optimized

real-time, in some environments, based on initial trials

(Table 2) [24].

3.3. Additional features

Coverage testing tools can be used to assist in debugging, and

some of the coverage tools provide debugging assistance, such

as Agitar, Dynamic, JCover, Jtest and Semantic Designs. Each

uses a different solution. For example, Agitar provides a snap-

shot and stack trace to help developers to track the cause of

bugs. JCover has the ability to do coverage differencing and

comparison to expose the erroneous code. Semantic Designs

provides slicing and dicing operations on test coverage data

via the GUI to allow code executed/not executed by arbitrary

combinations of test runs to be easily isolated visually.

eXVantage uses a dynamic execution slicing approach. It

creates an execution slice for each test case and reads results

from a testing oracle to generate a bug localization report auto-

matically whenever a failed test is detected [8].

Coverage testing tools can also be used for program profil-

ing to identify heavily executed parts of programs. Profiling

data can be used in compiler optimization, program refactor-

ing, performance-related debugging, etc. Many tools, includ-

ing eXVantage, CodeTEST, Dynamic Code Coverage,

JCover, PurifyPlus and Semantic Designs, support this feature.

TABLE 1. Coverage tools and the languages to which they apply

(alphabetical by tool name).

Tool name Cþþ/C Java Other

Agitar [14] X

Bullseye [15] X

Clover [16] X .net

Cobertura [17] X

CodeTEST [18] X

Dynamic [19] X

EMMA [20] X

eXVantage [21] X X

Gcov [22] X

Intel [23] X FORTRAN

JCover [24] X

Koalog [25] X

Parasoft (Cþþtest) [26] X

Parasoft (Jtest) [26] X

PurifyPlus [27] X X Basic, .net

Semantic Designs (SD)

[28]

X X C#, PHP,

COBOL,

PARLANSE

TCAT [29] X X

592 Q. YANG et al.

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4. COVERAGE MEASUREMENT CRITERIA

There are a large variety of coverage measurement criteria:

data coverage, statement (line) coverage, block coverage,

decision (branch) coverage, path coverage, function/method

coverage, class coverage and execution state space coverage.

Among them, statement (basic block) coverage, decision cov-

erage, function/method coverage and class coverage have

been implemented by some coverage tool vendors. The rest

remain mostly of interest to researchers, because of their

increased complexity and difficulty of use. Practitioners in

general do not use other criteria such as data coverage

because it is harder to improve data coverage [31]. For

example, based on our observations, it is very hard to get

better than a few percent data coverage. Software tool compa-

nies, especially small software vendors, seek immediate return

on their investment, and the level of sophistication of their

users directs their focus onto usability, more than thorough-

ness, or accuracy. Table 3 lists tools with their coverage

measurement criteria.

In Table 3, statement coverage means the percentage of

(executable) statements executed, while block coverage

measures coverage of basic blocks, where a basic block is a

sequence of non-branching statements. The results for state-

ment coverage and block coverage could differ, but they are

commonly listed in the same category and therefore in the

same column in Table 3 for easy comparison. eXVantage

and Intel Compiler Code-Coverage measure block coverage.

Some of the tools, e.g. Koalog, provide the option of

picking the scope for coverage calculations, for example, the

statement coverage in a method, a class or a package.

Clover allows users to customize the scope by providing

sophisticated method- and statement-based filtering of cover-

age results; this can help to generate more informative

reports and will be further discussed in Section 5. Line cover-

age and statement coverage differ when more than one state-

ment may contribute to a single line’s coverage score or one

statement takes more than one line. Clover uses statement cov-

erage. However, most of the venders do not distinguish

between statement and line coverage, so we list them in the

same column in Table 3.

TABLE 2. Instrumentation.

Tool name Source code instrumentation Byte code instrumentation On the fly (dynamic)

Java Agitar [14] X

Clover [16] X

Cobertura [17] X

EMMA [20] X X

JCover [24] X X

Koalog [25] X

Jtest [26] X X

C/Cþþ Bullseye [15] X

CodeTEST [18] X

Dynamic [19] X

Gcov [22] X

Intel [23] X

Cþþtest [26] X

Java and C/Cþþ eXVantage [21] X X

PurifyPlus [27] X X

SD [28] X

TCAT [29] X

TABLE 3. Levels of coverage measurement provided by tools.

Statement/

Line/Block

Branch/

decision

Method/

function Class

Agitar X X X X

Bullseye X X

Clover X X X X

Cobertura X X

CodeTest X X

Dynamic X X X

EMMA X X X

eXVantage X X X

Gcov X

Intel X X

JCover X X X X

Koalog X X

Cþþtest X X X X

Jtest X X X X

PurifyPlus X X

SD X X X X

TCAT X X X X

SURVEY OF COVERAGE-BASED TESTING TOOLS 593

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

There are several variations of condition/decision coverage,

but we list all of them in the third column without differen-

tiation. A decision is the whole expression that affects the

flow of control in the CFG and is treated as a single node in

the CFG. A condition/branch is a sub-expression in a decision

expression, connected by logical-and and logical-or operators.

BullseyeCoverage and Metrowerk’s CodeTEST measure

modified condition/decision coverage for C/Cþþ, which pro-

vides a good balance of usability and thoroughness [32].

Branch coverage provides the number of branches executed

under test. Clover, Cobertura and TCAT/Java support branch

coverage for Java.

Method coverage reports for each method or function

whether or not it is invoked. Class coverage reports a class

as covered if at least one line in that class is executed.

Neither method nor class coverage provides fine granularity,

but they do provide an overview of testing quality.

Software Research Inc’s TCAT/JAVA uses an algorithm,

called ‘All Paths Generator’, which is patented, to calculate

simple path coverage. It is intended for use on critical appli-

cations where test completeness is required.

The applicability of different measures is affected by the

style of the code, such as the size of a method or a function,

and the density of branching. For example, method coverage,

which counts a method as covered if at least one line in that

method is executed, is more suitable for software that consists

of many small methods rather than a few large methods.

5. PRIORITIZATION

Formal methods is one approach to produce provably correct

software, but in the industrial environment, the use of formal

methods has not greatly increased in the past 10 years

because of its formidable complexity [33, 34]. Instead,

testing is generally accepted as standard practice within the

industry to improve software quality. More emphasis is put

into code coverage measurement when systematic testing is

favored. In practice, large complex applications are often

tested with low coverage. Based on our industrial observations

of the use of eXVantage and other tools, it is easy to get to

65%, however code coverage of 70–80% is often considered

acceptable because it is difficult to increase coverage past 80%

[35]. Hence, providing assistance in conducting effective

testing or prioritizing resources is one of the most important

features a good testing tool can provide. An example is iden-

tifying critical modules. Among the tools we surveyed, only a

handful suggests the availability of such features.

Agitator from Agitar [36] shows risk or complexity scores

of classes or methods, which in turn help testers to focus on

more complex and therefore presumably more error-prone

parts of the code, when time or resources are limited.

Clover provides a sophisticated method- and statement-

based filtering of coverage results so that non-critical sections

of code can be excluded from coverage calculations. This

helps in prioritizing the testing effort. Clover 2 (currently

under development) extends this filtering to include cyclo-

matic complexity [37] and other metrics.

Cobertura [17], a free Java tool that calculates the percen-

tage code accessed by tests, shows the McCabe cyclomatic

code complexity of each class, and the average cyclomatic

code complexity for each package and for the overall

product. Cyclomatic complexity represents the number of

paths through a particular section of the code, such as a

method in an object-oriented language. It is helpful in pin-

pointing areas of code that may require additional attention

during testing, maintenance or refactoring.

Other tools, such as Dynamic Suite [19], can run in the pro-

duction mode or even at customer sites to obtain information

on which features or modules are being used. The tool has so

little performance impact that it can be used in the field during

normal system operation to collect operation profiles of the

target system without interfering with its normal operation.

This operation profile information can guide future testing

and therefore help prioritize testing efforts.

eXVantage derives prioritization through enhanced domi-

nator analysis [38, 39]. eXVantage prioritization identifies

the part of the code that when executed, guarantees that the

most code has been executed, i.e. code that can increase cover-

age the most. As by-products of this dominator analysis,

dependency and control flow graphs (CFGs) of source code

(when source code is available) are generated. They help visu-

alize the testing coverage.

6. AUTOMATIC TEST GENERATION AND
REPORTING

Software testing is a very resource intensive task and auto-

mation is one way to decrease the time and cost. Automation

of the testing process includes a number of steps, such as test

case generation, test execution and creation of test oracles.

The approach to test oracle automation often relies on the

system behavior specification and is mostly used in functional

testing. Oracles use a system specification to verify the cor-

rectness of the target software test results. No full-scale

system oracle exists today to achieve this goal. In general, a

significant amount of human intervention is still needed to

define oracles. Coverage testing is not linked directly to a

test oracle, but an automatic test oracle could speed up

failed tests detection and testing comprehension.

Automatic test generation remains an important research

area, but based on remarks from one vendor, it is overrated

as a practical technique, since most tools that automatically

generate tests produce tests that cover only trivial boundary

condition test cases.

Automated test generation tends to be linked with code cov-

erage, i.e. the goal of generating tests automatically can easily

594 Q. YANG et al.

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

be linked to the goal of increasing coverage. Parasoft

Cþþtest generates test cases for Cþþ programs with good

code coverage. Parasoft, Agitar and eXVantage claim the

capability of generating Java test cases automatically. Agitator

from Agitar provides a certain level of automation by combin-

ing test suite generation and execution.

Agitator does Software Agitation, which is defined as ‘an

automated way of exercising software code and providing

observations about its behavior’, that is, Agitator creates

instances of the classes being exercised, calling each method

with sets of input data (provided by static analysis of the

source code to cover both boundary conditions and normal

conditions), and analyzing the results. Subsequently, a set of

summary observations about the behavior is presented to

developers who can decide whether the observation is an

assertion or a bug. Assertions would be kept for later

regression tests or code refactoring.

All the agitation results are stored in XML files, which can

be shared among the teams, but would not be useful for other

testing tools. The generated tests are not explicitly given to the

users. Agitator supports tests created with JUnit by running

them as part of each agitation, reporting outcome and cover-

age. Therefore, test cases that can drive testing efforts inde-

pendent of any testing tools are not available to the testers.

Besides unit testing, Parasoft provides solutions for web

service, functional, rule compliance, security and performance

testing. Parasoft Jtest generates test cases in JUnit format to

achieve a complete branch coverage. It symbolically executes

the code to determine inputs that will cover all the different

branches of code. In addition to automatically generating

Junit test cases, Jtest can also generate Junit test cases based

on monitoring a running Java application, during which

users’ real inputs will be captured and later used during testing.

eXVantage generates tests to cover high-priority blocks

[40]. It includes the following four steps: (i) rank the priority

of each target source code line and pick those with the highest

priority; (ii) identify paths going through the highest priority

points, called hot-spots; (iii) collect and solve constraints on

the path and (iv) generate test data to execute the path and

render test data into test cases in the same programming

language as the original target program.

Besides automation, a user-friendly graphical interface is

also an important feature for comparison, since the user inter-

face can be a decisive element in a tool’s selection.

Some tools have both a GUI version and a batch mode to

suit the requirements of different users. Developers usually

like to use the GUI version and the integrators usually like

the batch mode version. Java tools, such as Agitar, Clover,

Cobertura, eXVantage and Parasoft, include plug-ins for one

of the most popular IDE’s, Eclipse, which makes the inte-

gration in the development stage as transparent as possible.

Apache Ant is used as the build tool for some tools, such as

Agitar, Clover, Cobertura, Koalog and Parasoft, because it is

very commonly used for Java projects.

One part of the GUI display or the output of the batch mode

is the coverage report. Most commercial products include

sophisticated report generation components, some of which

are graph-based and some file-based. See Table 4 for a list

of report formats.

Clover stands out here for integration options. It integrates

with all major IDE’s (IDEA, Eclipse, JDeveloper, JBuilder,

Netbeans) and build tools such as Ant, Maven and legacy

shell-script/Make-based systems. Clover also provides histori-

cal reporting in HTML or PDF.

Agitar has an innovative way to display coverage reports.

Besides coverage information, it uses Agitar Management

Dashboard to monitor and manage developer-testing efforts.

It is a comprehensive reporting tool, allowing users to input

test targets for better management, and providing rule check-

ing functionality.

eXVantage, on the other hand, emphasizes web-based

reporting. Its database-reporting feature allows the recording

of historic data and scaling up to very large software

systems. Historic data allows the observation of trends,

which can be used for future predictions of testing.

7. SUMMARY

This survey compares 17 coverage-based testing tools. We also

studied other related functionality, which we believe is indispen-

sable for a testing tool if it is to provide an integrated testing

solution. Our study includes comparison of three features: (i)

code coverage measurement, (ii) coverage criteria and (iii)

automation and reporting. Table 5 summarizes our analysis.

TABLE 4. Tool reporting formats.

GUI File-based Notes

Agitar X

Bullseye X X CSV, HTML

Clover X X PDF, XML, HTML

Cobertura X X XML

CodeTEST X X

Dynamic X

EMMA X X HTML, TXT, XML

eXVantage X X Customizable

gcov X

Intel X

JCover X X XML, CSV

Koalog X X CSV, LaTex, XML

Parasoft Cþþtest X X Group reporting system

Parasoft Jtest X X Group reporting system

PurifyPlus X

SD X X Test coverage vector

file, XML

TCAT X

SURVEY OF COVERAGE-BASED TESTING TOOLS 595

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Each tool has its pros and cons depending on its application

domain(s). For example, Semantic Designs’ differentiator is

their parsing capability for various languages, including

some often considered obsolete. The strong point of Agitar

is mutation-based data input to achieve very high code cover-

age running on their provided platform. Dynamic Memory

owns unique dynamic instrumentation technique, which pro-

vides excellent tool usability. The eXVantage tool suite, on

the other hand, differentiates from other tools mostly in auto-

matic unit test generation and low overhead. It can automati-

cally generate test cases to reach high-priority points in the

program. Table 6 provides guidelines for developers to

select coverage testing tools.

Overall, much research in the area of software coverage

testing has been realized and used in industrial software

production. We hope our work will contribute to more usage

of tools to improve software testing.

ACKNOWLEDGEMENTS

We thank all the people who carefully read the preliminary

versions of this paper and helped to improve it. In particular,

Matthew Fisher from Dynamic Memory Solutions, Erika

Delgado from Parasoft, Ira Baxter from Semantic Designs

and Brendan Humphreys from Clover Support reviewed the

initial version of this paper and provided very valuable com-

ments. Steve Cornett from BullseyeCoverage reviewed the

initial version and responded to our questionnaire. For their

technical help, we are grateful to our colleagues Jon Bentley

at Avaya Labs Research and Tom Walsh. We also would

like to thank the reviewers for their detailed and helpful com-

ments on an earlier version of this article.

REFERENCES

[1] Frederick, P. and Brooks, J. (1995) The Mythical Man-Month.

(anniversary edn). Addison-Wesley, Boston, USA.

[2] Yang, M.C.K. and Chao, A. (1995) Reliability-estimation and

stopping-rules for software testing, based on repeated

appearances of bugs. IEEE Trans. Reliab., 44, 315–321.

TABLE 5. Summary table.

Supported

languages Tool name

Measurements Reporting Instrumentation

Statement/

line/block

Branch/

decision

Method/

function Class GUI File-based

Source code

instrumentation

Byte code

instrumentation

On the fly

(dynamic)

Java Agitar [14] X X X X X X

Clover [16] X X X X X X X

Cobertura [17] X X X X X

EMMA [20] X X X X X X X

JCover [24] X X X X X X X X

Koalog [25] X X

Jtest [26] X X X X X X X X X

C/Cþþ Bullseye [15] X X X X X

CodeTEST [18] X X X X X

Dynamic [19] X X X X X

Gcov [22] X X X

Intel [23] X X X X

Cþþtest [26] X X X X X X

Java and

C/Cþþ
eXVantage [21] X X X X X X X X

PurifyPlus [27] X X X X X

SD [28] X X X X X X X

TCAT [29] X X X X X X

Besides C/Cþþ and Java, the following tools also support: Clover supports .net; Intel supports FORTRAN; PurifyPlus supports Basic and

.net; SD supports C#, PHP, COBOL and PARLANSE.

TABLE 6. Tool selection guideline.

Need Tool(s)

Real-time/low overhead Dynamic, eXVantage

High coverage Agitar, Parasoft Jtest

Multi-language support PurifyPlus, Semantic Designs

Multi-platform (Cþþ only) BullseyeCoverage, Semantic

Designs

596 Q. YANG et al.

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

[3] Grindal, M., Offutt, J. and Melin, J. (2006) On the Testing

Maturity of Software Producing Organizations. Proc. Testing:

Academic and Industrial Conference On Practice And

Research Techniques, Windsor, DC, UK, August 29–31, pp.

171–180. IEEE Computer Society, Washing, USA.

[4] Zhu, H., Hall, P.A.V. and May, J.H.R. (1997) Software unit test

coverage and adequacy. ACM Comput. Surv. 29, 366–427.

[5] Weiss, D., Bennett, D., Payseur, J., Zhang, P. and Tendick, P.

(2002) Goal-Oriented Software Assessment. Proc. 24th

International Conference on Software Engineering, Orlando,

FL, USA, May 19–25, pp. 221–231. ACM Press, New York,

NY, USA.

[6] Repenning, N.P., Gonçalves, P. and Black, L.J. (2001) Past the

Tipping Point: The Persistence of Firefighting in Product

Development. Cambridge, MA, USA, 02142. http://web.mit.

edu/nelsonr/www/TippingV2_0-sub_doc.pdf.

[7] Maranzano, J., Rozsypal, S., Warnken, G., Weiss, D., Wirth, P.

and Zimmerman, A. (2005) Architecture reviews: practice and

experience. IEEE Softw. 22, 34–43.

[8] Wong, W.E. and Li, J. (2005) An Integrated Solution for Testing

and Analyzing Java Applications in an Industrial Setting,

Proc. 12th Asia-Pacific Software Engineering Conference

(APSEC’05). Vol. 00, 576–583. IEEE Computer Society.

[9] Stokes, D.E. (1997) Pasteur’s Quadrant, Basic Science and

Technological Innovation. Brookings Institution Press.

Washington, DC, USA.

[10] Malaiya, Y.K., Li, M.N., Bieman, J.M. and Karcich, R. (2002)

Software reliability growth with test coverage. IEEE Trans.

Reliab., 51, 420–426..

[11] Jones, J.A. and Harrold, M.J. (2003) Test-suite reduction and

prioritization for modified condition/decision coverage. IEEE

Trans. Softw. Eng., 29, 195–209.

[12] Xia, C. and Michael, R.L. (2005) The Effect of Code Coverage

on Fault Detection under Different Testing Profiles. Proc. First

International Workshop on Advances in Model-Based Testing,

ACM Press, St. Louis, MO.

[13] Fu, C. and Ryder, B.G. (2007) Exception-Chain Analysis:

Revealing Exception Handling Architecture in Java Server

Applications. Proc. 29th International Conference on

Software Engineering, ACM Press, Minneapolis, MN, USA.

[14] Agitar, http://www.agitar.com/.

[15] BullseyeCoverage, http://www.bullseye.com/index.html.

[16] Clover, http://www.cenqua.com/clover.

[17] Cobertura, http://cobertura.sourceforge.net/.

[18] CodeTest, http://www.metrowerks.com/MW/Develop/AMC/

CodeTEST/default.htm.

[19] Dynamic Memory Systems, http://dynamic-memory.com/.

[20] EMMA, http://emma.sourceforge.net/.

[21] eXVantage, http://www.research.avayalabs.com/user/jjli/

eXVantage.htm.

[22] gcov, http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html.

[23] Intel code coverage tool, http://www.intel.com/cd/software/

products/asmo-na/eng/219794.htm.

[24] JCover, http://www.mmsindia.com/JCover.html.

[25] Koalog, http://www.koalog.com/php/kover.php.

[26] Parasoft, Jtest: http://www.parasoft.com/jsp/products/ home.jsp?

product=Jtest Parasoft C++test: http://www.parasoft.com/jsp/

products/home.jsp?product=CppTesthttp://www.parasoft.com.

[27] Purify, Plus, http://www-306.ibm.com/software/awdtools/

purifyplus/.

[28] Semantic, Designs, http://www.semdesigns.com/index.html.

[29] TCAT, http://www.soft.com/TestWorks/.

[30] Baxter, I.D. (2002) Branch Coverage for Arbitrary Languages

Made Easy. http://www.semdesigns.com/Company/Publications/

TestCoverage.pdf.

[31] Weyuker, E.J. (1984) The complexity of data flow criteria for

test data selection. Inf. Process. Lett., 19, 103–109.

[32] Chilenski, J.J. and Miller, S.P. (1994) Applicability of modified

condition/decision coverage to software testing. Softw. Eng. J.,

9, 193.

[33] Bowen, J.P. and Hinchey, M.G. (2005) Ten Commandments

Revisited: A Ten-Year Perspective on the Industrial

Application of Formal Methods. Proc. 10th International

Workshop on Formal Methods for Industrial Critical Systems,

ACM Press, Lisbon, Portugal.

[34] Bowen, J.P. and Hinchey, M.G. (1995) Ten commandments of

formal methods. Computer, 28, 56–63.

[35] Piwowarski, P., Ohba, M. and Caruso, J. (1993) Coverage

Measurement Experience During Function Test. Proc. 15th

International Conference on Software Engineering, IEEE

Computer Society Press, Baltimore, MD, USA.

[36] Boshernitsan, M., Doong, R. and Savoia, A. (2006) From

Daikon to Agitator: Lessons and Challenges in Building a

Commercial Tool for Developer Testing. Proc. ISSTA ‘06,

ACM Press, Portland, ME, USA.

[37] McCabe, T. (1976) A complexity measure. IEEE Trans. Softw.

Eng., 5, 45–50.

[38] Agrawal, H. (1994) Dominators, Super Blocks, and Program

Coverage. Proc. 21st ACM Sigplan-Sigact Symposium on

Principles of Programming Languages, ACM Press, Portland,

OR, USA.

[39] Li, J.J. (2005) Prioritize Code for Testing to Improve Code

Coverage of Complex Software. Proc. 16th IEEE

International Symposium on Software Reliability Engineering,

IEEE Computer Society.

[40] Li, J.J., Weiss, D. and Yee, H. (2006) Code-coverage guided

prioritized test generation. Inf. Softw. Technol., 48, 1187–1198.

APPENDIX

Note sent to tool vendors

The information we collected is mostly from your website.

Please let us know if you have any updates or corrections. In

addition, if possible, we would like to know the extent of

your user base, the instrumentation overhead of your tool at

run time (if you have such data), license cost and any other

information that you think might be valuable for our study.

SURVEY OF COVERAGE-BASED TESTING TOOLS 597

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at U
niversity of T

exas at A
ustin on A

ugust 23, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	A Survey of Coverage-Based Testing Tools
	INTRODUCTION
	OVERVIEW OF COVERAGE
	COVERAGE MEASUREMENT
	Supported languages
	Instrumentation overhead
	Off-line program analysis and instrumentation overhead
	Run-time instrumentation overhead

	Additional features

	COVERAGE MEASUREMENT CRITERIA
	PRIORITIZATION
	AUTOMATIC TEST GENERATION AND REPORTING
	SUMMARY
	ACKNOWLEDGEMENTS
	References
	APPENDIX
	Note sent to tool vendors

