
MakingArchitecturalAnalysisReasonable

Andrew Berry
Schoolof ComputerScience

TheUniversityof Queensland
Australia4072

andyb@dstc.edu.au

David Garlan
Schoolof ComputerScience
CarnegieMellon University
Pittsburgh,PA, USA, 15213

garlan@cs.cmu.edu

November2, 1998

1 Intr oduction

Softwaresystemsthat integratea setof concurrentandpossiblydistributedcomponentsarebecomingincreasingly
common.Onearchitecturalstyle that is oftenusedin suchsystemsis implicit invocation[1, 2]. In this style,a com-
ponentcommunicatesandpassescontrolby announcingevents,andtheseeventsaremulticastto a setof consuming
componentsthatperformactionsin responseto events.At first glance,it would seemthat the inherentconcurrency
associatedwith thisstylewouldmakesystemsintractable:theconcurrency andindependenceof componentscoupled
with eventmulticasttypically leadsto ahighly complex concurrentsystemwith considerablenon-determinism.

We arecurrentlyexploring theproblemsof modelingandreasoningabouthighly concurrentsystemsat anarchi-
tecturallevel. In particular, wehave identifiedtwo approachesthathelpmakesuchreasoningtractable:

� recognizingthat an applicationmatchesa known pattern,thusallowing the useof simplified reasoningtech-
niques;� constrainingthearchitecturalstylesothatsystemsin thatstylecanbemoreeasilyunderstood.

In this positionstatement,we focuson how the two approachesidentifiedabove canbeappliedto systemsbuilt
usinganimplicit invocationstyle.We introducea modelof concurrentsystemsandshow how theimplicit invocation
styleproducesaconcurrentsystem.Wethendemonstratehow theapproachesabovecanbeappliedusinganumberof
examples.A formal treatmentof this work is currentlybeingdeveloped.Our eventualgoalis to developa systematic
understandingof the sourcesof tractability in concurrentsystemsand a set of techniquesto assistdevelopersin
reasoningaboutsuchsystems.

2 Reasoningabout Concurrent Systems

A concurrentsystemcanbe modeledasa directedgraphof actions. The nodesof the graphrepresentactionsand
the edgesrepresentorderingdependenciesbetweenactions. Nodesnot connectedeitherdirectly or transitively are
potentiallyconcurrent.A systemcanbedecomposedinto a setof computations,which aresubgraphsof thesystem
with noedgesconnectedto nodesoutsidethesubgraph.

Concurrency in thesystempotentiallyleadsto two typesof conflict:

1. Concurrentaccessto sharedstateby distinctactions,for example,���������
	 and ���������� . Theresultof
executingthesetwo actionsconcurrentlyis undefined.Theseconflictsaretypically calledraceconditions.

2. Modificationof sharedstatebyanindependentactionbetweendependentactionsof acomputation.Forexample,
if acomputationhastwo actions�����
����	 followedby �����
����� andapostconditionthat ����������	���� � , an
independentactionthatexecutes�����!�"#� betweenthedependentactionswill violatethepostcondition.This
is oftencalledtheisolationproblemin concurrency literature.

1



The distinctionbetweenthesetwo typesof conflict canbe somewhat fuzzy. In the secondcase,if we perform
analysisata level of abstractionthattreatsthedependentpair �����
����	 and �$���!��� � asasingle,indivisibleaction,
thenthat actionis concurrentwith �%���&�$�� , andwe have a racecondition. This preventsus from developinga
finer-grainedconcurrency controlstrategy in caseswheresomeoverlapis possible.

In ordertoshow thatasystembehavescorrectlyin thepresenceof concurrency,wecantakeoneof two approaches:

1. Prove that thesystemis correctwhenno conflictsoccur, thenshow or ensurethatconflictsareavoided. Since
a systemis typically definedasa setof distinct computations,we canprove that eachcomputationis correct
usingexistingdevelopmenttechniques,thenshow or ensurethattheirconcurrentexecutiondoesnot leadto any
conflicts.

2. Show that thesystemwill reacha correctstateafter its computationsarecomplete,regardlessof any possible
conflicts.Thisapproachis moredifficult to decompose,andtypically requirestherecognitionof patternsin the
system.

Notethatproblemsof deadlock,livelockandfairnessarenot addressedsincewehavenot prescribedlocking asa
meansto resolveconflicts.

3 Implicit Invocation

An implicit invocationsystemis definedby a setof methods,events,anda mappingbetweeneventsandmethods[1].
Whenaneventis announced,all methodsthathaveamappingfor thateventareexecuted.Thismappingis oftenreal-
izedby a dispatchingcomponentthatmaintainstheevent-methodmapping.Theconcurrency andorderingof method
executionsis typically notspecified,hencesystemsexhibit ahighlevel of potentialconcurrency andnon-determinism.
Many systemsallow the event-methodmappingto be modifieddynamically, for examplethroughsubscriptionsby
components,which increasesthecomplexity.

In termsof theconcurrency modeldescribedin theprevioussection,amethodexecutioncorrespondsto anaction,
andan eventannouncementcorrespondsto an edgebetweenactionnodesor the initiation of a new computationif
announcedby an external influence. The dispatchmechanismdefinestemplatesfor computation:eachexternally
announcedeventhasa computationgraphdefinedby themappingsstoredin thedispatcher.

In asystemwith unconstrainedconcurrency andasynchronousdispatching,thepotentialfor conflictsof bothtypes
identifiedin theprevioussectionis extremelyhigh. For example,in anautomatedsoftwaredevelopmentsystemwhere
a compileactionis fired whenever a particularfile is written, writing the file during a compilationwill potentially
invalidatethe compileand alsofire a secondcompilationthat will conflict with the original compileaction. It is
clear that techniquesto eitherminimize conflictsor reasonabouttheir influencearenecessaryto reasonaboutthe
correctnessof animplicit invocationsystem.

4 Constraining Concurrency

Thefirst andperhapsobviousapproachis to constrainthe implicit invocationstyleto reduceconcurrency, andhence
minimizeconflicts.Thereareseveralcommonapproachesusedin practice.

4.1 SynchronousDispatching

In asingle-processorenvironmentit is commonto useasynchronousdispatchmechanismto realizetheevent-method
mappings.Thereis noreductionin concurrency, sincetheprocessorcanonly executingonemethodata time,regard-
lessof thedispatchpolicy. Eventsarequeuedanddealtwith in orderof arrival. Eachmethodassociatedwith theevent
is calledin a non-deterministicsequentialorder. Theeffectof this constraintis thatraceconditionsbetweenmethods
areavoidedentirelyandneednotbeconsideredwhenreasoningabouttheapplicationsemantics.

A furthersynchronizationrestrictionis sometimesapplied. It requiresthateachcomputationrunsto completion
beforeany othercomputationsarestarted.Theconstraintimposesa total orderover computationsandremovesany
possibility of conflict betweencomputations,meaningthat an implicit invocationsystemcanbe proven correctby
simply proving thateachcomputationsatisfiesits postconditionandany global invariants.Note,however, thatnon-
determinismin theorderingof methodinvocationmightstill bepresentwithin computations.

2



4.2 Serializing Conflicting Actions

In thepresenceof concurrency, it is possibleto excluderaceconditionsby ensuringthatconflictingmethodsdo not
executeconcurrently. Thisrequiresthatthedispatcherhaveknowledgeof theresourceaccessrequirementsof methods
andbe able to determineautomaticallyif two methodsconflict. This hasthe sameeffect asa simplesynchronous
dispatchmechanism.While raceconditionsareexcluded,it is still necessaryto provethatany conflictinginterleaving
of theactionsin concurrentcomputationsachievea correctresult.

4.3 Serializing Conflicting Computations

A dispatcherimplementingserializationof entirecomputationsensuresthatall possiblyconflictingcomputationsare
executedin aserializableorder. As with methodserialization,thisconstraintrequiresthedispatcherto haveknowledge
of theresourceaccessrequirementsof methodsandtheability to determineautomaticallyif two computationsconflict
so it can scheduletheir executionto avoid conflicts. This hasthe sameeffect as executingall computationsin a
sequentialorder, while allowing concurrency whereno conflicts exist. A commonway of realizing serialization
is throughtwo-phaselocking usedin transactionanddatabasesystems,but this is not often provided for implicit
invocationsystems.

In asystemapplyingserializationto entirecomputations,thesystemcanbeprovencorrectby simplyproving that
eachindividualcomputationsatisfiesthesystemsemanticsin isolation.

5 Application Patterns

An alternative approachto reasoningabouthighly concurrentexecutionsin implicit invocationsystemsis to identify
applicationpatternsfor which simplified reasoningtechniquesexist. This approachtypically allows a higher level
of concurrency sinceit cantake advantageof semanticpropertiesof theapplication.In this sectionwe identify two
patternsby presentingexampleproblemsandshowing how thecomputationscanbeprovencorrectin thepresenceof
concurrency.

5.1 Set/CounterExample

The setandcounterexamplehastwo piecesof state:a setanda counter. Therearetwo methods,add andremove
thatoperateon thesetand inc anddec methodsthatoperateon thecounter. Therequiredbehavior of thesystemis
expressedastheinvariantthat,whenall computationsarecomplete,thecounterreflectsthenumberof elementsin the
set.

In an implicit invocationenvironment,the requiredsemanticscan be achieved by having the add and remove
methodsannounceaneventfor eachsuccessfuladditionor removalof anelement.Theeventsfor addingandremoving
elementsaremappedto the inc anddec methodsrespectively. Therearetwo key elementsof this examplethatmake
reasoningmoretractable:

1. Thesystemsemanticsis expressedasaglobalinvariantfor thequiescentstate.It is notnecessaryfor thecounter
to beaccurateaftereachmodificationto theset,only whenthesystemis quiescent.

2. Thesemanticsis realizedentirelythroughtherelationshipbetweenactions(methodinvocations)andevents,not
throughaccessto intermediatestate(i.e. theset).Theinterleaving of eventsandmethodinvocationsis therefore
unimportant.

Notethat thesemanticsalsorelieson thecorrectexecutionof eachoperationon thesetor counter. This requires
serializationof updatesto thesetor thecounterto avoid raceconditions.We cangeneralizethis exampleandassert
that if thereareno interleaving conflictsandraceconditionsareavoided,applicationcorrectnesscanbe shown by
simplyproving thateachcomputationin isolationestablishestheglobalinvariantuponcompletion.

5.2 Edit/Compile Example

The edit and compile examplehastwo piecesof state: a sourcefile and an object file. Thereare two methods:
edit, which modifiesthesourcefile, andcompile, which generatesanobjectfile usingthesourcefile. Thesemantics

3



requiredof thesystemis expressedasa global invariantthat,whenthesystemis quiescent,theobjectfile will bea
correctcompilationof thesourcefile.

In animplicit invocationenvironment,thesystemsemanticscanbeachievedby having eachedit actionannounce
aneventoncompletion,andhaving aneventmappingthatcausesasubsequentcompileaction.Thisworksbecausethe
lastactionbeforea quiescentstatewill alwaysbea compileactionthat is not concurrentwith anedit action,andthe
invariantis establishedby thecompileaction.It is not necessaryfor edit actionsto beserializedprovidedwe assume
thatthewriting of files is anatomicactionandthatthereis no conditionrequiringexclusive accessto thesourcefile.
It is necessary, however, for concurrentcompileactionsonasinglesourcefile to beserializedsincethey establishthe
invariantandmustexecutecorrectly. Again, therearetwo key elementsof this examplethat make reasoningmore
tractable:

1. Thesystemsemanticsis expressedasa globalinvariantfor thequiescentstate.
2. Theinvariantis establishedby thelastactionin any orderingof computations.

The patternthat emergesfrom this exampleis characterizedby the two key elementscapturedabove. If these
conditionsaresatisfied,thecorrectnessof computationscanbeshown by proving that the lastactionestablishesthe
invariant.

Thefamiliarmodel-view-controllerpatternfrom userinterfacetoolkits is a furtherexampleof thispattern.Sucha
systemis correctprovidedall views reflectthestateof themodelcomponentwhenthesystemis in a quiescentstate.
Thelastaction(s)in any orderingaretheview updateactions,andtheseestablishtheinvariant.It mightbenecessary,
however, to serializeactionsmodifying themodelcomponent.

6 Discussion

Implicit invocationis anexampleof anarchitecturalstylethatresultsin applicationswith ahigh level of concurrency.
Reasoningabouthighly concurrentapplicationsis difficult in thegeneralcase,andtechniquesareneededto dealwith
theconcurrency atanarchitecturallevel. Wehavepresentedatwo-prongedapproachto thisproblem:applyinggeneric
constraintsto thestyle that reduceconcurrency andhenceconflicts,andidentifying applicationpatternsthatexhibit
propertiesthatmakereasoningmoretractable.We arecurrentlydevelopingamoreformal treatmentof themodeland
examples,with thegoalof providingconfidencein ourresultsanddemonstratinghow thereasoningtechniquescanbe
appliedin amoreformalmanner.

While ourapproachhasfocusedontheimplicit invocationstyle,webelieveit couldbeequallyapplicableto other
architecturalstyles. In particular, we believe that themodelof concurrentsystemsandgenericconstraintspresented
hereareusablein otherstyleswith minormodification,but weexpectthattheapplicationpatternsemergingfromother
styleswill bedifferent. Partitioningthe designspaceusingarchitecturalstyleshelpsus to identify suchapplication
patternsandfurtherassistsin thearchitecturalreasoningprocess.Our futurework will focuson extendingtheresults
of thiswork to otherarchitecturalstyles.

References

[1] D. GarlanandD. Notkin. Formalizingdesignspaces:Implicit invocationmechanisms.In VDM’91: Formal
Software Development Methods, pages31–44,Noordwijkerhout,TheNetherlands,October1991.Springer-Verlag,
LNCS551.

[2] K. SullivanandD. Notkin. Reconcilingenvironmentintegrationandcomponentindependence.ACM Transactions
on Software Engineering and Methodology, 1(3),July1992.

4


