Making ArchitecturalAnalysisReasonable

Andrew Berry David Garlan
Schoolof ComputerScience Schoolof ComputerScience
TheUniversityof Queensland Carngyie Mellon University
Australia4072 Pittsturgh, PA, USA, 15213
andyb@dstc.edu.au garlan@cs.cmu.edu

November2, 1998

1 Intr oduction

Software systemghat integratea setof concurrentand possiblydistributed componentsre becomingincreasingly
common.Onearchitecturaktyle thatis often usedin suchsystemsds implicit invocation[1 2]. In this style,a com-
ponentcommunicatesindpassegontrol by announcingevents,andtheseeventsaremulticastto a setof consuming
componentshat performactionsin responseo events. At first glance,it would seemthatthe inherentconcurreng
associateavith this stylewould make systemsntractable the concurreng andindependencef componentgoupled
with eventmulticasttypically leadsto a highly complex concurrensystemwith considerabl@on-determinism.

We arecurrentlyexploring the problemsof modelingandreasoningabouthighly concurrensystemsat anarchi-
tecturallevel. In particular we have identifiedtwo approachethathelpmake suchreasoningdractable:

e recognizingthat an applicationmatchesa known pattern,thusallowing the useof simplified reasoningech-

niques;

e constraininghearchitecturabtyle sothatsystemsn thatstyle canbe moreeasilyunderstood.

In this positionstatementywe focuson how the two approache&dentifiedabove canbe appliedto systemsouilt
usinganimplicit invocationstyle. We introducea modelof concurrensystemsandshav how theimplicit invocation
styleproduces concurrensystemWe thendemonstratbow theapproacheabove canbe appliedusinga numberof
examples.A formal treatmenbf this work is currentlybeingdeveloped.Our eventualgoalis to developa systematic
understandingf the sourcesof tractability in concurrentsystemsand a set of techniquego assistdevelopersin
reasoningboutsuchsystems.

2 Reasoningabout Concurrent Systems

A concurrentsystemcanbe modeledasa directedgraphof actions. The nodesof the graphrepresenactionsand
the edgesrepresenbrderingdependenciebetweenactions. Nodesnot connecteckitherdirectly or transitvely are
potentiallyconcurrent.A systemcanbe decomposeihto a setof computationsyhich aresubgraph®f the system
with no edgesconnectedo nodesoutsidethe subgraph.

Concurreng in the systempotentiallyleadsto two typesof conflict:

1. Concurrentaccesgo sharedstateby distinctactions,for example,z := x + 2 andz := z — 5. Theresultof
executingthesetwo actionsconcurrentlyis undefined Theseconflictsaretypically calledraceconditions.

2. Modificationof sharedstateby anindependerdctionbetweerdependerdctionsof acomputation For example,
if acomputatiorhastwo actionse := x + 2 followedby z := z * 3 andapostconditiorthatx = (z +2) * 3, an
independenactionthatexecutest := x — 5 betweerthedependenactionswill violatethe postconditionThis
is oftencalledtheisolationproblemin concurreny literature.



The distinctionbetweenthesetwo typesof conflict canbe someavhatfuzzy. In the secondcase,if we perform
analysisatalevel of abstractiorthattreatsthedependenpair z := x + 2 andz := z * 3 asasingle,indivisible action,
thenthatactionis concurrenwith z := z — 5, andwe have a racecondition. This preventsus from developinga
finergrainedconcurrenyg controlstratgy in casesvheresomeoverlapis possible.

In orderto shav thatasystembehaescorrectlyin thepresencef concurreng, we cantake oneof two approaches:

1. Provethatthe systemis correctwhenno conflictsoccur, thenshav or ensurethatconflictsareavoided. Since
a systemis typically definedasa setof distinct computationsye canprove that eachcomputationis correct
usingexisting developmentechniquesthenshav or ensurehattheir concurrenexecutiondoesnotleadto ary
conflicts.

2. Shaw thatthe systemwill reacha correctstateafterits computationsrecomplete regardlesof ary possible
conflicts. This approachs moredifficult to decomposeandtypically requiresherecognitionof patternsn the
system.

Notethatproblemsof deadlock]ivelockandfairnessarenot addressedincewe have not prescribedocking asa
meangdo resohe conflicts.

3 Implicit Invocation

An implicit invocationsystemis definedby a setof methodsgvents,anda mappingbetweereventsandmethods[].
Whenaneventis announcedall methodghathave a mappingfor thateventareexecuted.This mappingis oftenreal-
ized by a dispatchingcomponenthatmaintainghe event-methodnapping.The concurreng andorderingof method
executionds typically not specifiedhencesystemsxhibit ahighlevel of potentialconcurreng andnon-determinism.
Many systemsallow the event-methodmappingto be modified dynamically for examplethroughsubscriptiondy
componentswhichincreaseshe compleity.

In termsof theconcurreng modeldescribedn the previoussectiona methodexecutioncorrespondso anaction,
andan eventannouncementorrespondso an edgebetweenactionnodesor the initiation of a new computationif
announcedy an externalinfluence. The dispatchmechanisndefinestemplatesfor computation:eachexternally
announce@venthasa computatiorgraphdefinedby the mappingsstoredin thedispatcher

In asystemwith unconstrainedoncurreng andasynchronoudispatchingthe potentialfor conflictsof bothtypes
identifiedin theprevioussectionis extremelyhigh. For example,in anautomatedoftwaredevelopmensystemwvhere
a compileactionis fired whenever a particularfile is written, writing the file during a compilationwill potentially
invalidatethe compile and also fire a secondcompilationthat will conflict with the original compile action. It is
clearthat techniquego either minimize conflicts or reasonabouttheir influenceare necessaryo reasonaboutthe
correctnessf animplicit invocationsystem.

4 Constraining Concurrency

Thefirst andperhapbviousapproachis to constrainthe implicit invocationstyleto reduceconcurreng, andhence
minimize conflicts. Thereareseveralcommonapproacheasedin practice.

4.1 SynchronousDispatching

In asingle-processarvironmentit is commonto usea synchronouslispatchmechanisnto realizethe event-method
mappingsThereis noreductionin concurreng, sincethe processocanonly executingonemethodat a time, regard-
lessof thedispatchpolicy. Eventsarequeuedanddealtwith in orderof arrival. Eachmethodassociateavith theevent
is calledin a non-deterministisequentiabrder The effect of this constrainis thatraceconditionsbetweemmethods
areavoidedentirelyandneednotbe consideredvhenreasoningaboutthe applicationsemantics.

A furthersynchronizatiomestrictionis sometimesapplied. It requiresthateachcomputatiorrunsto completion
beforeary othercomputationarestarted. The constrainimposesa total orderover computationsandremovesary
possibility of conflict betweencomputationsmeaningthat an implicit invocationsystemcan be proven correctby
simply proving thateachcomputatiorsatisfiedts postconditionrandary globalinvariants. Note, however, thatnon-
determinismin the orderingof methodinvocationmight still be presentvithin computations.



4.2 Serializing Conflicting Actions

In the presencef concurreny, it is possibleto excluderaceconditionsby ensuringthat conflicting methodsdo not
executeconcurrently Thisrequireghatthedispatchehave knowledgeof theresourceaccessequirementsf methods
andbe ableto determineautomaticallyif two methodsconflict. This hasthe sameeffect asa simple synchronous
dispatchmechanismWhile raceconditionsareexcluded,it is still necessaryo provethatary conflictinginterleaving
of theactionsin concurrentomputationgchieve a correctresult.

4.3 Serializing Conflicting Computations

A dispatcheimplementingserializationof entirecomputationgnsureghatall possiblyconflictingcomputationgre
executedn aserializableorder As with methodserializationthis constraintequireghedispatcheto have knowledge
of theresourceaccessequirementsf methodsandtheability to determineautomaticallyif two computationgonflict
so it canscheduletheir executionto avoid conflicts. This hasthe sameeffect as executingall computationsn a
sequentialorder, while allowing concurreng whereno conflicts exist. A commonway of realizing serialization
is throughtwo-phaseocking usedin transactionand databasesystemsbut this is not often provided for implicit
invocationsystems.

In a systemapplyingserializationto entirecomputationsthe systemcanbe provencorrectby simply proving that
eachindividual computatiorsatisfieghe systemsemanticsn isolation.

5 Application Patterns

An alternatve approactto reasoningabouthighly concurrenexecutionsin implicit invocationsystemss to identify
applicationpatternsfor which simplified reasoningechniquesxist. This approachtypically allows a higherlevel
of concurreng sinceit cantake advantageof semantigpropertiesof the application.In this sectionwe identify two
patternsby presentingexampleproblemsandshaving how the computationganbe provencorrectin the presencef
concurreng.

5.1 Set/CounterExample

The setand counterexamplehastwo piecesof state:a setanda counter Therearetwo methodsadd andremove
that operateon the setandinc and dec methodsthat operateon the counter Therequiredbehaior of the systemis
expresse@stheinvariantthat,whenall computationarecompletethe countereflectsthenumberof elementsn the
set.

In animplicit invocationervironment,the requiredsemanticscan be achieved by having the add and remove
methodsaannouncaneventfor eachsuccessfuhdditionor removal of anelement.Theeventsfor addingandremoving
elementaremappedo theinc anddec methodsespectiely. Therearetwo key elementsf this examplethatmake
reasoningnoretractable:

1. Thesystensemanticss expresse@sa globalinvariantfor thequiescenstate.lt is notnecessarfor thecounter
to beaccurateaftereachmodificationto the set,only whenthe systems quiescent.

2. Thesemanticss realizedentirelythroughtherelationshipbetweeractions(methodnvocationsandevents,not
throughaccesso intermediatestate(i.e. theset). Theinterleaving of eventsandmethodinvocationds therefore
unimportant.

Notethatthe semanticalsorelieson the correctexecutionof eachoperationon the setor counter This requires
serializationof updatedo the setor the counterto avoid raceconditions.We cangeneralizehis exampleandassert
thatif thereare no interleaving conflictsand raceconditionsare avoided, applicationcorrectnesgan be shovn by
simply proving thateachcomputatiorin isolationestablishethe globalinvariantuponcompletion.

5.2 Edit/Compile Example

The edit and compile examplehastwo piecesof state: a sourcefile and an objectfile. Therearetwo methods:
edit, which modifiesthe sourcefile, and compile, which generatesn objectfile usingthe sourcefile. The semantics



requiredof the systemis expressedasa globalinvariantthat, whenthe systemis quiescentthe objectfile will bea
correctcompilationof the sourcefile.

In animplicit invocationervironment the systemsemanticsanbe achiered by having eachedit actionannounce
aneventoncompletion andhaving aneventmappingthatcauses subsequertompileaction. Thisworksbecausé¢he
lastactionbeforea quiescenstatewill alwaysbeacompileactionthatis not concurrentwvith aneditaction,andthe
invariantis establishedby the compileaction. It is not necessarjor edit actionsto be serializedprovidedwe assume
thatthewriting of filesis anatomicactionandthatthereis no conditionrequiringexclusive accesso the sourcefile.
It is necessanhowever, for concurrentompileactionson asinglesourcefile to beserializedsincethey establisithe
invariantand mustexecutecorrectly Again, therearetwo key elementsof this examplethat make reasoningmore
tractable:

1. Thesystemsemanticss expressedsa globalinvariantfor the quiescenstate.
2. Theinvariantis establishedby thelastactionin ary orderingof computations.

The patternthat emegesfrom this exampleis characterizedby the two key elementscapturedabove. If these
conditionsare satisfied the correctnes®f computationsanbe shavn by proving thatthe lastactionestablisheshe
invariant.

Thefamiliarmodel-viev-controllerpatternfrom userinterfacetoolkitsis a furtherexampleof this pattern.Sucha
systemis correctprovidedall views reflectthe stateof the modelcomponentvhenthe systemis in a quiescenstate.
Thelastaction(s)in any orderingaretheview updateactions,andtheseestablisttheinvariant.It mightbe necessary
however, to serializeactionsmodifying the modelcomponent.

6 Discussion

Implicit invocationis anexampleof anarchitecturabktylethatresultsin applicationsvith ahigh level of concurreng.
Reasonin@bouthighly concurrenepplicationds difficult in thegenerakase andtechniqguesreneededo dealwith
theconcurreng atanarchitecturalevel. We have presenteétwo-prongedapproachio this problem:applyinggeneric
constraintgo the style that reduceconcurreng andhenceconflicts,andidentifying applicationpatternghat exhibit
propertiegshatmake reasoningnoretractable We arecurrentlydevelopinga moreformal treatmenbf themodeland
exampleswith thegoalof providing confidencen ourresultsanddemonstratindgpow thereasoningechniqueganbe
appliedin amoreformal manner

While our approachasfocusedon theimplicit invocationstyle,we believe it couldbeequallyapplicableto other
architecturabtyles. In particulatr we believe thatthe modelof concurrensystemsandgenericconstraintgresented
hereareusablen otherstyleswith minor modification but we expectthattheapplicationpatternemegingfrom other
styleswill be different. Partitioning the designspaceusingarchitecturaktyleshelpsus to identify suchapplication
patternsandfurtherassistsn thearchitecturateasoningorocessOur futurework will focuson extendingtheresults
of thiswork to otherarchitecturaktyles.

References

[1] D. GarlanandD. Notkin. Formalizing designspaces:Implicit invocationmechanisms.In VDM'91: Formal
Software Devel opment Methods, pages31-44 Noordwijkerhout,TheNetherlandsOctoberl991.SpringefVerlag,
LNCS551.

[2] K. SullivanandD. Notkin. ReconcilingervironmentintegrationandcomponenindependenceéACM Transactions
on Software Engineering and Methodol ogy, 1(3), July 1992.



