Programming Connectors
In an Open Language

Uwe Afimann, Andreas Ludwig, Daniel Pfeifer

Institut fur Programmstrukturen und Datenorganisation
Universitat Karlsruhe

Postfach 6980, Zirkel 2, 76128 Karlsruhe, Germany
fax:449/721/30047, tel:4+49/721/608-4763

Abstract
Connectors can be programmed flexibly using an open language with a static
meta-object protocol. Illustrated with an example from OpenlJava, it is pre-
sented how such connectors insert communication code into classes trans-
parently. With this method, connectors become meta-programs in the open
language; connecting becomes a program transformation. The method paves
the way for connector libraries which are easy to extend.

Category: Technology support, experience paper
Keywords: Software architecture, connectors, meta-programming, pro-
gram transformations, open language

1 INTRODUCTION

In software construction, it has become popular to separate architectural from
application-specific aspects. Software engineers hope that both aspects can
be exchanged independently of each other, improving reuse of components in
different architectures and reuse of architecture with different components.

For this separation of aspects, architectural description languages (ADL)
have been developed. Systems based on such languages provide tailored pro-
gramming environments in which architectures are specified as a hierarchy of
components [MDK92] [SDK95] [GAO95] [LKA195]. Components are sets of
classes or modules and provide abstract interfaces expressed in ports. Ports
describe gates in and out of components through which data items flow. Con-
nectors link the ports of different components together describing the commu-
nication. From those connector specifications, code can be generated so that
applications consist of hand-written component code and generated architec-
tural code. However, often such systems only support fixed communication
styles with a restricted set of connectors. Only recently, this begins to change
[SDZ96][AGIT].

[DRI7] extends this approach to user-programmable connectors. In his con-

©1998 All rights reserved by the authors

2 Programming Connectors in an Open Language

nector language FLO, connectors can be described in a lisp-like syntax en-
riched with some special programming constructs. From those specifications,
the connector compiler can generate connection code. While this approach
works well a user has to learn a new programming language for connectors.
Instead it would be better to follow a library-based approach: if connectors
could were operators in a library for a standard programming language users
would quickly understand how to write connectors. Since libraries are exten-
sible per se it would be very easy to add new connectors to the system.

In this paper, we demonstrate how to program such a connector library with
an open language that provides a meta-object protocol. In such a language,
connectors become simple meta-programs extending classes and methods with
architectural code [ABm98]. As an example, an event-based connector is pre-
sented, an observifier, which substitutes a procedure call with an event-based
communication, changing its connected classes transparently. The connector is
implemented with OpenJava [Tat98] and generates ordinary Java code (static
meta-programming). In this setting, components correspond to sets of Java
classes. Ports correspond to ordinary Java method calls, and connectors are
meta-operators that replace calls by other communication mechanisms. Hence
connector applications are program transformations, generating new versions
of the software and specializing the components to specific communication
styles.

Before we present the example connector observifier, we introduce the open
language OpenlJava.

2 THE OPEN LANGUAGE OPENJAVA

The OpenJava system is a Java preprocessor and compiler supporting a meta-
programming library. Calls to this library are resolved statically. In essence
the library offers the abstract syntax tree to the user, and the meta-programs
transform the abstract syntax tree of the program. Originally, OpenJava has
been designed to develop Java language extensions, and the distribution con-
tains extension examples, e.g. how to extend Java with templates. Language
extension in OpenJava works as follows:

® OpenlJava allows the user to add new keywords to the language, i.e. to make
small extensions to the grammar of the parser (e.g. the keyword template).

® [f the OpenJava compiler finds these keywords in a program, it calls a meta-
program handles the keyword. This meta-program overrides a method of
a standard OpenJava compiler class and transforms one or more nodes in
the abstract syntax tree to introduce the semantics of the keyword into
the program. This process is repeated until the whole program has been
investigated.

® Finally, the OpenJava compiler pretty-prints the abstract syntax tree to
an ordinary Java file or generates byte code.

Applying a meta-programming connector 3

In our case, the language extension facilities of OpenJava are not used.
Instead we will only exploit the meta-programming interface for implementing
the meta-programming connectors.

3 APPLYING A META-PROGRAMMING CONNECTOR

In our approach, connectors are program transformers which are implemented
as meta-programming methods. Connector applications are program trans-
formations, generating new versions of the software and specializing the com-
ponents. This yields a system construction method in which connectors are
composition operators composing the final system from the components. In
the following, we give an overview how a meta-programming connector works.

Initialization phase First, all classes which should be connected must be
determined (parameter classes). Either they are looked up in an existing
abstract syntax tree or read from file.

Selection phase Then the places have to be selected where the connector
connects classes, i.e. ports have to be identified. Since in our case ports
are calls, calls in Java methods have to be identified which should be sub-
stituted. The calls can be selected manually by specifying abstract syntax
tree nodes or by an interactive wizard using a class browser.

Transformation phase This phase applies the selected connectors, trans-
forming the classes and resulting in a modified abstract syntax tree. This
is repeated until all connections are performed.

Emitting phase Finally, the abstract syntax tree is traversed by the stan-
dard OpenJava pretty printer to emit the final Java source code. Since the
modified classes are derived from their originals, they have to be put under
version control.

3.1 The example: Towers of Hanoi

The following presents a simple example, attaching an event-based connection
to a procedure call port. The program solves Towers of Hanoi, recursively
calling itself for solutions of Towers of Hanoi with smaller problem size. The
program prints a message about each move with the method display. In
terms of software architecture, Hanoi.compute can be considered as a com-
ponent which is connected to Hanoi.display by a procedure call connector
(Figure 1). Our example shows how the connector observifier replaces this
connection by an event-based connection.

1 /%%

2 * Towers of Hanoi; File with procedure call as connector
3 */

4 import java.io.x*;

4 Programming Connectors in an Open Language

Hanoi Hanoi PrintObserver

compute compute

call E event event

display display display 47

Figure 1 Exchanging the method call to an event-based communication. A
second observer listens to the events.

5 public class Hanoi {

6 public Hanoi() {}

7 protected void compute(int n, String s, String t, String h) {
8 if (n > 1)

9 compute(n - 1, s, h, t);

10 display(s, t);

11 if (n > 1)

12 compute(n - 1, h, t, s);

13 }

14 public void display(String s, String t) {

15 System.out.println(s + " --> " + t);

16 }

17 public static void main(Stringl[]l a) {

18 Hanoi h = new Hanoi();

19 h.compute(n, "Source", "Target", "Help");
20

21 }

After applying the connector observifier, the program contains the following
modifications (marked by > in the next listing).

® In procedure compute, the call to display is exchanged to a notifications
of all currently listening observers.

® These observers are attached to the Hanoi class in the constructor of
the Hanoi class; one of them is Hanoi itself, another one is an object
Print0Observer that prints some messages.

® compute activates display with an event object containing all parameters
of the old call. To this end, there is a new procedure update which acts
as observer: it receives the event, unpacks the parameters from the event
object, and calls display via a procedure call.

/%
* This code was generated by OpenJava System.
*/

import java.io.x*;

O wWwN -

Applying a meta-programming connector 5

public class Hanoi extends java.util.Observable implements java.util.Observer

public Hanoi() {
> addObserver(new PrintObserver());
10 > addObserver(this);

11 }

12 protected void compute(int n, String s, String t, String h) {
13 if(n > 1)4{

14 compute(n - 1, s, h, t);

15 }

16 > setChanged();

17 > notifyObservers(new displayPack(s, t));
18 if(n > 1)4{

19 compute(n - 1, h, t, s);

20 }

21 }

22 public void display(String s, String t) {
23 System.out.println(s + " —=> " + t);

24

25 public static void main(String[] a) {

26 Hanoi h = new Hanoi();

27 h.compute(n, "Source", "Target", "Help");
28

29 > public void update(java.util.Observable o, java.lang.Object arg) {

30 > this.display(((displayPack) arg).s, ((displayPack) arg).t);
31 > return;

32 >}

33 }

The output of the modified program is similar to the output of the original
program. In addition, the listener procedure from PrintObserver prints a
message for each move.

On the first sight, it seems awkward to substitute a call in a sequential
program with an event-based communication. However, event communication
allows that multiple observer procedures can be attached dynamically to the
call, performing additional actions. For instance, a visualization algorithm
may be attached that starts an incremental display of a data structure. Since
this is transparent to the code, systems can be extended and adapted flexibly.

3.2 How the observification works

Our implementation of the observifier is a method which replaces a call to
a event-signaling call sequence. Its interface is as follows. It can be called as
standard procedure from a main program in order to perform the connection
on arbitrary classes.

1 package compost.connectors;

2 import openjava.ptree.*;

3 import openjava.util.*;

4 import openjava.*;

5

6 public static ClassDeclaration observify(

7 ClassDeclaration subject, /* subject of communication */
8 StatementList statementList, /* subject’s statement list */
9 int position, /* the place in statement list to mix-in call */
10 ClassDeclaration observer) /* object of communication */
11 throws openjava.ptree.PtreeException

6 Programming Connectors in an Open Language

On top of the meta-model and meta-object protocol of OpenJava, the
implementation of the observifier is straightforward. It contains the follow-
ing steps, namely deleting, allocating, and modifying meta-objects of type
ClassDeclaration, MethodDeclaration, and Statement.

® The interface of Hanoi is extended to implements the interface Observable
as well as the interface Observer from JDK-1.2.

® The call is removed from its including statement list.

® A call to a setChanged is inserted, signaling that an event has occured in
the subject.

@ Since event communication in Java transfers single objects, the parame-
ters of a call to method display have to be tupled into an event object.
Hence another meta-operator packify is assumed which creates a new class
displayPack whose objects carry the attributes of such a call.

® A call to notifyObservers from java.util.Observable is inserted. This
call transfers the event object and control to all observing objects. Its
parameter is a new object of the pack class.

® The packifier supports another method unpackify that creates statements
to unpack the arguments from the event object. This operator is used to
insert the unpacking of parameters into the update method of the observer.

More information and the listing of the observifier are found in the full
paper which can be obtained from the authors.

4 CONCLUSION

This paper presented a method how to program connectors in an open lan-
guage. Driven by an example, a connector meta-program was explained that
introduces event-based observation into a standard object-oriented program.
Since connectors are programmed in a standard programming language, new
connectors can easily be developed and collected in libraries.

REFERENCES

[AG97] Robert Allen and David Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineering and
Methodology, 6(3):213-49, July 1997.

[ABmI8] Uwe Afmann. Meta-programming composers in second-
generation component systems. In J. Bishop and N. Horspool,
editors, Systems Implementation 2000 - Working Conference
IFIP W@ 2.4, Berlin, February 1998. Chapman and Hall.

[BWO7]

[DRO7]

[GAO95]

[LKA*95]

[MDK92]

[SDK*+95]

[SDZ96]

[Tat98]

Conclusion 7

Martin Biichi and Wolfgang Weck. A plea for grey-box compo-
nents. Technical Report TUCS-TR-122, Turku Centre for Com-
puter Science, Finland, September 5, 1997.

S. Ducasse and T. Richner. Executable Connectors: Towards
Reusable Design Elements. In M. Jazayeri and H. Schauer, ed-
itors, Proc. 6th European Software Eng. Conf. (ESEC 97), vol-
ume 1301 of Lecture Notes in Computer Science, pages 483-499.
Springer-Verlag, Berlin, 1997.

David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch: why reuse is so hard. IEFEFE Software, 12(6):17-26,
November 1995.

David C. Luckham, John J. Kenney, Larry M. Augustin, James
Vera, D. Bryan, and Walter Mann. Specification and analysis
of system architecture using Rapide. IEEFE Transactions on
Software Engineering, 21(4):336-355, April 1995.

Jeff Magee, Naranker Dulay, and Jeffrey Kramer. Structuring par-
allel and distributed programs. In Proceedings of the Interna-
tional Workshop on Configurable Distributed Systems, London,
March 1992.

Mary Shaw, Robert DeLine, D.V. Klein, T.L. Ross, D.M. Young,
and G Zelesnik. Abstractions for software architecture and tools
to support them. IEEE Transactions on Software Engineering,
pages 314-335, April 1995.

Mary Shaw, Robert DeLine, and Gregory Zelesnik. Abstractions
and implementations for architectural connections. In 3rd Inter-
national Conference on Configurable Distribute systems. IEEE
Press, May 1996.

Michiaki Tatsubori. OpenJava language
manual, version 0.2.3, January 1998.
http://www.softlab.is.tsukuba.ac.jp/~mich/openjava/.

