
Model Checking of CHAM Descriptions of Software Architectures �

Flavio Corradini Paola Inverardi

Dipartimento di Matematica Pura ed Applicata

Universit�a degli Studi di L'Aquila

Via Vetoio, Loc. Coppito, L'Aquila, Italy

fflavio,inverardg@univaq.it

Abstract

In this paper we show how to de�ne and prove di�erent properties of a software architecture

description based on the CHAM. We consider both structural properties, that is properties of

the system which are connected with its structure either static and dynamic, and functional

properties, that is properties on how the system manipulates its data. We will use a logic

approach to describe the properties and a model checking approach to verify them. As case

study we take the software architecture of a sender-receiver system.

1 Introduction

An important feature of software architectures is the ability to allow reasoning on interesting prop-
erties of the described system. This would allow an early in the software development analysis of
relevant features of the system, and it would help in evaluating the suitability of a software archi-
tecture. In the literature there are many examples of analysis of software architecture properties,
including the usual liveness and safety properties [1, 2, 6, 9].

In this paper we show how to de�ne and prove di�erent properties of a software architecture
description based on the CHAM [8]. We consider both structural properties, that is properties of the
system which are connected to its structure either static and dynamic, and functional properties,
that is properties on how the system manipulates its data.

Our goal is to show how it is possible to formalize the intuitive reasoning which a designer
carries out when he tries to evaluate, from di�erent viewpoints, the proposed architecture. Thus
the properties we address can be on one side speci�c of the given architecture, and on the other
speci�c of the system to be modeled, that is part of its requirements. As a case study we use the
software architecture description of a Sender-Receiver System.

For expressing the properties we use the CTL� logic [5, 4] and to prove them we use a model
checking approach based on the ability of deriving a Kripke structure out of a CHAM speci�cation,
as described in Section 2. To de�ne the properties, we �rst reason at the CHAM level, in order
to understand in terms of the system behavior what is the property we want to state, then we
formally translate this reasoning in a logic formula. In Section 3 we show how to identify interesting
properties and how these can be formalized in CTL� .

�This work has been partially funded by CNR, Progetto:Metodologie, e strumenti di analisi, veri�ca e validazione

per sistemi software a�dabili

1

2 Specifying CHAM Descriptions Properties via CTL� Logic

2.1 The CHAM Model

In this section we brie
y introduce the CHAM formalism and its use for the description of Software
Architectures as introduced in [8]. We refer to that paper for more details.

A Chemical Abstract Machine is speci�ed by de�ning molecules m, m0, m00,... de�ned as terms
of a syntactic algebra that derive from a set of constants and a set of operations and solutions S, S0,
S00, ... of molecules. Molecules constitute the basic elements of a CHAM, while solutions are multi-
sets of molecules interpreted as de�ning the states of a CHAM. A CHAM speci�cation contains
reaction rules T , T 0,... (of the form m1;m2; :::;mk �! m0

1;m
0
2; :::;m

0
k) that de�ne (via an inference

rule of the form S �! S0 implies S]S00 �! S0]S00) a transformation relation S �! S0, dictating
the way solutions can evolve (i.e., states can change) in the CHAM. At any given point, a CHAM
can apply as many rules as possible to a solution, provided that their premises do not con
ict
that is, no molecule is involved in more than one rule. In this way it is possible to model parallel
behaviors by performing parallel reactions. When more than one rule can apply to the same (set of)
molecule the CHAM makes a nondeterministic choice as to which reaction to perform. The CHAM
description of a software architecture [8] consists of a syntactic description of the static components
of the architecture (the molecule), a solution representing the initial state of the architecture (the
initial solution), and of a set of reaction rules which describe how the system dynamically evolves
through reaction steps (the reaction rules).

2.2 Modeling CHAM Descriptions Behaviors via Kripke Structures

As already investigated in [8], the CHAM formalism allows for di�erent analysis and veri�cation
techniques. This can be very convenient since depending on the kind of property, one can choose
the most adequate technique. In particular, one can either exploit the algebraic and equational
nature of CHAM or take advantage of its operational
avor to derive a transition system or a
Kripke structure out of a CHAM description and then reason at this abstraction level.

Let us show how to derive a Kripke structure out of a CHAM description. We derive it from the
operational semantics, by considering that our reaction rules are the operational semantics rules.

De�nition 2.1 (Operational semantics induced by R) Let R be the set of reaction rules of a CHAM

C. Then R de�nes a relation !R� Solution�Solution. The relation is the least relation satisfying
the rules.

De�nition 2.2 (Derivative) Given a set of reaction rules R, an R-derivation from a solution S

to a solution Sn is a sequence fSi; 1 � i � n; n > 1g such that S = S1 and for any 1 � i � n� 1,
Si !R Si+1. A solution S is called an R-derivative of S0 if an R-derivation exists from S0 to S.

The set of derivatives of S is denoted by DR(S) while MR(S) denotes the set of molecules within

solutions in DR(S).

De�nition 2.3 (Kripke Structure) A Kripke Structure (or KS) is a 5-tuple K = (S;AP ;L;D; s0)
where

� S is a set of states;

� AP is a non-empty set of atomic proposition names ranged over by p; p1; : : :;

� L : S ! 2AP is a function that assigns to each state a set of atomic propositions true in that

state;

� D � S � S is the transition relation;

2

� s0 is the initial state.

We can now show how, given a CHAM and a solution, we can derive a Kripke structure which
represents the whole set of possible derivations. If the number of derivable solutions is �nite also
the Kripke structure is �nite.

De�nition 2.4 (Kripke Structure corresponding to a solution) Given a solution S and a set of

reaction rules R, R(S) is the Kripke structure (DR(S) [fSg;MR(S);L;!R;S), where for every

S0 2 DR(S) [fSg, L(S
0) is the set of molecules in S0 and !R is the relation de�ned by R.

2.3 The CTL� Logic

We shortly introduce the branching temporal logic CTL� de�ned in [5, 4]. CTL� is suitable to
express properties of reactive systems de�ned by means of transition systems or Kripke structure.
In this paper, we concentrate on some structural and functional properties that our architectures
have to possess. Although our main focus in the analysis will be centered around these properties,
we can use CTL� to easily de�ne and verify usual safety and liveness properties. Before de�ning
syntax and semantics of the CTL� operators, let us introduce some de�nitions which will be used
in the sequel. A notion of paths (or runs) is needed:

� � is a path from r0 2 S if either � = r0 (the empty path from r0) or � is a sequence (possibly
in�nite) (r0; r1)(r1; r2) : : : such that (ri; ri+1) 2! for each i � 0. �i, for i � 0, denotes the
su�x path (ri; ri+1)(ri+1; ri+2) : : : while �(i) the i

th state in the sequence, i.e. ri.

� A path � is called maximal if either it is in�nite or it is �nite and its last state r has no
successor states. The set of maximal paths from r0 will be denoted by �(r0).

� If � is in�nite, then j�j = ! (j�j denotes the length of �). If � = r0, then j�j = 0.
If � = (r0; r1)(r1; r2) : : : (rn; rn+1), n � 0, then j�j = n+ 1.

The syntax of CTL� is de�ned by state and path formulae. They are generated by the following
grammar; � ranges over state formulae,
 ranges over path formulae and p over AP :

� ::= p j � ^ � j :� j 9
 j 8

 ::= � j
 ^
 j :
 j X
 j F
 j
U
 :

Operator 9 (for some path) and 8 (for all paths) are path quanti�ers while X, U and F are the
next, the until and the sometimes operators respectively. Intuitively, a path � holds the next

modality X
 if and only if �1 (the `'next moment") holds
. � holds the sometimes modality F

if and only if there exists i � 0 (some `'future moment") such that �i holds
. Finally, � holds the
until modality
U
0 if and only if there exists i � 0 such that �i holds
0 (�0 does eventually holds)
and for all j such that 0 � j < i, �j holds
 (
 holds `'everywhere prior" to
0).

Let K = (S;AP ;L;!; s0) be a Kripke Structure. Satisfaction of a state formula � (path formula

) by a state s (path �), notation s j=K � (� j=K
) is given inductively by :

s j=K p i� p 2 L(s)
s j=K � ^ �0 i� s j=K � and s j=K �0

s j=K :� i� It is not the case that s j=K �

s j=K 9
 i� 9� 2 �(s) such that � j=K

s j=K 8
 i� 8� 2 �(s); � j=K

� j=K � i� �(0) j=K �

� j=K
 ^
0 i� � j=K
 and � j=K
0

� j=K :
 i� It is not the case that � j=K

� j=K F
 i� 9i � 0 : �i j=K

� j=K X
 i� j�j � 1 and �1 j=K

� j=K
U
0 i� 9i � 0 such that �i j=K
0; and 8j < i; �j j=K

3

3 On Using CTL� to Analyze and Verify System Properties

As already said, the CTL� logic can be used to specify and verify system properties. Here, we use
this logic to specify and verify properties of software architectures. As case study we use a Sender-
Receiver System. In the following we brie
y describe the case study, then we show its CHAM
formalization and how relevant properties can be expressed in CTL� .

3.1 The Sender-Receiver System

A sender, SENDER, asks for services, namely iserv1, ...,iservn, to a receiver, RECEIVER. The
communication between SENDER and RECEIVER is asynchronous; i.e., the former sends services
to the latter by pushing them in a bu�er, BUFFER, and then proceeds autonomously. RECEIVER,
on its side, pops up services from the bu�er which then independently performs.

A brief description of the architecture of the Sender-Receiver System is now in order. The
syntax for the architecture is given in Table 1-(1). Following Perry and Wolf [10], P represents
the processing elements, D represents the data elements (service is the type of the service instances
iserv1, ...,iservn) and C represents the connecting elements. The initial solution is given in Table
1-(2). This solution consists of three molecules, one for the initial state of each of the three major
processing elements in the architecture. Finally, the reaction rules are given in Table 1-(3). They
represent how the system can dynamically evolve. The operator + denotes the non deterministic
composition, ? a sort of Kleene star (it is used for recursive de�nitions), and � denotes the sequential
composition (where the molecule is consumed from left to right). To make the description as shorter
as possible, we used iserv to denote one of the service instances iserv1, ...,iservn. Hence T6, for
instance, being for n rules; those obtained by replacing iserv with one of the services iserv1,
...,iservn.

3.2 Expressing Structural Properties of the Sender-Receiver System

In this section we show how properties related to the structure of the system can be speci�ed and
veri�ed. In these kind of systems we are often interested in the amount of concurrency-parallelism
exploited by the components acting as data resources. The architecture of the system previously
presented describes, indeed, a parallel system and, some of the speci�ed components, are actually
data resources. SENDER, for instance, provides data (actually, services) to RECEIVER via BUFFER.

Concurrency in the bu�er between SENDER and RECEIVER may arise if SENDER decides to
push a new service while RECEIVER decides, at the same time, to pop up a service to be performed.

Property 3.1 It is possible that SENDER is ready to push a service in the bu�er when RECEIVER

is ready to pop up a service from the bu�er.

In other words, we say that in a certain solution, SENDER is ready to push a new service into
the bu�er if molecule

�1 = request(iserv,BUFFER) � (m)? � SENDER
is available in the current solution. Furthermore, RECEIVER can pop up a service from the bu�er
if (i) the bu�er is not empty and, hence,

�2 = (bu�er(iserv,RECEIVER) � BUFFER _ bu�er(iserv,RECEIVER) �m2 � BUFFER)
is in the actual solution, and (ii) molecule

�3 = input(iserv,BUFFER) �m2 � RECEIVER
requiring a service from the bu�er is also in the current solution.

The CTL� formula expressing Property 3.1 is hence

'1 = 9(F (�1 ^ �2 ^ �3)):

4

M ::= P j C j M �M j M?

P ::= SENDER j RECEIVER j BUFFER

D ::= service j iserv1 j ::: j iservn
C ::= request(D,P) j input(D,P) j make(D) j bu�er(D,P) j C + C

(1)-Syntax for the Architecture.

S1 ::= (request(iserv1,BUFFER)+ :::+ request(iservn,BUFFER))
? � SENDER,

BUFFER,
(input(service,BUFFER) �make(service))? � RECEIVER

(2)-Initial Solution.

T1 � (c1 + c2) �m �! c1 �m
T2 � (c1 + c2) �m �! c2 �m
T3 � (m)? � SENDER �! m � (m)? � SENDER
T4 � (m)? � SENDER �! SENDER

T5 � (m)? � RECEIVER �! m � (m)? � RECEIVER
T6 � request(iserv,BUFFER) � (m)? � SENDER, BUFFER �!

(m)? � SENDER, bu�er(iserv,RECEIVER) � BUFFER
T7 � request(iserv,BUFFER) � (m)? � SENDER, m1 � BUFFER �!

(m)? � SENDER, m1 � bu�er(iserv,RECEIVER) � BUFFER
T8 � bu�er(iserv,RECEIVER) � BUFFER,

input(service,BUFFER) �make(service) �m2 � RECEIVER �!
BUFFER;make(iserv) �m2 � RECEIVER

T9 � bu�er(iserv,RECEIVER) �m1 � BUFFER,
input(service,BUFFER) �make(service) �m2 � RECEIVER �!

m1 � BUFFER;make(iserv) �m2 � RECEIVER
T10 � make(iserv) �m � RECEIVER �! m � RECEIVER

(3)-Reaction Rules.

Table 1: The Software Architecture of the Sender-Receiver System.

By examining the paths out of S1 we can prove that the initial solution holds '1. The
rule T6 (T7) applied to �1 and bu�er(iserv,RECEIVER) � BUFFER (bu�er(iserv,RECEIVER) � m2 �
BUFFER), to push a new service, and rule T8 (T9) applied to bu�er(iserv,RECEIVER) � BUFFER
(bu�er(iserv,RECEIVER) � m2 � BUFFER) and �3, to pop up a service, can be both active in the
current solution at the same time. In other words, the operations of pushing a service by SENDER

and popping a service by RECEIVER can be concurrent.

3.3 Expressing Functional Properties of the Sender-Receiver System

Here we prove that our architecture satis�es a particular integrity constraint. More in detail ,
we show that every service that RECEIVER is going to perform has been previously required by
SENDER. To this aim, we show that if RECEIVER is ready to perform a service in a given state
of the system, then there has been a state, along the same computation (i.e.path), where SENDER
bu�erized the service in BUFFER. Moreover, we show that the service is removed by the bu�er
before it is performed by RECEIVER and that RECEIVER does not perform any other service in the
meantime.

A CTL� formula expressing this property is:

' = : F (:
)

5

where
 =
1 _
2 and
1,
2 are de�ned by:

1 = (bu�er(iserv,RECEIVER) � BUFFER ^ :make(iserv) �m � RECEIVER) U

(BUFFER ^ make(iserv) �m � RECEIVER)

2 = (bu�er(iserv,RECEIVER) �m1 � BUFFER ^ :make(iserv) �m � RECEIVER) U

(m1 � BUFFER ^ make(iserv) �m � RECEIVER).

We can then prove that our architecture actually satis�es the above property.

Acknowledgments: Alex Wolf is thanked for common work on the topic of this paper.

References

1. S.C. Cheung and J. Kramer: Checking Subsystem Safety Properties in Compositional Reach-
ability Analysis. Proc. of the 18th International Conference on Software Engineering, 1996.

2. S.C. Cheung, D. Giannakopoulou, and J. Kramer: Veri�cation of Liveness Properties using
Compositional Reachability Analysis. Proc. of ESEC/FSE 97, 1997.

3. D. Compare, P. Inverardi, and A.L. Wolf. Uncovering Architectural Mismatch in Dynamic
Behavior. Science of Computer Programming, 1998. To appear.

4. E.A. Emerson: Temporal and Modal Logic. Handbook of Theoretical Computer Science, vol-
ume B, chapter 16. Elsevier Science Publishers B.V., 1990.

5. E.A. Emerson, J.Y. Halpern: \Sometimes" and \Not Never" revisited: on branching time
versus linear time temporal logic. Journal of ACM 33 (1), pp.151-178, 1986.

6. D. Giannakopoulou, J. Kramer, and S.C. Cheung: Analyzing the Behavior of Distributed
Systems using Tracta. Journal of Automated Software Engineering, Special Issue on Automated
Analysis of Software (R. Cleaveland and D. Jackson, Eds.). To appear.

7. D. Garlan, W. Tichy and F. Paulisch: Summary of the Dagstuhl Workshop on Software Archi-
tecture. SIGSOFT Software Engineering Notes 20(3), pp. 63-83, 1995.

8. P. Inverardi, A. Wolf: Formal Speci�cation and Analysis of Software Architectures using the
Chemical Abstract Machine Model. IEEE Transactions on Software Engineering 21 (4) pp.373-
386, 1995.

9. D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, andW. Mann. Speci�cation and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering,
21 (4) pp. 336-355, 1995.

10. D.E. Perry e A.L. Wolf. Foundations for the Study of Software Architecture. ACM SigSoft
Software Engineering Notes, 17 (4), pp. 40-52, 1992.

6

