
Software Design based on Architecture
Conformance

Tomoji Kishi, Natsuko Noda

Software Design Laboratories, NEC Corporation,

(Igarashi Building) 11-5, Shibaura 2-chome,
Minato-ku, Tokyo 108-8557, JAPAN
TEL +81 3 5476 1089, FAX +81 3 5476 1113,
e-mail kishi@ccs.mt.nec.co.jp

Abstract
Non-functional properties such as performance are determined by many factors and
it is quite difficult to understand the relationships between these factors and the
properties involved. Instead of completely understanding the nature of non-
functional properties, we are examining a design method for finding a proper way
to attain the required non-functional properties, in which we actually measure the
properties of some modules in the system, and utilize the knowledge gained by the
measurement in design activity. Since the properties of modules are easily
influenced by its usage and environment, we have to be careful to ensure that the
modules show the desired properties. In other words, we can observe that modules
impose constraints (e.g. proper usage) on other software modules for the
attainment of desired properties. We define the software architecture based on
these constraints and introduce the notion of architecture conformance and then
discuss how to use conformance in our design activities.

Keywords
software architecture, architecture conformance, non-functional properties,

design method, layered system

1. INTRODUCTION

In software development, it is important to meat demands with respect to such non-
functional properties as performance. Though studies in the software engineering
field have brought us various design techniques, most of them mainly focus on

functional aspects or some specific non-functional properties, especially reusability
or extensibility.

We are currently studying a design method in which required non-functional
properties are attained based on the knowledge of the properties of software
modules gained by actual measurement. In the method, we introduce and apply the
concept of software architecture conformance (architecture conformance). In this
paper, we outline the idea mainly focusing on one of the non-functional properties,
performance.

2. BACKGROUND

We have developed a railway-signaling system (software for an interlocking
device) in which safety must be carefully considered [Kis96]. In designing the
system, we have to realize not only service functions (interlocking functions) but
also safety functions (functions that detect errors and invoke error-handling
mechanisms). In order to facilitate the development of safety functions, we have
applied layered architecture, in which the lower layer provides basic mechanisms
for safety functions.

As performance (such as response time of error detection) is crucial for safety
functions, we tried to design the lower layer to show enough performance for the
safety of interlocking service. However, we cannot guarantee that the final safety
functions (that are realized in the upper layer based on the lower layer) show
expected performance, because the performance of the functions in the lower layer
is easily influenced by the usage of the functions. For example, the sensitivity of a
watchdog timer (a safety function that periodically checks whether or not tasks are
activated correctly) is influenced by the correlation between the interval of the
monitored task and the interval of the error checking (Fig.1).

response time (sec.)
5

4

3

2

1

0 110 120 130 140 150
 monitoring interval (sec.)

Figure 1. Relationship between Response Time and Monitoring Interval

One of the common techniques to estimate the performance of the system is to
measure the performance of some parts of the system and conjecture the final
performance. In the above case, we could measure the performance of the
functions in the lower layer, and estimate the final performance. However, as we
have observed above, relationship between the performance of the part of the
system and that of final system is not obvious.

In this paper, we discuss on the software architecture from a performance
perspective, and examine the conditions that have to hold, when we expect that a
part of the system show certain performance when they put into the entire system.
We also introduce the notion “architectural conformance” and outline a design
technique based on the conformance.

3. NON-FUNCTIONAL PROPERTIES AND ARCHITECTURE

3.1 Non-functional Properties

Non-functional properties are features of a system not covered by its functional
description [Bus96]. Though non-functional properties include a variety of
properties, in this paper we focus on such run-time properties as performance. As
our primary concern is how the run-time non-functional properties relate to the
services provided by the system, we will state "performance of the system with
respect to the service" and "performance of the service".

3.2 Serviceable Module Set

In order to clarify the relationship between a service and the modules that provide
the service, we define a "serviceable module set". A serviceable module set for
service S is a set of modules that are functionally necessary to realize service S. In
other words, service S is provided by the collaboration of these modules. In this
paper, M(S) denotes a serviceable module set for S.

3.3 Architecture Determined by Serviceable Module Sets

Since the properties of software modules are easily influenced, we have to use the
modules carefully in order to ensure that they show the desired properties.
Observing the situation from the reverse side, modules impose constraints on other
software modules for the attainment of desired properties. Based on these
constraints, we define the software architecture, in which serviceable module sets
for services and for sub-services are considered as components, and the constraints
imposed on other serviceable module sets as connectors.

Consider the situation in which service S is realized using sub-services SLi (i
=1,2,…m), and S is used by the realization of upper services SUj (j=1,2,…n). In
this case, the architecture determined by M(S) is defined as follows:

Architecture determined by M(S) = {
(a1) intended non-functional properties of M(S),
(a2) structural constraints imposed on all M(SUj) (j=1,2,…n),
(a3) conditions imposed on all M(SUj) (j=1,2,…n), to achieve (a1),
(a4) expected non-functional properties of each M(SLi) (i =1,2,…m)
}

(a1) is the intended properties, such as sensitivity of error detection.

(a2) is the structural constraints imposed on modules that use the service S, namely
all M(SUj) (j=1,2,…n). In order to provide service S to some modules, there must
be interactions between the modules and M(S). Although there may be multiple
ways of interacting to provide service S, the non-functional properties of S may be
changed by the way they are used. The constraints include: (1) constraints on static
structure (i.e. constraints on the roles of each module participates in the
interaction), and (2) constraints on dynamic structure (i.e. constraints on the partial
ordering of each interactions, such as protocol or calling sequences) [Gam95].

 (a3) is conditions that are necessary to be satisfied by M(SUj) (j=1,2,…n) for the
expected non-functional properties (a1) to be attained. In the case of error detecting
functions, conditions on monitoring intervals correspond to these conditions.
Typically, these conditions are determined by the data or knowledge gained by
actual measurement of the properties of S.

(a4) is the expected properties assigned to each M(SLi) (i =1,2,…m). As S is
realized using SLi (i =1,2,…m), attainment of (a1) depends on whether or not each
M(SLi) (i =1,2,…m) can really attain these expected properties.

SU1 SUm

S
(a1)

SLnSL1

(a2) (a3)

(a4)

……….

……….

Figure 2. Architecture Defined by a Serviceable Module Set

3.4 Architecture Conformance

We can consider that designing non-functional properties means designing
modules in which architecture determined by serviceable module sets for every
service is consistently systematized. In order to discuss the design, we introduce
the notion of "architecture conformance". Because each serviceable module set
imposes constraints on other serviceable module sets, the conformance is defined
for each serviceable module set as the conformity to each constraint imposed on
the serviceable module set.

Architecture conformance of serviceable module set for S is defined as follows:

Architecture Conformance of M(S) = {
(c1) conformity to each (a2) imposed by M(SLi) (i =1,2,…m),
(c2) conformity to each (a3) imposed by M(SLi) (i =1,2,…m),
(c3) consistency between (a1) and (a4) as required by M(SUj) (j=1,2,…n)
}

(c1) represents whether M(S) keeps to each structural constraint imposed by
M(SLi) (i =1,2,…m).

(c2) represents whether M(S) keeps to constraints imposed by M(SLi) that are
necessary to attain the intended properties of each SLi (i =1,2,…m).

(c3) represents that the intended properties of M(S) are consistent with the
expectations of M(SUj) (j=1,2,…n).

4. DESIGN BASED ON ARCHITECTURAL CONFORMANCE

In this chapter, we outline the design method using an example.

4.1 Layered Architecture and Serviceable Module Sets

In this example, the software has to provide communication service S1. As
reliability is required of the service, we use error detecting functions to invoke an
error-handling mechanism if an error occurs. In order to realize S1, we use sub-
service S11 (communication service) and sub-service S12 (error detecting service).
We use services provided by real-time OS (RTOS), S111 (basic communication
service), S121 (task service) and S122 (interrupt service), to realize the service S11
and S12. RTOS is an existing platform and is not the design target.

L1: AP layer

L2: Utility layer

L3: RTOS layer

S1

S12S11

S121 S122

error detectingcommunication

S111

basic communication task interrupt

Figure 3. Serviceable Module Set and Layers.

In the figure, the circle labeled s indicates m(s), modules in serviceable module set
for s belong to the layer that provide the service s. Here, M(S1) includes m(S1),
m(S11), m(S12), m(S111), m(S121) and m(S122), while M(S12) includes m(S12),
m(S121) and m(S122). When we design L1 (AP layer), we have to design m(S1),
and when we design L2 (utility layer), we have to design m(S11) and m(S12).

4.2 Constraints between Layers

As discussed in 3.3, we can define the constraints between the layers, in which
(A1), (A2), and (A3) of a layer correspond to (a1), (a2), (a3), and (a4) of a
serviceable module set (Table 1).

Table 1. Constraints between Layers.

(A1) intended properties (a1) of M(S1)L1 (AP layer)
(A3) to L2 (Utility layer) (a4) of M(S1)
(A1) intended properties (a1) of M(S11)

(a1) of M(S12)
(A2) to L1 (AP layer) (a2) and (a3) of M(S11)

(a2) and (a3) of M(S12)

L2 (Utility layer)

(A3) to L3 (RTOS layer) (a4) of M(S11)
(a4) of M(S12)

(A1) intended properties (a1) of M(S111)
(a1) of M(S121)
(a1) of M(S122)

L3 (RTOS layer)

(A2) to L2 (Utility layer) (a2) and (a3) of M(S111)
(a2) and (a3) of M(S121)
(a2) and (a3) of M(S122)

Since L1 (AP layer) is a topmost layer of the system to be designed, we do not
consider the (A2) conditions ((a2) and (a3) of M(S1)). If the client of this software
is also the software, these conditions may be the usage of the software. On the
other hand, L3 is the platform of our design, we do not consider the (A3)
conditions ((a4) of M(S111), (a4) of M(S121) and (a4) of M(S122)).

If we expect that the sensitivity of error detection in S12 is less than 10 ms, the
upper layer have to keep the conditions (a2) of M(S12) (structural conditions
defined as Fig.4), and (a3) of M(S13) that may be defined as “the interval of
monitored task must be 100 ms”.

monitored monitoring

error handler

0..n

monitored monitoring error handler

attach

get state

get state

judge

judge

invoke

(1)structure

(2)collaboration

Figure 4. Structural Constraints of S12.

In the design process, we try to clarify these conditions and make each set of
modules to keep these conditions, and eventually we may expect that the final
system shows the desired properties.

5.CONCLUSIONS

In this paper, we have examined the method for designing non-functional
properties utilizing the notion of architecture conformance. How to define
conditions, especially (a3) conditions, and how to test the conformance needs more
elaboration.

6. REFERENCES

[Bus96] Buschmann, F., et al., Pattern-Oriented Software Architecture - A System
of Patterns, Wiley, (1996).
[Cle96] Clements, P.C., et al., Software Architecture: An Executive Overview,
Component-Based Software Engineering - Selected Papers from the Software
Engineering Institute, IEEE (1996).
[Gam95] Gamma, E. et al., Design Patterns: Elements of Reusable Object-Oriented
Design, Addison-Wesley, Reading, Mass., (1995).
[Kis96] Kishi, T., et al., Development of Safety Software based on Software
Architecture, SIGSE, Vol.96, No.112, IPSJ, 1996 (in Japanese).
[Sha96] Shaw, M., et al., Software Architecture, Perspectives on an Emerging
Discipline, Prentice-Hall, (1996).

