
1

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH

N.H. Lassing, D.B.B. Rijsenbrij and J.C. van Vliet
9ULMH�8QLYHUVLWHLW��)DFXOW\�RI�6FLHQFHV
'H�%RHOHODDQ�����D�������+9��$PVWHUGDP��7KH�1HWKHUODQGV
WHO����������������������ID[��������������������
H�PDLO��^QODVVLQJ��GDDQ��KDQV`#FV�YX�QO

.H\�ZRUGV: Software architecture, software frameworks, software quality, quality
assessment, flexibility, adaptability, portability, reusability

$EVWUDFW: Software architecture is nowadays regarded as the first step to achieving
software quality. The main task of the architect is to translate the quality
requirements into a software architecture. An important step in this process is
to assess whether the architecture actually satisfies these quality requirements.
The purpose of this paper is to explore which architectural choices support
flexibility and how flexibility can be assessed. To that end, we explored the
ComBAD architecture, whose main objective is flexibility, investigated the
architectural choices made and assessed whether flexibility was achieved.
Such will not only increase our insight into flexibility in general, but
particularly into the assessment of this quality attribute.
 We use the term flexibility in the broadest sense of the word. It will be used
to denote adaptability, portability and reusability. Adaptability can be regarded
as flexibility in the narrow sense, portability as the flexibility to use a system
in various technical environments and reusability as the flexibility to reuse part
of a system in another system.

* The ComBAD architecture is a software architecture developed within Cap Gemini
Netherlands. ComBAD stands for Component Based Application Development.

2

��� ,1752'8&7,21

Recently, there has been an increasing interest in software architecture. It
is nowadays generally accepted that the software architecture has a major
impact on the quality of an information system. An important step to
achieving the desired level of quality is to evaluate the architecture. The
software architecture analysis method (SAAM), presented in Bass HW� DO.
(1998), was developed with this in mind. SAAM is a scenario-based
assessment method that is mainly used to compare the usability of two or
more candidate architectures. We claim that SAAM could just as well be
used to assess the quality of a single architecture, to evaluate its usability in a
certain situation.

The purpose of this paper is to explore how the three elements of
flexibility could be addressed in an architecture and how SAAM could be
used to assess to what extent the desired level of quality for these attributes
was achieved. To do so, we investigated the ComBAD architecture, whose
main objective is flexibility in the broadest sense of the word, we described
the architectural choices made and we assessed its adaptability, portability
and reusability using SAAM.

The remainder of this paper is organized into four sections. In section 2
we discuss the ComBAD architecture, in section 3 we assess its quality and
in section 4 we make some concluding remarks.

��� 7+(�&20%$'�$5&+,7(&785(

The ComBAD architecture was developed within Cap Gemini
Netherlands, a large software house. The architecture originates from a
project called “Reuse”, whose main purpose was to explore the possibility of
reusing domain-knowledge. This project delivered an approach for
Component Based Application Development, named ComBAD, and a
supporting architecture, the ComBAD architecture, whose main quality
requirements were adaptability, portability and reusability. This paper will
focus on the ComBAD architecture. The corresponding development
approach will not be discussed.

The ComBAD architecture was not developed for a specific customer,
but it was intended for a broad category of administrative systems. Though it
may be used for other domains as well, it is probably more suitable in some
situations than in others. We return to this point in the evaluation in section
3.

In the next sections, we give an overview of the ComBAD architecture
and the architectural choices made to achieve the quality requirements. This

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 3

overview consists of two parts, a description of the ComBAD framework,
given in section 2.1, and a description of the ComBAD application
architecture, given in section 2.2. These descriptions provide a high-level
view of the architecture.

���� 7KH�&RP%$'�IUDPHZRUN

The quality attributes addressed by the ComBAD framework are
portability and reusability. Portability is the quality attribute that indicates
the ease with which an application can be moved from one technical
environment to another (Delen HW� DO�, 1992). In the ComBAD architecture,
portability is addressed by using a layered architecture, in which an
application is separated from its technical environment, the latter consisting
of things like the database-management system used for storage and the
protocol used for communications. This separation is achieved by
introducing an intermediate layer between the application and its technical
environment, which abstracts from the details of this environment. This
intermediate layer is the ComBAD framework. The ComBAD framework
also offers the type of support required by applications that conform to the
ComBAD application architecture.

An instance of this framework is created for a specific development
environment and it consists of a number of concrete and abstract classes, and
a definition of the way the instances of these classes interact. An application
can use a framework in two ways: (1) by inheritance of (abstract) framework
classes and (2) by calling methods defined in the framework’s interface
(Lassing HW�DO, 1998). The abstract classes of the ComBAD framework are
treated in the next section when we describe the application architecture. In
this section, we focus on the interface of the ComBAD framework.

The ComBAD framework provides a common interface to the technical
environment by encapsulating access to the environment in a number of
services. These services include object brokerage, object persistency,
transaction management, notify management, logging and security, each of
which is implemented by one component in the framework. The underlying
assumption for this is that potential changes in the technical environment
each impact just one service and, therefore, also one component. Object
persistency, for instance, is implemented by the object-persistency manager,
which encapsulates access to the database-management system (DBMS).
The impact of changing the DBMS is now limited to this object-persistency
manager. Figure 1 shows all of the services of the ComBAD framework. In
section 3.3, where we evaluate portability, we assess whether these services
encapsulate the environment entirely.

4

$SSOLFDWLRQ�

&RP%$'�IUDPHZRUN

7
H
F
K
Q
LF
D
O
�

HQYLURQPHQW

 2%�

230�

70�

2%��2EMHFW�%URNHU�
230��2EMHFW�SHUVLVWHQF\ �0DQDJHU�
70��7UDQVDFWLRQ�0DQDJHU�
10��1RWLI\ �0DQDJHU�
/�� /RJJLQJ�

10� /� 60� 30� &0� /20�

60��6HFXULW\ �0DQDJHU�
30��3URFHVV�0DQDJHU�
&0��& RGH�0DQDJHU�
/20��/RJ�RQ�0DQDJHU�

)LJXUH��� The layered architecture with the ComBAD framework and its services

The second quality attribute that the ComBAD framework addresses, is
reusability. Reusability is much harder to achieve than portability, because it
is more than a technical problem. Consider the following statement from van
Vliet (van Vliet, 1993). He states that “a reusable component is to be valued,
not for the trivial reason that it offers relief from implementing the
functionality yourself, but for offering a piece of the right domain
knowledge, the very functionality you need, gained through much
experience and an obsessive desire to find the right abstractions”.
Apparently, reuse is only possible within a specific domain and we need a
thorough understanding of this domain to determine its reusable elements.
We define a domain as a well-defined area of application that is
characterized by a set of common notions.

The ComBAD framework tries to address reusability in two ways. First,
the framework itself can be reused. The domain in which this framework
could be reused is the technical foundation of applications using the
ComBAD architecture. Thus, the reusability of the ComBAD framework
depends on the usability of the ComBAD architecture, which is the topic of
the evaluation in section 3.

The second way in which the ComBAD framework addresses reusability
is that it can serve as an environment for reuse of software components. This
addresses one of the technical problems of reuse, namely architectural
mismatch. Architectural mismatch occurs when the assumptions that a
component and its environment make about each other are conflicting

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 5

(Garlan HW�DO., 1995). Frameworks reduce the risk of architectural mismatch,
because they provide a known environment for components to operate in.

The ComBAD application architecture determines the types of
components that can be used in the framework. They are included in the
framework as abstract classes that implement the behavior that is common
for these components. The actual components of the application are derived
from these abstract classes.

Although frameworks address architectural mismatch, they are not a
panacea for reuse. They do not relieve the developer from the painstaking
process of finding the right components in a domain. However, they do
provide support after the right components have been found.

���� 7KH�&RP%$'�DSSOLFDWLRQ�DUFKLWHFWXUH

The quality attributes that are addressed by the ComBAD application
architecture are adaptability and reusability. According to Bass HW�DO� (1998),
adaptability is largely a function of locality of change. This means that to
increase adaptability, one should try to limit the impact of changes to a small
number of components. On the other hand, we should try to limit the number
of potential changes by which each component may be impacted.

In the ComBAD application architecture, adaptability is addressed by
dividing an application into three layers: (1) the interface layer, (2) the
processing layer and (3) the data layer. The interface layer handles the
communication with the environment, consisting of users and other systems.
The processing layer contains the application logic. Finally, in the data layer
all data of the application is managed.

By separating an application into these layers, changes to the interface of
the system can be limited to the interface layer, changes to the application
logic limited to the processing layer and changes to the data limited to the
data layer. However, this means that the number of potential changes that
may impact each component is rather large. Therefore, it was decided to
further divide the layers into components, as shown in Figure 2. The
interface layer is divided into human interface components (or HICs), which
handle a dialog with the user, and system interface components (or SICs)
that communicate with other systems. The processing layer is divided into
task-management components (or TMCs) that each implement (only) one
function. And the data layer is divided into problem-domain components (or
PDCs), which record data about a concept from the problem domain.
Collectively, these components are called application components.

6

+,&V�DQG�6,&V�

70&V�

3'&V�

,QWHUIDFH�
OD\HU

3URFHVVLQJ�
OD\HU

'DWD�OD\HU

IUDPHZRUN

7
H
F
K
Q
LF
D
O�

HQYLURQPHQW

&
R
P
%
$
'

)LJXUH����The ComBAD application architecture

This division can help us to limit the impact of changes to a few
relatively small components. True locality of change is achieved for changes
that affect the internals of one or more application components, but leave
their interfaces intact. However, some changes not only affect the internals
of one or more application components, but also the interfaces of some of
them. This means that all dependent application components need to be
changed as well. By restricting the dependencies between components, the
impact of changes can be restrained. In the application architecture only top-
down dependencies are allowed, i.e. a HIC or a SIC should only be
dependent on one or more TMCs, a TMC on one or more PDCs and PDCs
should be independent of other application components. Notify management
is used to inform higher layers of events occurring in the lower layers.

Independence also affects reusability, because reusability demands that
components are as independent as possible. Independence and, hopefully,
reusability of PDCs is increased by prohibiting direct relations between
them. This restriction reduces PDCs to stable building blocks that can be
reused in other applications. We address the reusability of these components
in section 3.4.

The ComBAD framework and the ComBAD application architecture
very much depend on each other. First, the components of the application
architecture use the services of the framework. For instance, the PDCs are
accessed through the object broker and the PDCs use the object-persistency
manager for storing themselves in a database. Second, the application
components are derived from abstract classes provided by the framework.
These abstract classes provide behavior common for each of these types of
application components. Thus, the framework and the application
architecture cannot be separated, they are highly intertwined.

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 7

��� $66(66,1*�7+(�48$/,7<

To assess the quality of the ComBAD architecture we use the software
architecture analysis method, SAAM (Bass HW�DO�, 1998). This is a scenario-
based method that consists of formulating a number of scenarios and
evaluating the impact of each of them on the architecture. A scenario is a
situation that can occur in the life of an architecture. Although SAAM was
developed to compare two or more candidate architectures, we use it to
assess the quality of a single architecture. The first step in the evaluation is
to derive a number of scenarios from the quality requirements of the
architecture. For example, from the quality requirement portability we can
derive the following scenario: What happens when another DBMS is to be
used? By formulating a number of these scenarios, we can make portability
tangible, because they capture what we actually want to achieve with
portability.

The next step is to evaluate the impact of these scenarios on the
architecture. We classify the impact of a scenario into four discrete levels. At
the first level, no changes are necessary, which means that the scenario is
already supported by the architecture. At the second level, just one
component of the architecture needs to be changed, but its interface is
unaffected. At this level, we have true locality of change. At the third level
more than one component is affected, but no new components are added or
existing ones are deleted. This means that the structure of the architecture
remains intact. At the fourth level architectural changes are inevitable,
because new components are necessary or existing ones become obsolete. It
is clear that one should seek to keep the level of impact as low as possible.

When we return to our example scenario, we see that this scenario
necessitates a change in the object-persistency manager. Thus, this scenario
has a level two impact. This means that we have locality of change for this
scenario and that the architecture is portable with respect to the DBMS used.

We have created four categories of scenarios. The first two categories,
which focus on adaptability, contain scenarios that are related to the
requirements of the system. We have made a distinction between scenarios
that address technical adaptability and those that address functional
adaptability. The former consists of scenarios that explore the applicability
of the architecture in situations with different technical requirements. The
latter consists of scenarios that explore the effect of changes in the functional
requirements.

The third category of scenarios concentrates on portability, which is
evaluated by scenarios that simulate changes in the technical environment.
The final category focuses on reusability. This category includes scenarios

8

that explore the use of elements of the architecture in other systems and
architectures.

���� 7HFKQLFDO�DGDSWDELOLW\

Technical adaptability is the flexibility of an application to incorporate
changes to the technical requirements. The scenarios simulate the use of the
ComBAD architecture in situations with diverse technical requirements.
Note that the ComBAD architecture was not specifically developed for some
of these situations. The architecture is usable in a situation when the scenario
has an impact of level three or lower. The results of these scenarios are
summarized in Table 1.

6FHQDULR� �: :KLFK� FKDQJHV� DUH� QHHGHG� ZKHQ� WKH� DUFKLWHFWXUH� LV� WR� EH
XVHG�IRU�VHFXUH�DSSOLFDWLRQV"

We assume that for secure applications a number of things are necessary.
First, each user action should be authenticated and it should be possible to
grant different levels of access to users (no access, read-only, full control,
etc.). This is already supported by the ComBAD architecture, so it is
unaffected. Second, the communication between clients and servers should
be encrypted. Encrypted communication is not yet present in the
architecture, but it could be added by changing one of the base classes for
the application components. Finally, access to servers should be prohibited
for unsecured hosts. This means that the log-on manager should be changed
so that it inspects the network address of clients. Our conclusion is that using
the architecture for secure applications necessitates changes to a number of
existing components and, therefore, this scenario has a level three impact.

6FHQDULR� �: :KLFK� FKDQJHV� DUH� QHHGHG� ZKHQ� WKH� DUFKLWHFWXUH� LV� WR� EH
XVHG�IRU�UHDO�WLPH�V\VWHPV"

The distinguishing features of real-time systems are deadlines and
synchronization between different parts of a system (Laplante, 1993). These
features are not supported by the ComBAD architecture. However, deadlines
could be enforced by introducing something like a deadline manager into the
framework, that makes sure that a systems responds within a certain period.
Similarly, synchronization could be added by introducing a synchronization
manager that makes sure that the different parts of a system operate in
harmony. In addition, the division of applications into H/SICs, TMCs and
PDCs is perhaps not usable for real-time systems. So, the impact of this
scenario is architectural and it is classified as level four.

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 9

6FHQDULR� �: :KLFK� FKDQJHV� DUH� QHHGHG� ZKHQ� WKH� DUFKLWHFWXUH� LV� WR� EH
XVHG�IRU�XOWUD�UHOLDEOH�V\VWHPV"

In ultra-reliable systems both software and hardware are often replicated
(Leveson, 1995). This redundancy makes sure that the system remains in
working order after one or more services have failed. In addition, these
systems could use voting, which means that the same operation is performed
by two or more elements, and the end result of the operation is some kind of
weighted average of the results of individual elements. Both redundancy and
voting could be addressed by introducing one or more front-end servers that
encapsulate the access to the other services. This has a major impact on the
architecture and, therefore, the impact of this scenario is classified as level
four.

6FHQDULR��: :KLFK�FKDQJHV�DUH�QHHGHG�ZKHQ�D�:HE�LQWHUIDFH�LV�FUHDWHG
IRU�DQ�DSSOLFDWLRQ"

To make the system accessible from a Web browser, the human interface
components (HICs) should be replaced with applets that can be viewed in a
Web browser. Because the lower layers are independent of the HICs, they
are unaffected by changes in the HICs. The HICs are the only components
affected and thus the impact of this scenario is classified as level three.

6FHQDULR��: :KLFK�FKDQJHV�DUH�QHHGHG�ZKHQ�WKH�DUFKLWHFWXUH�LV�XVHG�IRU
D�V\VWHP�WKDW�XVHV�ZRUNIORZ PDQDJHPHQW"

The ComBAD framework already has a process manager that controls
which operations may be performed by the user in a certain situation. This
component could be enhanced to support true workflow management. Since
the process manager is the only component affected, the impact of this
scenario is level two.

7DEOH��� Summary of the scenarios for technical adaptability
ComBAD framework Application

Scenario Archi-
tecture

Components Archi-
tecture

HICs/
SICs

TMCs PDCs Imp.
level

1 - M - - - - 3
2 + M + ? ? ? 4
3 + M + ? ? ? 4
4 - - - M - - 3
5 - O - - - - 2

- = unaffected, + = needs to changed, O = one component affected, M = more components
affected, ? = undefined

10

As expected, we see in Table 1 that the architecture is not directly usable
in every situation. Using it for real-time or ultra-reliable systems necessitates
major changes to the architecture. In the other situations, the architecture is
usable, but some changes are necessary. These changes sometimes affect the
framework and sometimes the application components. When the ComBAD
architecture is used in an actual situation, more scenarios are probably
needed to evaluate whether the right services are identified to encapsulate
the expected changes to the technical requirements.

����)XQFWLRQDO�DGDSWDELOLW\

Functional adaptability is the ease with which changes in the functional
requirements can be implemented. It is difficult to address the functional
adaptability of an architecture, due to the absence of functional
requirements. However, we are able to address the architectural aspects of
changes to the functionality. To this end, we use scenarios that explore the
effect of adding or deleting components from the application. The results are
summarized in Table 2.

6FHQDULR� �: :KLFK� FKDQJHV� DUH� QHHGHG� ZKHQ� D� SUREOHP�GRPDLQ
FRPSRQHQW��3'&��LV�DGGHG�RU�GHOHWHG"

When a new PDC is added, one or more elements in the higher layers
should also be modified, for it does not make any sense to add a PDC
without using it in one of the higher layers. When a PDC is deleted, the
components in the higher layers that are dependent on it should be changed.
The impact of this scenario can thus be classified as level three.

6FHQDULR� �: :KLFK� FKDQJHV� DUH� QHHGHG� ZKHQ� D� WDVN�PDQDJHPHQW
FRPSRQHQW��70&��LV�DGGHG�RU�GHOHWHG"

A TMC is always invoked from the interface layer. Therefore, when a
TMC is added, one or more H/SICs need to be changed to make use of this
new TMC. Similarly, when a TMC is deleted, one or more H/SICs need to
be changed to remove any references to the TMC. This scenario affects one
TMC and at least one, but possibly more, H/SICs and the impact of this
scenario can thus be classified as level three.

6FHQDULR��: :KLFK�FKDQJHV�DUH�QHHGHG�ZKHQ�D�KXPDQ�V\VWHP�LQWHUIDFH
FRPSRQHQW��+�6,&��LV�DGGHG�RU�GHOHWHG"

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 11

The impact of this scenario is very small, because no other components
are dependent on the H/SICs. In fact, the H/SIC that is added or deleted is
the only component that is affected. Thus, this scenario has a level two
impact.

7DEOH��� Summary of the scenarios for functional adaptability
ComBAD framework Application

Scenario Archi-
tecture

Components Archi-
tecture

HICs/
SICs

TMCs PDCs Imp.
level

1 - - - M M O 3
2 - - - M O - 3
3 - - - O - - 2

- = unaffected, + = needs to changed, O = one component affected, M = more components
affected, ? = undefined

From Table 2 we conclude that changes to the functional requirements do
not affect the ComBAD framework. This means that the framework is
entirely separated from the functionality of the application. And as expected,
we observe that TMCs are unaffected by changes to the interface layer and
that PDCs are unaffected by changes to either the processing layer or the
interface layer.

���� 3RUWDELOLW\

At first sight, portability and technical adaptability very much look alike,
but they are not the same. Portability is the ease with which a system can be
adapted to changes in the technical environment and technical adaptability is
the ease with which a system can be adapted to changes in the technical
requirements. The scenarios in this category explore the effect of changes in
the technical environment.

6FHQDULR��: :KLFK�FKDQJHV�DUH�QHHGHG�ZKHQ�DQRWKHU�GDWDEDVH�LV�XVHG"

This scenario was used in the introduction of this section. The object-
persistency manager is the only element that is impacted. Thus, the impact of
this scenario can be classified as level two.

6FHQDULR��: :KLFK�FKDQJHV�DUH�QHHGHG�ZKHQ�DQRWKHU�RSHUDWLQJ�V\VWHP�LV
XVHG�IRU�WKH�FOLHQW�PDFKLQHV"

The answer to this question is not unambiguous, because it depends on
the programming language and the development environment used. First, if
the application is written in Java, no changes should be needed, but other
languages may cause major problems. Second, it is important which

12

development environment is used, because a number of development
environments are able to generate and/or compile code for different
platforms. This approach is taken in ComBAD, where the tools used can
generate and/or compile code for multiple platforms. This solution lies
outside the architecture, and the impact of this scenario can be classified as
level one.

7DEOH��� Summary of the scenarios for portability
ComBAD framework Application

Scenario Archi-
tecture

Components Archi-
tecture

HICs/
SICs

TMCs PDCs Imp.
level

1 - O - - - - 2
2 - - - - - - 1

- = unaffected, + = needs to changed, O = one component affected, M = more components
affected, ? = undefined

In Table 3, we observe that changes in the technical environment affect
very few components of the ComBAD architecture. We notice that the
application components are unaffected by our scenarios, which could
indicate that the framework actually encapsulates access to the environment.
However, there may be potential changes in the technical environment, not
mentioned here, that have an impact above level two.

���� 5HXVDELOLW\

We have chosen to assess reusability by scenarios that test the usability
of ComBAD components in other situations, as well as the usability of other
components within the ComBAD architecture. These scenarios focus on
individual components, so it is not very meaningful to create a table that
indicates which elements of the architecture are affected.

6FHQDULR��: &DQ�FRPSRQHQWV�WKDW�ZHUH�QRW�HVSHFLDOO\�GHYHORSHG�IRU�WKH
&RP%$'� IUDPHZRUN�� EH� XVHG� LQ� DSSOLFDWLRQV� EXLOW� XVLQJ� WKH� &RP%$'
DUFKLWHFWXUH"

The components that can be reused in these applications are mainly GUI-
controls, like ActiveX-controls and Java Beans. However, because of the
demands these components put on their environment, using them limits the
portability of an application. Other components could be reused in these
applications as well, if the components on which they depend are also
included.

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 13

6FHQDULR� �: &DQ� WKH� DSSOLFDWLRQ� FRPSRQHQWV� EH� XVHG� LQ� V\VWHPV� XVLQJ
DQRWKHU�DSSOLFDWLRQ�DUFKLWHFWXUH"

The application components are usable in an environment that provides
all of the framework services used by the component. This means that,
theoretically, application components are reusable in another application, but
it will require an enormous amount of work if they depend on more than a
few framework services.

6FHQDULR��: &DQ�WKH�REMHFW�EURNHU�RI�WKH�&RP%$'�IUDPHZRUN�EH�UHXVHG
LQ�V\VWHPV�XVLQJ�DQRWKHU�DUFKLWHFWXUH"

The answer to this question is yes, provided all of the components upon
which the object broker depends, being the transaction manager, the notify
manager and the object-persistency manager, are included in the other
architecture as well. However, this answer focuses on the architectural
aspects only. Whether the object broker offers the right functionality in this
situation is ignored.

6FHQDULR��: &DQ�DSSOLFDWLRQ�FRPSRQHQWV�EH�UHXVHG�LQ�RWKHU�DSSOLFDWLRQV
XVLQJ�WKH�&RP%$'�DUFKLWHFWXUH"

Architecturally speaking, application components can be reused in other
applications using the ComBAD architecture, provided the components on
which they depend are also included. However, the reusability of a
component also depends on whether it offers the right functionality. Within
the ComBAD project, it was felt that the level of abstraction of the
application components is too low. Therefore, a number of these components
are grouped into packages, the same way Jacobson HW� DO� (1997) address
reusability. Whether these packages offer the right functionality can only be
judged in an actual situation.

From these scenarios, we conclude that it is hard to assess the reusability
of components, because it largely depends on the functionality they
implement. From an architectural point of view, we may conclude that most
components of the ComBAD architecture could be reused, but that this is
easiest within the ComBAD architecture.

���� (YDOXDWLRQ�RI�WKH�DVVHVVPHQW

In this section, we assessed the flexibility of the ComBAD architecture
using scenarios. The assessment showed that the technical adaptability and

14

portability of a single architecture could be assessed quite well using
scenarios, yet functional adaptability and reusability are harder to assess.
The main difficulty of the assessment of functional adaptability of
architectures is that functional requirements are lacking, which means we
can only address the architectural aspects of changes to the functionality.
Reusability is hard to assess in general, because the reusability of a
component largely depends on whether it supports the right functionality,
which can only be judged by a developer.

In addition, the assessment demonstrated that the flexibility of an
architecture should always be related to the area of application. Although the
assessment given in this section provides some general insight into the
usability of the ComBAD architecture, one is unable to value the scenarios
but in an actual situation.

��� &21&/86,21

The purpose of this paper is to explore how flexibility can be addressed
in an architecture and how we can assess whether an architecture supports it.
To that purpose, we have examined the ComBAD architecture. In the first
part of this paper, we presented the architectural solution, which consists of
the architectural choices made to address the quality requirements:
adaptability, portability and reusability. We showed that in the ComBAD
architecture portability and reusability are addressed by creating the
ComBAD framework and that adaptability and, once again, reusability are
addressed by the application architecture.

In the second part of this paper, we assessed the flexibility of the
ComBAD architecture. To do so, we formulated scenarios for assessing
technical adaptability, functional adaptability, portability and reusability. It
turned out that assessment using scenarios of technical adaptability and
portability of a single architecture is quite possible. However, functional
adaptability and reusability proved to be hard to assess using scenarios,
because we are considering an architecture, lacking functional requirements
and actual application components.

The assessment demonstrated that the introduction of the ComBAD
framework encapsulates changes to the technical environment from the
application. In addition, we showed that the framework is unaffected by
changes in the functional requirements. However, whether the services in the
framework encapsulate the right technical mechanisms, could be a topic for
further research. In addition, one should always remember that flexibility is a
relative notion, which can only be valued in a particular context.

)OH[LELOLW\�RI�WKH�&RP%$'�DUFKLWHFWXUH 15

Our next step will be to investigate the architecture of an existing system
to see whether we are able to assess its quality attributes, including
functional adaptability and reusability of components. This way we hope to
deepen our insight into the quality attributes and their assessment in software
architectures.

$&.12:/('*(0(176

This research is mainly financed by Cap Gemini Netherlands. We are
grateful to Cor de Groot, Ad Strack van Schijndel and Guus van der Stap of
Cap Gemini Netherlands for their time and comments. Guus van der Stap (e-
mail: GStap@inetgate.capgemini.nl) can be contacted for more information
about ComBAD.

5()(5(1&(6

Bass, Len, Paul Clement and Rick Kazman (1998).�6RIWZDUH�DUFKLWHFWXUH�LQ�SUDFWLFH.
Addison Wesley, Reading.

Delen, G.P.A.J. and D.B.B. Rijsenbrij (1992) The specification, engineering and measurement
of information systems quality. -��6\VWHPV�6RIWZDUH ��, 205-217.

Garlan, David, Robert Allen and John Ockerbloom (1995) Architectural mismatch: Why
reuse is so hard. ,(((�6RIWZDUH ��, 6, 17-26.

Jacobson, Ivar, Martin Griss and Patrik Jonsson (1997). 6RIWZDUH�UHXVH��DUFKLWHFWXUH��SURFHVV
DQG�RUJDQL]DWLRQ�IRU�EXVLQHVV�VXFFHVV. ACM Press, New York.

Johnson, Ralph E. (1997) Frameworks = (Components + Patterns). &RPPXQLFDWLRQV�RI�WKH
$&0 ��, 10, 39-42.

Laplante, Phillip A. (1993) 5HDO�WLPH�V\VWHPV�GHVLJQ�DQG�DQDO\VLV��DQ�HQJLQHHU¶V�KDQGERRN.
IEEE Press, New York.

Lassing, N.H., D.B.B. Rijsenbrij and J.C. van Vliet (1998) A view on components.
3URFHHGLQJV�RI�WKH��WK�,QWHUQDWLRQDO�'(;$�:RUNVKRS�RQ�'DWDEDVH�DQG�([SHUW�6\VWHPV
$SSOLFDWLRQ� IEEE Computer Society, Los Alamitos, 768-777.

Leveson, Nancy (1995) 6DIHZDUH��V\VWHP�VDIHW\�DQG�FRPSXWHUV. Addision Wesley, Reading.
Shaw, Mary, and David Garlan (1996) 6RIWZDUH�DUFKLWHFWXUH��SHUVSHFWLYHV�RQ�DQ�HPHUJLQJ

GLVFLSOLQH. Prentice-Hall, Upper Saddle River.
Van Vliet, Hans (1993) 6RIWZDUH�(QJLQHHULQJ��SULQFLSOHV�DQG�SUDFWLFH. John Wiley & Sons,

Chichester.

