
ehav-

 an ad-
ng the
y either
o a large
e said

ical for
l should
 federa-
The Architecture of Federations
From Process to Software

(Position Paper)
First Working IFIP Conference on Software Architecture

22-24 February 1999, San Antonio, TX, USA

J. Estublier, Y. Ledru, P.Y. Cunin
L.S.R. Actimart, Bat 8, Av de Vignate

38610 Gieres FRANCE
{jacky|ledru|cunin}@imag.fr

Abstract

We define a federation as a software application built mainly from COTS. A COTS, being designed to be executed
stand alone, mainly interacts with users and reacts to changes perceived in its environment. These characteristics
make a COTS, to a large extent, similar to a Process Support System (PSS).

In our previous work, we have addressed the issues raised by the architecture and interoperability paradigms
required to build federations of process support systems. This position is a preliminary attempt to assess to what
extent our contribution applies to software federations.

It is shown, through examples, that the concepts and architecture identified in PSS federations are relevant for soft-
ware federations; it is our belief (and future work) that our architecture can be used as a reference framework for
any federation.

1 F e d e r a t i o n s

We define a federation as an application built mainly from Components Of The Shelf tools (COTS) which implies
that they are (largely) autonomous, and that their source code is not available.

The goal of a federation is to provide collectively a (complex) service while preserving the independence and
autonomy of components, and to be open to changes in the composition and distribution (new/changed/removed/
moved components).

Indeed, today, many such COTS are available like text editors, spreadsheets, databases, web browsers, workflow,
groupware, network services,... Building a software application consists often in building a federation where most
components are COTS and only a few ones are application specific.

A COTS is a software component, and as such contains a local state, persistent or not, a number of methods that
can change that state and an API giving access to a sub-set of the methods; but, being designed to be used in isola-
tion, it directly interacts with the external world (users and/or common computer resources like network, database
or file system). Let us call common space the external world.

The fact the component has direct interaction with the common space has deep consequences on its design: it has
to behave in a non-deterministic context. COTS designers usually try to identify a number of “abnormal” b
iors, and to identify convenient reactions to these, in a fixed or customizable (i.e. programmable) way.

For example, suppose a file is edited. The file is in the common space (the file system); a copy of which, in
hoc format, is in the local state (editor main memory). If the file is changed by another component duri
editing session, the editor will notice the file has a different state (usually when saving the session) and ma
refuse to save, overwrite the file, save under another name, ask the user or other. This kind of behavior is t
extent arbitrary, it is a policy which can (could) be left to the application builder. This kind of behavior can b
to constitute the process model of the tool.

If a number of COTS, in the same application, deal with same parts of the common world, it becomes crit
these COTS to behave consistently in “all” circumstances. In other words, the process model of each too
be compatible or customized, and/or there exists a way for the federation, to define and enforce the whole
tion behavior. Let us call this federation behavior the federation process.
1

 of

een
is up to

to be
some

se is as

rowser
2 P S S s f e d e r a t i o n s

In our previous work, we have addressed the architectural issues raised by federations of process support systems
(PSS) [1]. A PSS is a software component which behavior is defined through an explicit process model, in a
specific formalism.

In a PSS federation, all components deal with different facets of the same problem: process support. As such, many
components share a common knowledge (e.g. activity FixBug is under way), and interpret that knowledge in
different ways (the SCM tool builds a workspace for the activity, the workflow tool adds an activity in an agenda,
the planner starts the tasks and allocates resources, and so on). In other words, PSSs knowledge and behavior
overlap; they closely interoperate.

This overlap corresponds to a part of the common space of these components. The process of each component
explicitly deals with this common space management; putting together different PSSs creates a high risk of incon-
sistent global behavior. The federation process is the process which defines the way the common space evolves.

The difficulties identified for any federation are magnified in PSS federations. The work we have done was to find
the architectures allowing PSS federations to be built. In this work we have identified the following components
[1] see Fig 1.

We materialized the common space, in a standard format, managed by a state server [2]. Each component is
responsible to update, if and when needed, its internal state to match changes in the common space. We identified
an event server, to which each component can subscribe, in order to receive events when relevant actions are
performed on relevant parts of the common space.

Seen from outside the federation executes the federation process, as reflected by the common space changes. The
challenge is to impose the federation to really execute that process, without loosing its openness nor the autonomy
of its components.

We identified a number of managers, either hardwired or controlled by models, which altogether drive and control
the federation:

• a federation process manager, which enforces the functional federation behavior by modification
the common space.

• a connection manager whose purpose is to establish, if required, direct communication betw
components who do not know each other. Once established, the protocol and communication
the components, which supposes the definition of standard or common interfaces.

• a control manager which is in charge, in some circumstances, to find which components(s) are
called, with which parameters, in which order, and how to deal with errors. It also enforces
consistency and protection rules to the whole federation.

Altogether these managers and models constitute the foundation. The general architecture we propo
follows.

3 S o f t w a r e f e d e r a t i o n e x a m p l e s

We claim that this general architecture also applies to software federations. We will exemplify using a web b
and editing a composite document on a Windows machine.

PSS2

M2

Foundation

PSS1

M1

Connection
Manager

Control
Manager

Event server

State server

Process Manager

Conn. Model Control Model Process Model

Hardwired or
formal model
Method call
Event
API

COTS

Figure 1: The General PSS Federation architecture
2

n defined
 player.
 UNIX

s to the
e itself.
of file;
ost no

 directly
nceptual

mposite
oal (the
vide the
roperate

state: a
s close

eet the
In (2),
s the
3.1 Netscape and helpers
Commercial Web browsers are organized as a software federation. They take advantage of COTS to interpret or
visualize the files they get from the web. In Netscape, these components are called “helpers” and have bee
independently. Fig 2 shows the interactions of Netscape with a postscript viewer (Ghostview) and a MPEG
These interactions are rather simple: typically, Netscape writes a file in the common space (/tmp under
systems) and helpers only read these files.

This federation is a simple instantiation of our general architectural model. The state server correspond
UNIX file system; there is no event server; the connection and control managers are included in Netscap
The connection model is defined by the table of helpers which defines which helper to call for each type
the control manager uses this information to call the right helper with the name of the file. There is alm
process model.

For optimization reasons Netscape also plays the role of helpers because some file types (HTML, GIF) are
interpreted; these files are not copied into the common state, which shows the difference between the co
architecture and its effective implementation.

3.2 Composite document (Com/ActiveX)
Let us consider a Word document containing an Excel spreadsheet. This is a federation dedicated to co
document editing: components are the various editors (Word and Excel); they collaborate to a common g
document editing) and they ignore each other. The goal of that federation (the federation process) is to pro
end user the illusion the federation is a single editor, whereas a number of autonomous components inte
to provide that illusion.

In a Windows machine, both tools have the knowledge of the format and semantics of the common
“stream” i.e. a complex file containing both Word and Excel data. This example shows that, as soon a
interoperability is required, the common state must be defined a more detailed format and semantics.

In the OLE technology, in (0) components register themselves. In (1), when clicking in the spreadsh
In_process (control aspect), based on the connection manager information, launchs Excel(1’).
OnDataChange is a notification from Excel to the In_process component (Control aspect) which copie
changes into Stream (2’). Then (3) OnViewChange is a notification to Word that a part of the spreadsheet bitmap
has changed. Word reacts to this notification (4) Draw, asking In_process (process aspect) for somebody to
(re)draw the changed spreadsheet providing screen location. The In_process component (process manager) knows
who can interpret this method (itself).

Netscape

Ghostview

M1

mpeg_play

M2

Connection
Manager

Control
Manager

/tmp

helper table Control Model Process Model

Process Manager

Figure 2: The Netscape Federation

In_process

Excel

M1

Word

M2

Connection
Manager

Control & Process Manager

File System

Conn. Model Control Model Process Model

Stream

4 Draw 1 Launch3 ViewChange

2’ DataChange

1’ Launch 2 OnDataChange

Figure 3: The OLE federation Architecture

Direct interface call
OLE Notification

0 Register
3

y
mply the

ct of

ca-
ow to
anging

u-
hange

rd asks
elf).

ntains,
ontrol

 process

mental
nd the
 have
mecha-
in Fig 3.

 present

n two
CASE
eneric
nd the

mples
ompo-
c feder-
P.

ng and
n the

 other
4

The OLE technology offers, in a hidden way, the major federation components.

• A state server. The common space is a stream file containing the global data of both tools, an
composite document server is assumed to know its syntax and semantics. The state server is si
file system.

• An event server, using the notification mechanism of COM. In composite document, it is an aspe
the In_process component. There is no subscription, the protocol is predefined.

• A connection manager allowing a component to call another one without knowing its name and lo
tion (Word does not know that the other component is Excel). The connection server knows h
launch and initialize a component, and how to establish a direct connection between them (exch
interface addresses).

• Control and Process manager. It is in charge of defining the protocol to follow when composite doc
ments are edited (the process of editing). In this example, when it receives the event OnDataC
(2) it copies the data from Excel to the stream and then sends an event to Word (3). When Wo
explicitly for redrawing (4), it decides who will execute it (in the standard case it is In_Process its

In this example, using OLE, the foundation is mainly represented by the In_process component, which co
in a hard-wired way, the common process (it is specialized in composite document editing only), the c
process, the notification server (all notifications go through In_process) and the connection process. The
server is based on an agreement, from all components, on the syntax and semantics of Streams.

The fact that OLE/ActiveX is 1) strictly based on standard interfaces and method calls and 2) the funda
components and their functions are not clearly identified, makes the federation difficult to understand, a
solution proprietary. It is our belief that a better identification of the basic foundation components would
provided an easier and more open way to define and control the federation (Fig 4). Actually, in [3] these
nisms are expressed in terms closer to the logical architecture of Fig 4 than its implementation described

4 C o n c l u s i o n

This early work shows that most of the basic components we have identified in PSS federations, are also
in software federations. Current work aims to see if the following claims are true:

• All federations are instantiations of our general architecture. This paper has verified this claim o
examples. We have informally studied other software architectures (Netscape and plug-ins,
tools, e_mail, Corba and others). The two examples presented don’t cover all aspects of our g
architecture. In particular, none of these exhibits direct connections between the components a
foundations in both examples only include a very simple process model. Covering other exa
would exhibit these aspects: a vast majority of federations rely on direct connections between c
nents (e.g. federations of Corba components); complex process models appear in more specifi
ations, like federations of CASE or CAD tools, or in enterprise applications such as BAAN or SA

• As shown in Fig 4, the identification of the servers and managers of a federation helps in designi
understanding the federation principles. This identification may lead to distinguish betwee
conceptual and real (efficient) architecture.

• At longer term, can this federation model provide the basis for a general architecture model? In
words, can we see any architecture as a special case of federation?

We expect to be able to report shortly on these future works and experiments.

In_process

Excel

M1

Word

M2

Connection
Manager

Control & Process Manager

Notification

Conn. Model Control Model

Stream

0 Register

3 ViewChange

2 DataChange

1’ Launch 1 Launch

Figure 4: The Logical OLE federation Architecture

4 Draw

File system + display

Process Model

.

 ACM-
Acknowledgments

This work has been perfomed within the common laboratory between Dassault Systèmes and LSR/IMAG

References

[1] Jacky Estublier, Pierre-Yves Cunin, Noureddine Belkhatir. An architecture for process support interoper-
ability. ICSP 5, Pages 137-147. 15-17 June 1998 Chicago, Illinois, USA.

[2] D. Heimbigner. “The ProcessWall: a Process State Server Approach to Process Programming”.
SDE, December 1992.

[3] Inside ActiveX and OLE. David Chapell. Microsoft Press. 1996
5

6

	The Architecture of Federations From Process to Software
	J. Estublier, Y. Ledru, P.Y. Cunin L.S.R. Actimart, Bat 8, Av de Vignate 38610 Gieres FRANCE {jac...
	Abstract
	1 Federations
	2 PSSs federations
	Figure 1: The General PSS Federation architecture

	3 Software federation examples
	3.1 Netscape and helpers
	Figure 2: The Netscape Federation

	3.2 Composite document (Com/ActiveX)
	Figure 3: The OLE federation Architecture
	Figure 4: The Logical OLE federation Architecture

	4 Conclusion
	[1] Jacky Estublier, Pierre-Yves Cunin, Noureddine Belkhatir. An architecture for process support...
	[2] D. Heimbigner. “The ProcessWall: a Process State Server Approach to Process Programming”. ACM...
	[3] Inside ActiveX and OLE. David Chapell. Microsoft Press. 1996

