
Abstract — Software architecture descriptions are high-
level models of software systems. Most existing special-
purpose architectural notations have a great deal of
expressive power but are not well integrated with common
development methods. Conversely, mainstream
development methods are accessible to developers, but lack
the semantics needed for extensive analysis. In our
previous work, we described an approach to combining the
advantages of these two ways of modeling architectures.
While this approach suggested a practical strategy for
bringing architectural modeling into wider use, it
introduced specialized extensions to a standard modeling
notation, which could also hamper wide adoption of the
approach. This paper attempts to assess the suitability of a
standard design method “as is” for modeling software
architectures.
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1. INTRODUCTION

Software architecture is an aspect of software engineering
directed at reducing the costs of developing applications
and increasing the potential for commonality among
different members of a closely related product family [6,
19]. Software development based on common architectural
idioms has its focus shifted from lines-of-code to coarser-
grained architectural elements and their overall
interconnection structure. This enables developers to
abstract away the unnecessary details and focus on the “big
picture:” system structure, high level communication
protocols, assignment of software components and
connectors to hardware components, development process,
and so on [6, 7, 9, 19, 28, 29]. The basic promise of
software architecture research is that better software
systems can result from modeling their important aspects
during, and especially early in the development. Choosing
which aspects to model and how to evaluate them are two
decisions that frame software architecture research [13].

Part of the software architecture research community has
focused on analytic evaluation of architecture descriptions.
Many researchers have come to believe that, to obtain the
benefits of an architectural focus, software architecture
must be provided with its own body of specification
languages and analysis techniques [3, 5, 32]. Such
languages are needed to demonstrate properties of a system
upstream, thus minimizing the costs of errors. They are also

needed to provide abstractions that are adequate for
modeling a large system, while ensuring sufficient detail
for establishing properties of interest. A large number of
architecture description languages (ADLs) has been
proposed [2, 4, 9, 10, 12, 17, 25, 31].

Each ADL embodies a particular approach to the
specification and evolution of an architecture. Answering
specific evaluation questions demands powerful,
specialized modeling and analysis techniques that address
specific aspects in depth. However, the emphasis on depth
over breadth of the model can make it difficult to integrate
these models with other development artifacts, because the
rigor of formal methods draws the modeler’s attention
away from day-to-day development concerns. The use of
special-purpose modeling languages has made this part of
the architecture community fairly fragmented, as revealed
by a recent survey of architecture description languages
[14].

Another part of the community has focused on modeling a
wide range of issues that arise in software development,
perhaps with a family of models that span and relate the
issues of concern. By paying the cost of making such
models, developers gain the benefit of clarifying and
communicating their understanding of the system.
However, emphasizing breadth over depth potentially
allows many problems and errors to go undetected, because
lack of rigor allows developers to ignore certain details.
Several competing notations have been used in this part of
the community, but there now exists a concerted effort to
standardize methods for object-oriented analysis and
design [18].

In our previous work, we described an approach to
combining the advantages of specialized, highly formal
methods of modeling architectures with general, less
formal design methods [24]. This approach suggested a
practical strategy for bringing architectural modeling into
wider use, namely by incorporating substantial elements of
architectural models into a standard design method, the
Unified Modeling Language (UML) [20]. However, our
technique is not without drawbacks: for each architectural
approach and ADL, we introduced a somewhat specialized
extension to UML. In particular, we relied heavily on
UML’s Object Constraint Language (OCL) [23] to specify
architecture- and ADL-specific concepts.

OCL constraints are highly formal. Their formality may
hamper wide adoption of our technique, although end users
of the enhanced UML meta-model typically will not need
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to write OCL constraints. Furthermore, OCL is a part of the
standard UML definition and it is expected that
standardized UML tools will be able to process it.
However, OCL is considered an uninterpreted part of UML
and UML tools may not support it to the extent needed for
creating, manipulating, analyzing, and evolving designs.
For this reason, in this paper we attempt to assess the
suitability of UML “as is” for modeling software
architectures. In particular, we focus on one of the
architectural approaches we addressed previously [24], the
C2 architectural style [29]. We use a simple meeting
scheduler application to highlight the issues. In the process,
we attempt to shed light on the relationship between
architecture and design.

The paper is organized as follows. The next section briefly
describes UML. Section 3 briefly describes the example
application, a meeting scheduler, used to illustrate our
arguments throughout the paper. In Section 4, we introduce
the C2 style and discuss a possible C2 architecture for the
meeting scheduler application. Section 5 provides a “C2
style” UML design of the meeting scheduler. We discuss
the results and key lessons learned in Section 6. Our
conclusions round out the paper.

2. OVERVIEW OF UML

2.1. UML Background

A UML model of a software system consists of several
partial models, each of which addresses a certain set of
issues at a certain level of fidelity. There are eight issues
addressed by UML models: (1) classes and their declared
attributes, operations, and relationships; (2) the possible
states and behavior of individual classes; (3) packages of
classes and their dependencies; (4) example scenarios of
system usage including kinds of users and relationships
between user tasks; (5) the behavior of the overall system
in the context of a usage scenario; (6) examples of object

instances with actual attributes and relationships in the
context of a scenario; (7) examples of the actual behavior of
interacting instances in the context of a scenario; and (8)
the deployment and communication of software
components on distributed hosts. Fidelity refers to how
close the model will be to the eventual implementation of
the system: low-fidelity models tend to be used early in the
life-cycle and are more problem-oriented and generic,
whereas high-fidelity models tend to be used later and are
more solution-oriented and specific. Increasing fidelity
demands effort and knowledge to build more detailed
models, but results in more properties of the model holding
true in the system.

UML is a graphical language with fairly well-defined
syntax and semantics. The syntax of the graphical
presentation is specified by examples and a mapping from
graphical elements to elements of the underlying semantic
model [22]. The syntax and semantics of the underlying
model are specified semi-formally via a meta-model,
descriptive text, and constraints [21]. The meta-model is
itself a UML model that specifies the abstract syntax of
UML models. This is much like using a BNF grammar to
specify the syntax of a programming language. For
example, the UML meta-model states that a Class is one
kind of model element with certain attributes, and that a
Feature is another kind of model element with its own
attributes, and that there is a one-to-many composition
relationship between them.

UML is an extensible language in that new constructs may
be added to address new issues in software development.
Three mechanisms are provided to allow limited extension
to new issues without changing the existing syntax or
semantics of the language. (1)Constraints place semantic
restrictions on particular design elements. (2)Tagged
values allow new attributes to be added to particular
elements of the model. (3)Stereotypes allow groups of
constraints and tagged values to be given descriptive names

SystemModel
ModelElement
name : String

Association AssocEnd
multiplicity : Multiplicity
aggregation : {none, aggregate, composite}

Class

Interface

Feature
visibility : {public, private, protected}

Operation
dir : {require, provide}

Attribute
type : TypeExpr
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Figure 1. Simplified UML Meta-Model (Adapted from [21])
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and applied to other model elements; the semantic effect is
as if the constraints and tagged values were applied directly
to those elements. Another possible extension mechanism
is to modify the meta-model, but this approach results in a
completely new notation to which standard UML tools
cannot be applied. We discuss this approach in more detail
in Section 2.2.

Figure 1 shows the parts of the UML meta-model used in
this paper. We have simplified the meta-model for purposes
of illustration.

2.2. Our Strategy for Adapting UML for
Architecture Modeling

In [24] we studied two possible approaches to using UML
to model architectures. One approach is to define an ADL-
specific meta-model. This approach has been used in more
comprehensive formalizations of architectural styles [1,
12]. Defining a new meta-model helps to formalize the
ADL, but does not aid integration with standard design
methods. By defining our new meta-classes as subclasses
of existing meta-classes we would achieve some
integration. For example, defining Component as a subclass
of meta-class Class would give it the ability to participate in
any relationship in which Class can participate. This is
basically the integration that we desire. However, this
integration approach requiresmodifications to the meta-
model that would notconform to the UML standard;
therefore, we cannot expect UML-compliant tools to
support it.

The approach for which we opted instead was to restrict
ourselves to using UML’s built-in extension mechanisms
on existing meta-classes [24]. This allows the use of
existing and future UML-compliant tools to represent the
desired architectural models, and to support architectural
style conformance checking when OCL-compliant tools
become available. Our basic strategy was to first choose an
existing meta-class from the UML meta-model that is
semantically close to an ADL construct, and then define a
stereotype that can be applied to instances of that meta-
class to constrain its semantics to that of the ADL.

Neither of the two approaches answers the deeper question
of UML’s suitability for modeling software architectures
“as is,” i.e., without defining meta-models specific to a
particular architectural approach or extending the existing
UML meta-model. Such an exercise would highlight the
respective advantages of special- and general-purpose
design notations in modeling architectures. It also has the
potential to further clarify the relationship between
software architecture and design. Therefore, in this paper
we study the characteristics of using the existing UML
features to model architectures in a particular style, C2.

3. EXAMPLE APPLICATION

The example we selected to motivate the discussion in this
paper is a simplified version of the meeting scheduler
problem, initially proposed by van Lamsweerde and
colleagues [8] and recently considered as a candidate

model problem in software architectures [27]. We have
chosen this problem partly because of our prior experience
with designing and implementing a distributed meeting
scheduler in the C2 architectural style, described in [29].

Meetings are typically arranged in the following way. A
meeting initiator asks all potential meeting attendees for a
set of dates on which they cannot attend the meeting (their
“exclusion” set) and a set of dates on which they would
prefer the meeting to take place (their “preference” set).
The exclusion and preference sets are contained in some
time interval prescribed by the meeting initiator (the “date
range”).

The initiator also asks active participants to provide any
special equipment requirements on the meeting location
(e.g., overhead-projector, workstation, network connection,
telephones); the initiator may also ask important
participants to state preferences for the meeting location.

The proposed meeting date should belong to the stated date
range and to none of the exclusion sets. It should also
ideally belong to as many preference sets as possible. A
date conflict occurs when no such date can be found. A
conflict is strong when no date can be found within the date
range and outside all exclusion sets; it is weak when dates
can be found within the date range and outside all exclusion
sets, but no date can be found at the intersection of all
preference sets. Conflicts can be resolved in several ways:
• the initiator extends the date range;
• some participants expand their preference set or nar-

row down their exclusion set; or
• some participants withdraw from the meeting.

4. MODELING THE EXAMPLE
APPLICATION IN C2

4.1. Overview of C2

C2 is a software architectural style for user interface
intensive systems [29].C2SADEL is an ADL for describing
C2-style architectures [12, 15]; henceforth, in the interest
of clarity, we use “C2” to refer to the combination C2 and
C2SADEL. In a C2-style architecture,connectors transmit
messages between components, whilecomponents
maintain state, perform operations, and exchange messages
with other components via two interfaces (named “top” and
“bottom”). Each interface consists of a set of messages that
may be sent and a set of messages that may be received.
Inter-component messages are eitherrequests for a
component to perform an operation, ornotifications that a
given component has performed an operation or changed
state.

In the C2 style, components may not directly exchange
messages; they may only do so via connectors. Each
component interface may be attached to at most one
connector. A connector may be attached to any number of
other components and connectors. Request messages may
only be sent “upward” through the architecture, and
notification messages may only be sent “downward.”



The C2 style further demands that components
communicate with each other only through message-
passing, never through shared memory. Also, C2 requires
that notifications sent from a component correspond to the
operations of its internal object, rather than the needs of any
components that receive those notifications. This constraint
on notifications helps to ensuresubstrate independence,
which is the ability to reuse a C2 component in
architectures with differing substrate components (e.g.,
different window systems). The C2 style explicitly does not
make any assumptions about the language(s) in which the
components or connectors are implemented, whether or not
components execute in their own threads of control, the
deployment of components to hosts, or the communication
protocol(s) used by connectors.

4.2. Modeling the Meeting Scheduler in C2

Figure 2 shows a graphical depiction of a possible C2-style
architecture for a simple meeting scheduler system. This
system consists of components supporting the functionality
of a MeetingInitiator and several potential meeting
Attendees and ImportantAttendees. Three C2 connectors
are used to route messages among the components. Certain
messages from theInitiator are sent both toAttendees and
ImportantAttendees, while others (e.g., to obtain meeting
location preferences) are only routed to
ImportantAttendees. Since a C2 component has only one
communication port on its top and one on its bottom, and
all message routing functionality is relegated to connectors,
it is the responsibility ofMainConn to ensure thatAttConn
andImportantAttConn above it receive only those message
relevant to their respective attached components.

The Initiator component sends requests for meeting
information toAttendees andImportantAttendees. The two
sets of components notify theInitiator component, which
attempts to schedule a meeting and either requests that each
potential attendee mark it in his/her calendar (if the meeting
can be scheduled), or it sends other requests to attendees to
extend the date range, remove a set of excluded dates, add
preferred dates, or withdraw from the meeting. Each
Attendee and ImportantAttendee component, in turn,
notifies theInitiator of its date, equipment, and location
preferences, as well as excluded dates.Attendee and
ImportantAttendee components cannot make requests of
theMeetingInitiator component, since they are above it in
the architecture.

Most of this information is implicit in the graphical view of
the architecture shown in Figure 2. For this reason, we

specify the architecture inC2SADEL, a textual language for
modeling C2-style architectures [11, 12, 15]. For
simplicity, we assume that all attendees’ equipment needs
will be met, and that a meeting location will be available on
the given date and that it will be satisfactory for all (or
most) of the important attendees.

The MeetingInitiator component is specified below. The
component only communicates with other parts of the
architecture through its top port.

component  MeetingInitiator is
interface

top_domain is
out

GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
GetLocPrefs ();
RemoveExclSet ();
RequestWithdrawal (to  Attendee);
RequestWithdrawal (to  ImportantAttendee);
AddPrefDates ();
MarkMtg (d : date; l : loc_type);

in
PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
LocPref (l : loc_type);

bottom_domain is
out null ;
in null ;

parameters null ;
methods

procedure  Start ();
procedure  Finish ();
procedure  SchedMtg (p : set  date_rng;

e : set  date_rng);
procedure  AddPrefSet (pref : date_rng);
procedure  AddExclSet (exc : date_rng);
procedure  AddEquipReqts (eq : equip_type);
procedure  AddLocPref (l : loc_type);
function  AttendInfoCompl () return  boolean;
procedure  IncNumAttends (n : integer);
function  GetNumAttends () : return  integer;

behavior
startup

invoke_methods  Start;
always_generate  GetPrefSet, GetExclSet,

GetEquipReqts, GetLocPrefs;
cleanup

invoke_methods  Finish;
always_generate null ;

received_messages PrefSet;
invoke_methods  AddPrefSet, IncNumAttends,

AttendInfoCompl, GetNumAttends, SchedMtg;
may_generate  RemoveExclSet xor

RequestWithdrawal xor MarkMtg;
received_messages ExclSet;

invoke_methods  AddExclSet, AttendInfoCompl,
GetNumAttends, SchedMtg;

may_generate AddPrefDates xor RemoveExclSet
xor RequestWithdrawal xor MarkMtg;

received_messages EquipReqts;
invoke_methods  AddEquipReqts,

AttendInfoCompl, GetNumAttends, SchedMtg;
may_generate  AddPrefDates xor RemoveExclSet

xor RequestWithdrawal xor MarkMtg;
received_messages  LocPref;

invoke_methods  AddLocPref;
always_generate null ;

context
bottom_most computational_unit ;

end  MeetingInitiator;

Attendee-1 Attendee-M... Important ...Attendee-1
Important

Attendee-N

Meeting
Initiator

AttConn Important

MainConn

Figure 2. A C2-style architecture for a meeting scheduler
system.

AttConn



The Attendee and ImportantAttendee components receive
meeting scheduling requests from theInitiator and notify it
of the appropriate information. The two types of
components only communicate with other parts of the
architecture through their bottom ports.

component  Attendee is
interface

top_domain is
out null ;
in null ;

bottom_domain is
out

PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
Witdrawn ();

in
GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
RemoveExclSet ();
RequestWithdrawal ();
AddPrefDates ();
MarkMtg (d : date; l : loc_type);

parameters null ;
methods

procedure  Start ();
procedure  Finish ();
procedure  NoteMtg (d : date; l : loc_type);
function  DeterminePrefSet () return  date_rng;
function  DetermineExclSet () return  date_rng;
function  AddPrefDates () return  date_rng;
function  RemoveExclSet () return  date_rng;
procedure  DetermineEquipReqts (eq : equip_type);

behavior
startup

invoke_methods  Start;
always_generate null ;

cleanup
invoke_methods  Finish;
always_generate null ;

received_messages GetPrefSet;
invoke_methods  DeterminePrefSet;
always_generate  PrefSet;

received_messages AddPrefDates;
invoke_methods  AddPrefDates;
always_generate  PrefSet;

received_messages GetExclSet;
invoke_methods  DetermineExclSet;
always_generate ExclSet;

received_messages GetEquipReqts;
invoke_methods  DetermineEquipReqts;
always_generate  EquipReqts;

received_messages  RemoveExclSet;
invoke_methods  RemoveExclSet;
always_generate ExclSet;

received_messages  RequestWithdrawal;
invoke_methods  Finish;
always_generate Withdrawn;

received_messages  MarkMtg;
invoke_methods  NoteMtg;
always_generate null ;

context
top_most computational_unit ;

end  Attendee;

ImportantAttendee is a specialization of theAttendee
component: it duplicates all ofAttendee’s functionality and
adds specification of meeting location preferences.
ImportantAttendee is thus specified as a subtype of
Attendeethat preserves its interface and behavior, but can
implement that behavior in a new manner.

component  ImportantAttendee is
subtype Attendee (int and beh )
interface

bottom_domain is
out

LocPrefs (l : loc_type);
in

GetLocPrefs ();
methods

function  DetermineLocPrefs () return  loc_type;
behavior

received_messages  GetLocPrefs;
invoke_methods  DetermineLocPrefs;
always_generate  LocPrefs;

end  ImportantAttendee;

TheMeetingScheduler architecture depicted in Figure 2 is
shown below. The architecture is specified with conceptual
components (i.e., component types). Each conceptual
component (e.g.,Attendee) can be instantiated multiple
times in asystem.

architecture  MeetingScheduler is
conceptual_components

top_most
Attendee;
ImportantAttendee;

internal null ;
bottom_most

MeetingInitiator;
connectors

connector  MainConn is
message_filter no_filtering ;

end MainConn;
connector  AttConn is

message_filter no_filtering ;
end AttConn;
connector  ImportantAttConn is

message_filter no_filtering ;
end ImportantAttConn;

architectural_topology
connector AttConn connections

top_ports
Attendee;

bottom_ports
MainConn;

connector ImportantAttConn connections
top_ports

ImportantAttendee;
bottom_ports

MainConn;
connector MainConn connections

top_ports
AttConn;
ImportantAttConn;

bottom_ports
MeetingInitiator;

end  MeetingScheduler;

An instance of the architecture (a system) is specified by
instantiating the components. For example, an instance of
the meeting scheduler application with three participants
and two important participants is specified as follows.

system  MeetingScheduler_1 is
architecture  MeetingScheduler with

Attendee instance Att_1, Att_2, Att_3;
ImportantAttendee instance ImpAtt_1, ImpAtt_2;
MeetingInitiator instance  MtgInit_1;

end  MeetingScheduler_1;



5. MODELING THE C2-STYLE MEETING
SCHEDULER APPLICATION IN UML

The process of designing a C2-style application in UML
should be driven and constrained both by the rules of C2
and the modeling features available in UML. The two must
be considered simultaneously. For this reason, the initial
steps in this process are to develop a domain model for a
given application in UML and an informal C2 architectural
diagram, such as the one from Figure 2. Such an
architectural diagram is key to making the appropriate
mappings between classes in the domain and architectural
components. Furthermore, it points to the need to explicitly
model connectors in any C2-style architecture. Another
important aspect of C2 architectures is the prominence of
components’ message interfaces. This is reflected in a
UML design by modeling interfaces explicitly and
independently of the classes that will implement those
interfaces.

Our initial attempt at a UML class diagram for the meeting
scheduler application is shown in Figure 3. The diagram
shows the domain model for the meeting scheduler
application consisting of the domain classes, their
inheritance relationships, and their associations. The
diagram abstracts away many architectural details, such as
the mapping of classes in the domain to implementation
components, the order of interactions among the different
classes, and so forth. Furthermore, much of the semantics
of class interaction is missing from the diagram. For
example, theInvites association associates twoMeetings
with one or moreAttendees and oneMeetingInitiator.
However, the association does not make clear the fact that
the two Meetings are intended to represent a range of
possible meeting dates, rather than a pair of related
meetings.

Each class exports one or more interfaces, shown in
Figure 4. TheImportantMtgInit and ImportantMtgAttend
interfaces inherit from theMtgInit and MtgAttend

interfaces, respectively. The only difference is the added
operation to request and notify of location preferences.

Note that every interface element corresponds to a C2
message in the architecture specified in Section 4.2. All
methods in the UML design will be implemented as
asynchronous message passes, as they would in C2. Since
C2 components communicate via implicit invocation, C2
messages do not have return values; this is also reflected in
Figure 4.

In order to model a C2 architecture in UML, connectors
must be defined. Although connectors fulfill a role different
from components, they can also be modeled with UML
classes. However a C2 connector is by definition generic
and can accommodate any number ant type of C2
components; informally, the interface of a C2 connector is
a union of the interfaces of its attached components. UML
does not support this form of genericity, so that the
connectors specified in UML have to be application-
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Figure 3. UML class diagram for the meeting scheduler
application. Details (attributes and methods) of each
individual class have been suppressed for clarity.

<<interface>>
MtgInit

GetPrefSet ();
GetExclSet ();
RemoveExclSet ();
RequestWithdrawal (Attendee);
AddPrefDates ();

<<interface>>
MtgAttend

PrefSet (date_rng);
ExclSet (date_rng);
EquipReqts (equip_type);
Witdrawn ();

<<interface>>
ImportantMtgAttend

LocPrefs (loc_type);

<<interface>>
ImportantMtgInit

GetLocPrefs ();

Figure 4. Meeting scheduler class interfaces.
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AttConn

GetPrefSet ();
GetExclSet ();
RemoveExclSet ();
RequestWithdrawal (Attendee);
AddPrefDates ();
PrefSet (date_rng);
ExclSet (date_rng);
EquipReqts (equip_type);
Witdrawn ();

<<interface>>
ImportantAttConn

GetLocPrefs ();
LocPrefs (loc_type);

Figure 5. Application-specific UML classes representing C2
connectors.
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MainConn



specific. For that purpose, the connectors for the meeting
scheduler application share the components’ interfaces.
Each connector can be thought of as a simple class that
forwards each message it receives to the appropriate
components. Therefore, while the component class
interface specifications, shown in Figure 4, correspond to
the different C2 components’ outgoing messages (i.e., their
provided functionality), the connector interfaces are routers
of both the incoming and outgoing messages, as depicted in
Figure 5. Connectors do not add any functionality at the
domain model level; we have thus chosen to omit them
from the class diagram in Figure 3.

A refined class diagram for the meeting scheduler
application is shown in Figure 6. TheAttendee and
ImportantAttendee classes are related by interface
inheritance, which is depicted in Figure 4, but is only
implicit in Figure 6 (and altogether omitted from Figure 3).
We have omitted from Figure 6 theLocation, Meeting, and
Date classes shown in Figure 3, since they have not been
impacted. We have also omitted the two superclasses for
the components and connectors (Person and Conn,
respectively).

Note that the class diagram in Figure 6 is similar in its
structure to the C2 architecture depicted in Figure 2. The
only difference is that the diagram in Figure 2 depicts
instances of the different components and connectors,
while a UML class diagram depicts classes and their
associations. UML provides several types of diagrams that
depict class instances (objects). One candidate is UML’s
object diagrams; however, we choose to depict a
collaboration diagram to further draw the contrast between
UML and C2.

Figure 7 shows the collaboration between an instance of
the MeetingInitiator class (MI) and any instances of
Attendee and ImportantAttendee classes:MI issues a

request for a set of preferred meeting dates;MC, an
instance of theMainConn class routes the request to
instances of both connectors above it,AC andIAC, which,
in turn, route the requests to all components attached on
their top sides; each participant component chooses a
preferred date and notifies any components below it of that
choice; these notification messages will eventually be
routed toMI via the connectors. Note that, ifMI had sent
the request to get meeting location preferences
(GetLocPrefs in the ImportantMtgInit interface in
Figure 4),MC would have routed them only toIAC and
none of the instances of theAttendee class would have
received that request.

The above diagrams, and particularly Figure 6, differ from
a C2 architecture in that they explicitly specify only the
messages a component receives (via interface attachments
to a component rectangle). UML also allows specification
of messages a component sends; we believe those
messages to be obvious from the diagram and have thus
chosen to omit them to simplify the diagrams.

6. DISCUSSION

The exercise of modeling a C2-style architecture in UML
has been fairly successful. Part of the success can be
attributed to the fact that many architectural concepts are
found in UML (e.g., interfaces, component associations,
behavioral modeling, and so forth). On the other hand, the
modeling capabilities provided by UML do not always
fully satisfy the needs of architectural description. We
discuss several major similarities and differences in this
section.

6.1. Software Modeling Philosophies

Neither C2 nor UML constrain the choice of
implementation language or require that any two
components be implemented in the same language or
thread of control. C2 limits communication to
asynchronous message passing and UML supports this
restriction. Both C2 and UML include specifications of
messages that may be sent and received.
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Figure 6. UML class diagram for the meeting scheduler
application designed in the C2 architectural style.
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Figure 7. Collaboration diagram for the meeting scheduler
application showing a response to a request issued by the
MeetingInitiator to both Attendees and ImportantAttendees.



Although we did not model details of the internal parts of a
C2 component or the behavior of any C2 constructs
(components, connectors, communication ports, and so
forth) in our UML specification, we believe that many of
those aspects could be modeled with UML’s sequence,
collaboration, statechart, and activity diagrams. Existing
ADLs, includingC2SADEL, are often not able to support all
of these kinds of semantic models [14].

6.2. Assumptions

Like any notation, UML embodies its developers’
assumptions about its intended usage. “Architecting” a
system was not an intended use of UML. While one can
indeed focus on the different perspectives when modeling a
system (discussed above), a software architect may find
that the support for those perspectives found in UML only
partially satisfies his/her needs.

For example, in modeling the collaboration among C2
components shown in Figure 7, we were forced to assign a
relative ordering to messages in the architecture. In effect,
since all C2 components and connectors can execute in
their own thread(s) of control, such an ordering cannot
always be determined. Indeed, it is possible that message 4
would be sent before message 3.

6.3. Problem Domain Modeling

UML supports modeling a problem domain, as we have
briefly shown in this paper. A C2 architectural model,
however, often hides some of the information present in a
domain model. For example, meeting, equipment, and
location information is present in Figure 3, but is missing
from the C2 architecture specified in Section 4 and its
corresponding UML diagram in Figure 6. Modeling all the
relevant information early in the development lifecycle is
crucial to the success of a software project. Therefore, a
domain model should be considered a separate and useful
architectural perspective [13, 30].

6.4. Architectural Abstractions

Some concepts of C2, and software architectures in
general, are very different from those of UML and object-
oriented design in general. Connectors are first-class
entities in C2. While the functionality of a connector can
typically be abstracted by a class/component [9, 10], C2
connectors have the added property that their interfaces are
context reflective. This property is designed intoC2SADEL
and C2’s implementation infrastructure [16] for all
connectors, whereas the approach described in this paper
requires specialized modeling of application-specific
connector classes in UML.

The underlying problem is even deeper. Although UML
may provide modeling power equivalent to or surpassing
that of an ADL, the abstractions it provides may not match
an architect’s mental model of the system as faithfully as
the architect’s ADL of choice. If the primary purpose of a
language is to provide a vehicle of expression that matches
the intuitions and practices of users, then that language
should aspire to reflect those intentions and practices [26].

We believe this to be a key issue and one that argues against
considering a notation like UML to be a “mainstream”
ADL: a given language (e.g., UML) offers a set of
abstractions that an architect uses as design tools; if certain
abstractions (e.g., components and connectors) are buried
in others (e.g., classes), the architect’s job is made more
(and unnecessarily) difficult; separating components from
connectors, raising them both to visibility as top-level
abstractions, and endowing them with certain features and
limitations also raises them in the consciousness of the
designer.

6.5. Architectural Styles

Architecture is the appropriate level of abstraction at which
rules of a compositional style (i.e., an architectural style)
can be exploited and should be elaborated. Doing so results
in a set of heuristics that, if followed, will guarantee a
resulting system certain desirable properties.

Standard UML provides no support for architectural styles.
The rules of different styles have to be built into UML by
constraining its meta-model, as we have done previously
[24]. Therefore, in choosing to use UML “as is”, we have
removed one shortcoming of our previous approach, only
to introduce another. In particular, every C2 architecture
designed in the manner we described in this paper adheres
to the UML meta-model and, as such, can be understood by
a typical UML user and manipulated with standardized
UML tools. On the other hand, the process of modeling a
C2 architecture in UML is heuristic- rather than constraint-
driven. Therefore, there is no guarantee that the designer
will always adhere to the rules of C2. For this reason, it
may also be more difficult to provide support for automated
translation of “C2-style” UML designs intoC2SADEL for
C2-specific manipulations.

7. CONCLUSIONS

We found this initial attempt at modeling a C2-style
architecture in UML useful. It highlighted those UML
characteristics that show potential for aiding architectural
modeling, but also pointed out some of UML’s
shortcomings in this regard. This experience can also serve
as a solid basis for further study, both with other C2
architectures, as well as with other ADLs (e.g., Wright [2])
and architectural styles (e.g., client-server).

Before we can draw definitive conclusions about the
relative merits of this approach and the approach described
in our previous work [24], further research into the
techniques described in the two papers is needed. One
necessary step to integrate UML with other ADLs
discussed in [24]: Wright [2], Darwin [10], and Rapide [9].
Each of these ADLs has certain aspects in common with
UML; these were expressed with UML’s extension
mechanisms. We intend to investigate whether they can
also be expressed in UML without extensions.

Our experience to date indicates that adapting UML to
address architectural concerns requires reasonable effort,
has the potential to be a useful complement to ADLs and



their analysis tools, and may be a practical step toward
mainstream architectural modeling. Using UML has the
benefits of leveraging mainstream tools, skills, and
processes. It may also aid in the comparison of ADLs
because it forces some implicit assumptions to be explicitly
stated in common terms.
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