Assessing the Suitability of a Standard Design Method
for Modeling Software Architectures

Nenad Medvidovic and David S. Rosenblum
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, U.S.A.
{neno,dsr}@ics.uci.edu

Abstract — Software architecture descriptions are high-needed to provide abstractions that are adequate for
level models of software systems. Most existing specialodeling a large system, while ensuring sufficient detail
purpose architectural notations have a great deal dbr establishing properties of interest. A large number of
expressive power but are not well integrated with commamchitecture description languages (ADLs) has been
development methods. Conversely, mainstreapmoposed [2, 4, 9, 10, 12, 17, 25, 31].

developmenfc methods are accessible_to developgrs, butlgclh, ADL embodies a particular approach to the
the semantics needed for extensive analysis. In OYfecification and evolution of an architecture. Answering
previous work, we described an approach to combining tigecific evaluation questions demands ~ powerful,
advantages of these two ways of modeling architeCturegye ialized modeling and analysis techniques that address
While this approach suggested a practical strategy fQiyecific aspects in depth. However, the emphasis on depth
bringing _ architectural modeling - into. wider use, it 5 er preadth of the model can make it difficult to integrate
introduced specialized extensions to a standard modelifighse models with other development artifacts, because the
notation, which could also hamper wide adoption of thgyor of formal methods draws the modeler's attention
approach. Th|§ paper atternpts _tc’>, assess the. suitability OE ay from day-to-day development concerns. The use of
standard design method “as is” for modeling softwargpeia|-purpose modeling languages has made this part of
architectures. the architecture community fairly fragmented, as revealed
Keywords — Software architecture, architectural style,by a recent survey of architecture description languages
object-oriented design, architecture description languagef 4].

Unified Modeling Language Another part of the community has focused on modeling a
wide range of issues that arise in software development,
1. INTRODUCTION perhaps with a family of models that span and relate the

Software architecture is an aspect of software engineeriisgues of concern. By paying the cost of making such
directed at reducing the costs of developing applicationsodels, developers gain the benefit of clarifying and
and increasing the potential for commonality amongommunicating their understanding of the system.
different members of a closely related product family [6;lowever, emphasizing breadth over depth potentially
19]. Software development based on common architectugdlows many problems and errors to go undetected, because
idioms has its focus shifted from lines-of-code to coarsedmck of rigor allows developers to ignore certain details.
grained architectural elements and their overa$everal competing notations have been used in this part of
interconnection structure. This enables developers tile community, but there now exists a concerted effort to
abstract away the unnecessary details and focus on the ‘figndardize methods for object-oriented analysis and
picture:” system structure, high level communicationlesign [18].

protocols, assignment of software components and our previous work, we described an approach to
connectors to hardware components, develo_pment proc bining the advantages of specialized, highly formal
and so on [6, 7, 9, 19, 28, 29]. The basic promise glethods of modeling architectures with general, less
software architecture research is that better softwaygmg design methods [24]. This approach suggested a
systems can result from modeling their important aspegigyciical strategy for bringing architectural modeling into
during, and especially early in the development. Choosingger yse, namely by incorporating substantial elements of
which aspects to model and how to evaluate them are tWarhjtectural models into a standard design method, the
decisions that frame software architecture research [13]. jpified Modeling Language (UML) [20]. However, our
Part of the software architecture research community hi@shnique is not without drawbacks: for each architectural
focused on analytic evaluation of architecture descriptiorapproach and ADL, we introduced a somewhat specialized
Many researchers have come to believe that, to obtain #dension to UML. In particular, we relied heavily on
benefits of an architectural focus, software architectukdML’s Object Constraint Language (OCL) [23] to specify
must be provided with its own body of specificatiorarchitecture- and ADL-specific concepts.

languages and analysis techniques [3, 5, 32]. SUgt| constraints are highly formal. Their formality may
languages are needed to demonstrate properties of a sy§{gfiper wide adoption of our technique, although end users
upstream, thus minimizing the costs of errors. They are alspine enhanced UML meta-model typically will not need

to write OCL constraints. Furthermore, OCL is a part of thiestances with actual attributes and relationships in the
standard UML definition and it is expected thatontextof a scenario; (7) examples of the actual behavior of
standardized UML tools will be able to process itinteracting instances in the context of a scenario; and (8)
However, OCL is considered an uninterpreted part of UMthe deployment and communication of software

and UML tools may not support it to the extent needed faomponents on distributed hosts. Fidelity refers to how
creating, manipulating, analyzing, and evolving designslose the model will be to the eventual implementation of

For this reason, in this paper we attempt to assess the system: low-fidelity models tend to be used early in the
suitability of UML “as is” for modeling software life-cycle and are more problem-oriented and generic,

architectures. In particular, we focus on one of thehereas high-fidelity models tend to be used later and are
architectural approaches we addressed previously [24], tmere solution-oriented and specific. Increasing fidelity

C2 architectural style [29]. We use a simple meetindemands effort and knowledge to build more detailed

scheduler application to highlight the issues. In the processodels, but results in more properties of the model holding
we attempt to shed light on the relationship betwedrue in the system.

architecture and design. UML is a graphical language with fairly well-defined
The paper is organized as follows. The next section brielyntax and semantics. The syntax of the graphical
describes UML. Section 3 briefly describes the examppgesentation is specified by examples and a mapping from
application, a meeting scheduler, used to illustrate ographical elements to elements of the underlying semantic
arguments throughout the paper. In Section 4, we introdue®del [22]. The syntax and semantics of the underlying
the C2 style and discuss a possible C2 architecture for thedel are specified semi-formally via a meta-model,
meeting scheduler application. Section 5 provides a “Gfescriptive text, and constraints [21]. The meta-model is
style” UML design of the meeting scheduler. We discustself a UML model that specifies the abstract syntax of
the results and key lessons learned in Section 6. QUML models. This is much like using a BNF grammar to

conclusions round out the paper. specify the syntax of a programming language. For
example, the UML meta-model states that a Class is one
2. OVERVIEW OF UML kind of model element with certain attributes, and that a

Feature is another kind of model element with its own
2.1. UML Background attributes, and that there is a one-to-many composition
A UML model of a software system consists of severaélationship between them.

partial models, each of which addresses a certain set(§)y| is an extensible language in that new constructs may
issues at a certain level of fidelity. There are eight isSUgs added to address new issues in software development.
addressed by UML models: (1) classes and their declarggree mechanisms are provided to allow limited extension
attributes, operations, and relationships; (2) the possiQi¢ ey jssues without changing the existing syntax or
states and beha_wor of |nd|V|d_uaI classes; (3) packag_esszéfmamics of the language. (nstraintsplace semantic
classes and thglr dependgnues; (4) example scenariogelfrictions on particular design elements. TE)ged
system usage including kinds of users and relationshipg es allow new attributes to be added to particular
between user tasks; (5) the behavior of the overall syst@fdments of the model. (Srereotypesallow groups of

in the context of a usage scenario; (6) examples of objeginstraints and tagged values to be given descriptive names

{ordered){ MUTTPICIty : MUTTpIiCity instanc¢ | inkEnd
Feature 1 aggregation : {none, aggregate, compogite} 0-
visibility : {public, private, protected}— Class
0..1) .
1.5 0-1 StateMaching 0.% o

1.* Interface K>
Attribute Operation - 01 O ?
tOp 0.*

type : TypeExpr dir : {require, provide}

0.1 .
1. State

« Target
5 I " o..1£ ﬁ

arameter .
type : TypeExpr CompositeState

kind : {in, out, inout, return}

1“*
TaqqquaIue <
Note: All classes are subclasses of Valueiyn'ntemfeted
ModelElement (except ModelElement g" |
itself). This relationship is not shown. SystemModel
U P t4 €[wodelElement [T~ Constraint
name : Sting = T body : Uninterpreted

Figure 1. Simplified UML Meta-Model (Adapted from [21])

and applied to other model elements; the semantic effectii@del problem in software architectures [27]. We have
as if the constraints and tagged values were applied direatlyosen this problem partly because of our prior experience
to those elements. Another possible extension mechanignth designing and implementing a distributed meeting
is to modify the meta-model, but this approach results inseheduler in the C2 architectural style, described in [29].

completely new notation to which standard UML toolg, etings are typically arranged in the following way. A

cannot be applied. We discuss this approach in more dejgilating initiator asks all potential meeting attendees for a

in Section 2.2. set of dates on which they cannot attend the meeting (their
Figure 1 shows the parts of the UML meta-model used fexclusion” set) and a set of dates on which they would
this paper. We have simplified the meta-model for purpospeefer the meeting to take place (their “preference” set).
of illustration. The exclusion and preference sets are contained in some

. time interval prescribed by the meeting initiator (the “date
2.2. Our Strategy for Adapting UML for P y g (

i ; range”).
Architecture Modeling ge”)

. . _ he initiator also asks active participants to provide any
In [24] we studied two possible approaches to using UMLpeia| equipment requirements on the meeting location
to model architectures. One approach is to define an ADfg g overhead-projector, workstation, network connection,
specific meta—model. Thls gpproach ha_s been used in m phones); the initiator may also ask important
comprehenswe formalizations of architectural StY'eS [articipants to state preferences for the meeting location.
12]. Defining a new meta-model helps to formalize th ,
ADL, but does not aid integration with standard desig-ﬁhe proposed meeting date should belong to the stated date
methods. By defining our new meta-classes as subclas@ge and to none of the exclusion sets. It should also
of existing meta-classes we would achieve sonid€ally belong to as many preference sets as possible. A
integration. For example, defining Component as a subcl&&de conflict occurs when no such date can be found. A
of meta-class Class would give it the ability to participate ionflict is strong when no date can be found within the date
any relationship in which Class can participate. This k&nge and outside all exclusion sets; it is weak when dates
basically the integration that we desire. However, th&an be found within the date range and outside all exclusion
integration approach requiresodificationsto the meta- SEtS, but no date can be found at the intersection of all
model that would notonform to the UML standard; Preference sets. Conflicts can be resolved in several ways:

therefore, we cannot expect UML-compliant tools t§ the initiator extends the date range;
support it. * some participants expand their preference set or nar-

row down their exclusion set; or

The approach for which we opted instead was to restrict o6 participants withdraw from the meeting.

ourselves to using UML's built-in extension mechanisms
on existing meta-classes [24]. This allows the use gf MODELING THE EXAMPLE
existing and future UML-compliant tools to represent the’ APPLICATION IN C2

desired architectural models, and to support architectural

style conformance checking when OCL-compliant toolg.1. Overview of C2

become available. Our basic strategy was to first choose@g is a software architectural style for user interface

existing meta-class from the UML meta-model that I8 : ; 0
A . Thtensive systems [29¢2SADEL is an ADL for describin
semantically close to an ADL construct, and then define, style ar)i:hitectu[res [12, 15]; henceforth, in the intgrest

stereotype that'ca'm be app!ied to instances of that meg;%clarity we use “C2" to refer to the combination C2 and
class to constrain its semantics to that of the ADL. !

C2SADEL. In a C2-style architecturepnnectorstransmit
Neither of the two approaches answers the deeper questiasssages between components, whiemponents

of UML's suitability for modeling software architecturesmaintain state, perform operations, and exchange messages
“as is,” i.e., without defining meta-models specific to &ith other components via two interfaces (named “top” and
particular architectural approach or extending the existirfgottom”). Each interface consists of a set of messages that
UML meta-model. Such an exercise would highlight thenay be sent and a set of messages that may be received.
respective advantages of special- and general-purposgr-component messages are eitliequests for a
design notations in modeling architectures. It also has themponent to perform an operation,natificationsthat a
potential to further clarify the relationship betweergiven component has performed an operation or changed
software architecture and design. Therefore, in this papgate.

we study the characteristics of using the existing UM

features to model architectures in a particular style, C2. In the c2 style, components may not directly exchange

messages; they may only do so via connectors. Each
component interface may be attached to at most one
3. EXAMPLE APPLICATION connector. A connector may be attached to any number of
The example we selected to motivate the discussion in toiher components and connectors. Request messages may
paper is a simplified version of the meeting schedulenly be sent “upward” through the architecture, and
problem, initially proposed by vanLamsweerde andotification messages may only be sent “downward.”
colleagues [8] and recently considered as a candidate

The C2 style further demands that componentpecify the architecture IT2SADEL, a textual language for
communicate with each other only through messagmodeling C2-style architectures [11, 12, 15]. For
passing, never through shared memory. Also, C2 requirgsplicity, we assume that all attendees’ equipment needs
that notifications sent from a component correspond to tindll be met, and that a meeting location will be available on
operations of its internal object, rather than the needs of ahg given date and that it will be satisfactory for all (or
components that receive those notifications. This constrainost) of the important attendees.

on notifications helps to ensusebstrate independence The Meetinglnitiator component is specified below. The
which is the ability to reuse a C2 component ifomponent only communicates with other parts of the

architectures with differing substrate components (e.Gychitecture through its top port.

different window systems). The C2 style explicitly does not

component Meetinglnitiator is

make any assumptions about the language(s) in which thé i iarface

components or connectors are implemented, whether or not

components execute in their own threads of control, the
deployment of components to hosts, or the communication
protocol(s) used by connectors.

4.2. Modeling the Meeting Scheduler in C2

Figure 2 shows a graphical depiction of a possible C2-style
architecture for a simple meeting scheduler system. This
system consists of components supporting the functionality
of a Meetinglnitiator and several potential meeting
Attendeesand ImportantAttendeesThree C2 connectors

are used to route messages among the components. Certain

messages from tHaitiator are sent both tattendeesnd
ImportantAttendegswhile others (e.g., to obtain meeting
location preferences) are only routed to
ImportantAttendeesSince a C2 component has only one
communication port on its top and one on its bottom, and
all message routing functionality is relegated to connectors,
it is the responsibility ofMainConnto ensure thaAttConn
andIimportantAttConrabove it receive only those message
relevant to their respective attached components.

The Initiator component sends requests for meeting
information toAttendeesndimportantAttendees he two
sets of components notify theitiator component, which

top_domain is
out
GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
GetLocPrefs ();
RemoveExclSet ();
RequestWithdrawal (to Attendee);
RequestWithdrawal (to ImportantAttendee);
AddPrefDates ();
MarkMtg (d : date; | : loc_type);
in
PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
LocPref (I : loc_type);
bottom_domain is

out null ;
in null ;
parameters null ;
methods
procedure Start ();
procedure Finish ();
procedure SchedMtg (p : set date_rng;
e : set date_rng);
procedure AddPrefSet (pref : date_rng);
procedure AddExclSet (exc : date_rng);
procedure AddEquipReqts (eq : equip_type);
procedure AddLocPref (I : loc_type);

function AttendinfoCompl () return boolean;
procedure IncNumAttends (n : integer);

attempts to schedule a meeting and either requests that each_ function GetNumAttends () : return integer;

potential attendee mark it in his/her calendar (if the meeting

can be scheduled), or it sends other requests to attendees to
extend the date range, remove a set of excluded dates, add

preferred dates, or withdraw from the meeting. Each
Attendee and ImportantAttendeecomponent, in turn,
notifies thelnitiator of its date, equipment, and location
preferences, as well as excluded dat&tendeeand
ImportantAttendeecomponents cannot make requests of
the Meetinglnitiatorcomponent, since they are above it in
the architecture.

Most of this information is implicit in the graphical view of
the architecture shown in Figure 2. For this reason, we

Important]

Important
Attendee-1 ---

Attendee-N

|Attendee—¥. |Attendee—l*l

Important
AttConn

MainConn

Meeting
Initiator

Figure 2. A C2-style architecture for a meeting scheduler
system.

behavior
startup
invoke_methods Start;
always_generate GetPrefSet, GetExclSet,
GetEquipReqts, GetLocPrefs;
cleanup
invoke_methods Finish;
always_generate null ;
received_messages PrefSet;
invoke_methods AddPrefSet, IncNumAttends,
AttendInfoCompl, GetNumAttends, SchedMtg;
may_generate RemoveExclSet xor
RequestWithdrawal xor MarkMtg;
received_messages ExclSet;
invoke_methods AddExclSet, AttendinfoCompl,
GetNumAttends, SchedMtg;
may_generate AddPrefDates xor RemoveExclSet
xor RequestWithdrawal xor MarkMtg;
received_messages EquipReqts;
invoke_methods AddEquipReqts,
AttendInfoCompl, GetNumAttends, SchedMtg;
may_generate AddPrefDates xor RemoveExclSet
xor RequestWithdrawal xor MarkMtg;
received_messages LocPref;
invoke_methods AddLocPref;
always_generate null ;
context
bottom_most computational_unit

end Meetinglnitiator;

The Attendeeand ImportantAttendeeomponents receive
meeting scheduling requests from bhidiator and notify it
of the appropriate information. The two types of

component ImportantAttendee is
subtype Attendee (int and beh)
interface
bottom_domain is

components only communicate with other parts of the out

architecture through their bottom ports.

component Attendee is
interface
top_domain is
out null ;
in null ;
bottom_domain is
out
PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
Witdrawn ();
in
GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
RemoveExclSet ();
RequestWithdrawal ();
AddPrefDates ();
MarkMtg (d : date; | : loc_type);
parameters null ;
methods
procedure Start ();
procedure Finish ();
procedure NoteMtg (d : date; | : loc_type);
function DeterminePrefSet () return date_rng;
function DetermineExclSet () return date_rng;
function AddPrefDates () return date_rng;
function RemoveExclSet () return date_rng;
procedure DetermineEquipReqts (eq : equip_type);
behavior
startup
invoke_methods Start;
always_generate null ;
cleanup
invoke_methods Finish;
always_generate null ;
received_messages GetPrefSet;
invoke_methods DeterminePrefSet;
always_generate PrefSet;
received_messages AddPrefDates;
invoke_methods AddPrefDates;
always_generate PrefSet;
received_messages GetExclSet;
invoke_methods DetermineExclSet;
always_generate ExclSet;
received_messages GetEquipReqts;
invoke_methods DetermineEquipReqts;
always_generate EquipReqts;
received_messages RemoveEXxclSet;
invoke_methods RemoveExclSet;
always_generate ExclSet;
received_messages RequestWithdrawal,
invoke_methods Finish;
always_generate Withdrawn;
received_messages MarkMtg;
invoke_methods NoteMtg;
always_generate null ;
context
top_most computational_unit
end Attendee;

ImportantAttendeeis a specialization of thé\ttendee
component: it duplicates all éfttendets functionality and
adds specification of meeting location preferences.

_ LocPrefs (I : loc_type);
in
GetLocPrefs ();
methods
function DetermineLocPrefs () return loc_type;
behavior
received_messages GetLocPrefs;
invoke_methods DetermineLocPrefs;
always_generate LocPrefs;
end ImportantAttendee;

The MeetingSchedulearchitecture depicted in Figure 2 is
shown below. The architecture is specified with conceptual
components (i.e., component types). Each conceptual
component (e.g.Attendeg can be instantiated multiple
times in asystem

architecture MeetingScheduler is
conceptual_components
top_most
Attendee;
ImportantAttendee;
internal null ;
bottom_most
Meetinglnitiator;
connectors
connector MainConn is
message_filter no_filtering ;
end MainConn;
connector AttConn is
message_filter no_filtering ;
end AttConn;
connector ImportantAttConn is
message_filter no_filtering ;
end ImportantAttConn;
architectural_topology
connector AttConn connections
top_ports
Attendee;
bottom_ports
MainConn;
connector ImportantAttConn connections
top_ports
ImportantAttendee;
bottom_ports
MainConn;
connector MainConn connections
top_ports
AttConn;
ImportantAttConn;
bottom_ports
Meetinglnitiator;
end MeetingScheduler;

An instance of the architecture (a system) is specified by
instantiating the components. For example, an instance of
the meeting scheduler application with three participants
and two important participants is specified as follows.
system MeetingScheduler_1 is
architecture MeetingScheduler with
Attendee instance Att_1, Att_2, Att_3;
ImportantAttendee instance ImpAtt_1, ImpAtt_2;

Meetinglnitiator instance Mtglnit_1;
end MeetingScheduler_1,;

ImportantAttendeeis thus specified as a subtype of
Attendeethat preserves its interface and behavior, but can
implement that behavior in a new manner.

5. MODELING THE C2-STYLE MEETING <<interface>> <<interface>>

SCHEDULER APPLICATION IN UML Mtglnit MtgAttend
The process of designing a C2-style application in UML GetPrefSet (; PrefSet (date_rng);
should be driven and constrained both by the rules of Gamasetseibet 0. B e D) el

and the modeling features available in UML. The two mustRequestWithdrawal (Attendee) Witdrawn ();

be considered simultaneously. For this reason, the initiaftddPrefDates ()

steps in this process are to develop a domain model fora

given application in UML and an informal C2 architectural Z%

diagram, such as the one from Figure 2. Such an <<interface>>
architectural diagram is key to making the appropriate <<interface>> ImportantMigAttend
mappings between classes in the domain and architectural | \MPortantMiginit LocPrefs (loc_type);

components. Furthermore, it points to the need to explicitly GetLocPrefs ();
model connectors in any C2-style architecture. Another
important aspect of C2 architectures is the prominence @figure 4. Meeting scheduler class interfaces.
components’ message interfaces. This is reflected in a

UML design by modeling interfaces explicitly andinertaces, respectively. The only difference is the added

:ggeerfp:(:l‘lemly of the classes that will implement thosg,eration to request and notify of location preferences.

ynchronous message passes, as they would in C2. Since

2 components communicate via implicit invocation, C2

essages do not have return values; this is also reflected in
ure 4.

application consisting of the domain classes, theg
inheritance relationships, and their associations. T
diagram abstracts away many architectural details, such
the mapping of classes in the domain to implementation))

components, the order of interactions among the differeit order to model a C2 architecture in UML, connectors
classes, and so forth. Furthermore, much of the semantfiedst be defined. Although connectors fulfill a role different
of class interaction is missing from the diagram. Fdfom components, they can also be modeled with UML
example, thdnvites association associates titeetings classes. However a C2 connector is by definition generic
with one or moreAttendeesand oneMeetinglnitiator @nd can accommodate any number ant type of C2
However, the association does not make clear the fact te@mponents; informally, the interface of a C2 connector is
the two Meetingsare intended to represent a range ci uUnion of the mterfac_es of its attached components. UML
possible meeting dates, rather than a pair of relat§ges not support this form of genericity, so that the

meetings. connectors specified in UML have to be application-
Each class exports one or more interfaces, shown in

Figure 4. ThelmportantMtginit and ImportantMtgAttend <<interface>>

interfaces inherit from theMtginit and MtgAttend AttConn

GetPrefSet ();
GetExclSet ();
RemoveExclSet ();

Person [< RequestWithdrawal (Attendee);
N Important AddPrefD ;
%4 Attendee refDates ();
[StronglyCoRTICISWIth| Attendee PrefSet (date_rng);
ConflictsWith 0. 0.* ExclSet (date_rng);
T Jo.x Jo.x EquipReqts (equip_type);
T Witdrawn ();

Prefer
0.* [F

<<interface>>
ImportantAttConn

GetLocPrefs ();
LocPrefs (loc_type)

|Locati0n| | Date |

11 |2

Prefers

Excludes 0.4
Proposes 1| Meeting

Invites 2

Meeting
Initiator

[l I N

<<interface>>
MainConn

Figure 3. UML class diagram for the meeting scheduler

application. Details (attributes and methods) of each Figure 5. Application-specific UML classes representing C2
individual class have been suppressed for clarity. connectors.

ImportantAttendee : Attendee H . ImportantAttend

| Mtglnit | 'Tﬁgmﬁm 7:PrefSet(date_rnb 6:PrefSet(date_rn
4\ /T\ 1 5:GetPrefSet() 1 4:GetPrefSet()
MtaAttend Importan | AC:AfiConn | | IAC: ImportantAttConn|
tgAtten | MtgAttend| !
9:PrefSet(date_rn :
AttConn | | ImportantAttConn (- b 8.PrefSet(date_rnb
Tigin Timportant 1 3:GetPrefSet((| 2:GetPrefSet()
Mtginit | MC : MainConn |
11:PrefSet(date_rnp
Importan
MigAttendf MigAttond| | 10:PrefSet(date_rnp>’]1:GetPrefSet()
| MainConn | [ML: Meetinglnitiator |
'Tﬁglrrtﬁ” | Figure 7. Collaboration diagram for the meeting scheduler
application showing a response to a request issued by the
O Meetinginitiator to both Attendees and ImportantAttendees.
| Important
MtgAttend
Meetinglnitiator| request for a set of preferred meeting datd§, an
instance of theMainConn class routes the request to
Figure 6. UML class diagram for the meeting scheduler instances of both connectors abovA&, andIAC, which,
application designed in the C2 architectural style. in turn, route the requests to all components attached on

their top sides; each participant component chooses a
specific. For that purpose, the connectors for the meetiRF ferred date and notifies any components below it of that

scheduler application share the components’ interface: 'Otlecg;totlt]/lelzs\/?artlr?gff(?r?r?gctroﬁ(sesf\lacigsthml:\iﬂe\r/li\rgjtusaelm be
Each connector can be thought of as a simple class A y ’

: . . request to get meeting location preferences
fC%r\r/nvggdnsenet: ChTrrPe?ZfS;%? I\tvhri(laec e';/ﬁ eS tc(;)org;)%nzwt)mgg etLocPrefs in the ImportantMtginit interface in
interface specifications, shown in Figure 4, correspond Jgure 4]':),rl\1/IC.wouId havi routed therln only tAIC ?\nd
the different C2 components’ outgoing messages (i.e., thaghe o the instances of tidtendeeclass would have
provided functionality), the connector interfaces are routepgce'veOI that request.
of both the incoming and outgoing messages, as depicted fie above diagrams, and particularly Figure 6, differ from
Figure 5. Connectors do not add any functionality at tre C2 architecture in that they explicitly specify only the
domain model level: we have thus chosen to omit themessages a component receives (via interface attachments
from the class diagram in Figure 3. to a component rectangle). UML also allows specification
gl]‘ messages a component sends; we believe those

A refined class diagram for the meeting schedul messages to be obvious from the diagram and have thus
application is shown in Figure 6. ThAttendee and chosengto omit them to simplify the diagrams
ImportantAttendee classes are related by interface P 9 '

inheritance, which is depicted in Figure 4, but is onl

implicit in Figure 6 (and altogether omitted from Figure 3 % DISCUSSION
We have omitted from Figure 6 thecation Meeting and The exercise of modeling a C2-style architecture in UML
Date classes shown in Figure 3, since they have not bebas been fairly successful. Part of the success can be
impacted. We have also omitted the two superclasses &iributed to the fact that many architectural concepts are
the components and connectorBeréon and Conn found in UML (e.g., interfaces, component associations,
respectively). behavioral modeling, and so forth). On the other hand, the
odeling capabilities provided by UML do not always
lly satisfy the needs of architectural description. We

Note that the class diagram in Figure 6 is similar in if‘
iscuss several major similarities and differences in this

structure to the C2 architecture depicted in Figure 2. T
only difference is that the diagram in Figure 2 depicts ™~
instances of the different components and connecto?‘?,cuon'
while a UML class diagram depicts classes and theg1. Software Modeling Philosophies
associations. UML provides several types of diagrams t
depict class instances (objects). One candidate is UM
object diagrams; however, we choose to depict
collaboration diagram to further draw the contrast betwe o~ Lo

read of control. C2 limits communication to

UML and C2. !)
i)) asynchronous message passing and UML supports this
Figure 7 shows the collaboration between an instance raktriction. Both C2 and UML include specifications of

the MeetingInitiator class MI) and any instances of messages that may be sent and received.
Attendee and ImportantAttendeeclasses:MI issues a

t. . .

Neither C2 nor UML constrain the choice of

implementation language or require that any two
mponents be implemented in the same language or

Although we did not model details of the internal parts of We believe this to be a key issue and one that argues against
C2 component or the behavior of any C2 constructonsidering a notation like UML to be a “mainstream”
(components, connectors, communication ports, and ADL: a given language (e.g., UML) offers a set of
forth) in our UML specification, we believe that many ofbstractions that an architect uses as design tools; if certain
those aspects could be modeled with UML's sequenca)stractions (e.g., components and connectors) are buried
collaboration, statechart, and activity diagrams. Existing others (e.g., classes), the architect’s job is made more
ADLSs, includingC2sADEL, are often not able to support all(and unnecessarily) difficult; separating components from
of these kinds of semantic models [14]. connectors, raising them both to visibility as top-level

: abstractions, and endowing them with certain features and
6.2. Assumptions limitations also raises them in the consciousness of the
Like any notation, UML embodies its developersdesigner.

assumptions about its intended usage. “Architecting” .

system was not an intended use of UML. While one cei%s' Architectural Styles

indeed focus on the different perspectives when modelinghschitecture is the appropriate level of abstraction at which
system (discussed above), a software architect may findes of a compositional style (i.e., an architectural style)
that the support for those perspectives found in UML onlgan be exploited and should be elaborated. Doing so results
partially satisfies his/her needs. in a set of heuristics that, if followed, will guarantee a

For example, in modeling the collaboration among CESulting system certain desirable properties.

components shown in Figure 7, we were forced to assigrstandard UML provides no support for architectural styles.
relative ordering to messages in the architecture. In effe€he rules of different styles have to be built into UML by
since all C2 components and connectors can executeconstraining its meta-model, as we have done previously
their own thread(s) of control, such an ordering cann{24]. Therefore, in choosing to use UML “as is”, we have
always be determined. Indeed, it is possible that messagesshoved one shortcoming of our previous approach, only
would be sent before message 3. to introduce another. In particular, every C2 architecture
. . designed in the manner we described in this paper adheres
6.3. Problem Domain Modeling to the UML meta-model and, as such, can be understood by
UML supports modeling a problem domain, as we hawe typical UML user and manipulated with standardized
briefly shown in this paper. A C2 architectural modelJML tools. On the other hand, the process of modeling a
however, often hides some of the information present inG2 architecture in UML is heuristic- rather than constraint-
domain model. For example, meeting, equipment, amftiven. Therefore, there is no guarantee that the designer
location information is present in Figure 3, but is missingill always adhere to the rules of C2. For this reason, it
from the C2 architecture specified in Section4 and iteay also be more difficult to provide support for automated
corresponding UML diagram in Figure 6. Modeling all theranslation of “C2-style” UML designs into2SADEL for
relevant information early in the development lifecycle i€2-specific manipulations.

crucial to the success of a software project. Therefore, a

domain model should be considered a separate and us@fiuUCONCLUSIONS

architectural perspective [13, 30]. We found this initial attempt at modeling a C2-style

6.4. Architectural Abstractions architecture in UML useful. It highlighted those UML

. characteristics that show potential for aiding architectural
Some concepts of C2, and software architectures ﬁ%deling but also pointed out some of UMLs

general, are very qifferent from those of UML and.ObjeC's'hortcomings in this regard. This experience can also serve
oriented design in general. Connectors are f|rst-cla§§ a solid basis for further study, both with other C2

entities in C2. While the functionality of a connector cal : ; ;

X chitectures, as well as with other ADLs (e.g., Wright [2])
typically be abstracted by a class/component [9, 10], : I
connectors have the added property that their interfaces aréj architectural styles (e.g., client-server).

context reﬂective_ Th|s property iS designed iDﬁSADEL Before we cCcan dl’aW deﬁnitive COﬂC|USi0nS about the
and C2's implementation infrastructure [16] for allrelative merits of this approach and the approach described
connectors, whereas the approach described in this palfefour previous work [24], further research into the

requires specialized modeling of application-specifiechniques described in the two papers is needed. One
connector classes in UML. necessary step to integrate UML with other ADLs

. . discussed in [24]: Wright [2], Darwin [10], and Rapide [9].
The underlying problem is even deeper. Although UMlg, oy, of these ADLs has certain aspects in common with

may provide modeling power equivalent to or surpassi ML: these were expressed with UML's extension
echanisms. We intend to investigate whether they can

that of an ADL, the abstractions it provides may not mat

an archlftect,s mental mod_el of the system as faithfully 3350 be expressed in UML without extensions.
the architect's ADL of choice. If the primary purpose of a . o)
language is to provide a vehicle of expression that matcHeyr experience to date indicates that adapting UML to
the intuitions and practices of users, then that languag@dress architectural concerns requires reasonable effort,
should aspire to reflect those intentions and practices [2Bfs the potential to be a useful complement to ADLs and

their analysis tools, and may be a practical step toward P. B. Kruchten. The 4+1 view model of architecture.
mainstream architectural modeling. Using UML has the
benefits of leveraging mainstream tools, skills, angd A yan | amsweerde, R. Darimont and P. Massonet. The
processes. It may also aid in the comparison of ADLs '
because it forces some implicit assumptions to be explicitly
stated in common terms.

8. ACKNOWLEDGEMENTS 9.
We wish to thank J. Robbins and D. Redmiles for their

insights

into the issues in integrating UML with

architectures and their collaboration on other aspects of tA
work.

Effort sponsored by the Defense Advanced Research
Projects Agency, and Air Force Research Laboratory, Air

Force Materiel

Command, USAF, under agreement

number F30602-97-2-0021 and by the Air Force Office L
Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-98-1-0061. This material is
also partially based on work supported by the National
Science Foundation under Grant No. CCR-9701973. The.
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessatily

representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory, Air Force

Office of Scientific Research or the U.S. Government.

14.

9. REFERENCES

1.

G. Abowd, R. Allen, and D. Garlan. Formalizing

style to understand descriptions of software archi-
tecture.ACM Transactions on Software Engineer-

ing and Methodolog pp. 319-364, October 1995.

R. Allen and D. Garlan. A Formal Basis for Architec-
tural ConnectionACM Transactions on Software Engi-15.
neering and Methodologpp. 213-249, July 1997.

D. Garlan, editoProceedings of the First International
Workshop on Architectures for Software Syst&eat-
tle, WA, April 1995.

D. Garlan, R. Allen, and J. Ockerbloom. Eproitingl
Style in Architectural Design Environments. Rro- 6.
ceedings of SIGSOFT'94: Foundations of Software
Engineering pp. 175-188, New Orleans, Louisiana,
USA, December 1994.

D. Garlan, F. N. Paulisch, and W. F. Tichy, editors.
Summary of the Dagstuhl Workshop on Software
Architecture, February 1995. ReprintedAGM Soft-
ware Engineering Notepp. 63-83, July 1995. 17.

D. Garlan and M. Shavin introduction to software
architecture: Advances in software engineering anﬁi_
knowledge engineeringvolume 1. World Scientific 8.
Publishing, 1993.

IEEE Softwarepp. 42-50, November 1995.

Meeting Scheduler System: Preliminary Definition.
University of Louvain, Unité d'informatique, B-1348
Louvain-la-Neuve (Belgium), October 1992.

D. C. Luckham and J. Vera. An event-based architec-
ture definition languagdEEE Transactions on Soft-
ware Engineeringpp. 717-734, September 1995.

J. Magee and J. Kramer. Dynamic structures in software
architecture. InProceedings of ACM SIGSOFT'96:
Fourth Symposium on the Foundations of Software
Engineering (FSE4)pp. 3-14, San Francisco, CA,
October 1996.

N. Medvidovic. ADLs and Dynamic Architecture
Changes. In A. L. Wolf, edRroceedings of the Second
International Software Architecture Workshop (ISAW-
2), pp. 24-27, San Francisco, CA, October 1996.

N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr.
Formal Modeling of Software Architectures at Multiple
Levels of Abstraction. liProceedings of the California
Software Symposium 1996p. 28-40, Los Angeles,
CA, April 1996.

N. Medvidovic and D. S. Rosenblum. Domains of Con-
cern in Software Architectures and Architecture
Description Languages. Proceedings of the USENIX
Conference on Domain Specific Languaggs 199-
212, Santa Barbara, CA, October. 1997.

N. Medvidovic and R. N. Taylor. A Framework for
Classifying and Comparing Architecture Descrip-
tion Languages. IfProceedings of the Sixth Euro-
pean Software Engineering Conference together
with Fifth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineeringp. 60-76, Zurich,
Switzerland, September 22-25, 1997.

N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Tay-
lor. Using object-oriented typing to support architec-
tural design in the C2 style. Proceedings of ACM
SIGSOFT'96: Fourth Symposium on the Founda-
tions of Software Engineering (FSE4)p. 24-32,
San Francisco, CA, October 1996.

N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of
Off-the-Shelf Components in C2-Style Architectures.
In Proceedings of the 1997 Symposium on Software
Reusability (SSR'97)pages 190-198, Boston, MA,
May 1997. Also inProceedings of the 1997 Interna-
tional Conference on Software Engineering (ICSE’'97)
pages 692-700, Boston, MA, May 1997.

M. Moriconi, X. Qian, and R. A. Riemenschneider.
Correct Architecture RefinemerlEEE Transactions
on Software Engineeringp. 356-372, April 1995.

Object Management Group. Object analysis and design
RFP-1. Object Management Group document ad/96-
05-01. June 1996. Available from http://iwww.omg.org/
docs/ad/96-05-01.pdf.

19

20.

21.

22

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

. D. E. Perry and A. L. Wolf. Foundations for the Study of
Software ArchitecturesACM SIGSOFT Software Engi-
neering Notespp. 40-52, October 1992.

Rational Partners (Rational, IBM, HP, Unisys, MCI,
Microsoft, ObjecTime, Oracle, i-Logix, etc.). Proposal to
the OMG in response to OA&D RFP-1. Object Manage-
ment Group document ad/97-07-03. July 1997. Available
from http://ww.omg.org/docs/ad/.

Rational Partners. UML Semantics. Object Management
Group document ad/97-08-04. Sept. 1997. Available from
http://mww.omg.org/docs/ad/97-08-04.pdf.

Rational Partners. UML Notation Guide. Object Manage-
ment Group document ad/97-08-05. Sept. 1997. Available
from http://mww.omg.org/docs/ad/97-08-05.pdf.

Rational Software Corporation and IBM. Object constraint
language specification. Object Management Group docu-
ment ad/97-08-08. Sept. 1997. Available from http://

www.omg.org/docs/ad/.

J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum. Integrating Architecture Description Lan-
guages with a Standard Design MethodPtoceedings of
the 20th International Conference on Software Engineering
(ICSE'98) pp. 209-218, Kyoto, Japan, April 19-25, 1998.

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young,
and G. Zelesnik. Abstractions for Software Architecture and
Tools to Support ThemEEE Transactions on Software
Engineering pp. 314-335, April 1995.

M. Shaw and D. Garlan. Formulations and Formalisms in
Software Architecture. Jan van Leeuwen, ed@amputer
Science Today: Recent Trends and Developngmtmger-
Verlag Lecture Notes in Computer Science, Volume 1000,
1995.

M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C.

Scott, M. Schumacher. Candidate Model Problems in Soft-
ware Architecture. Unpublished manuscript, November
1995. Available from http://www.cs.cmu.edu/afs/cs/project/

compose/www/html/ModProb/.

D. Soni, R. Nord, and C. Hofmeister. Software Architecture
in Industrial Applications. In Proceedings of the 17th Inter-

national Conference on Software Engineering, pp. 196-207,
Seattle, WA, April 1995.

R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. White-
head, Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D. L.
Dubrow. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Transactions on Software
Engineering, pp. 390-406, June 1996.

W. Tracz. DSSA (Domain-Specific Software Architecture)
Pedagogical Exampl&CM SIGSOFT Software Engineer-
ing NotesJuly 1995.

S. Vestal. MetaH Programmer’s Manual, Version 1.09.
Technical Report, Honeywell Technology Center, April
1996.

A. L. Wolf, editor.Proceedings of the Second International
Software Architecture Workshop (ISAW-8an Francisco,
CA, October 1996.

