
The two dimensions of an

architecture

Tommi Mikkonen

Software Systems Laboratory
Tampere University of Technology
P. O. Box 553, FIN-33101 Tampere, Finland
Tel. + 358 3 365 3815, Fax + 358 3 365 2913
Email tjm@cs.tut.�

Abstract

A two-dimensional view on software architectures is introduced. One of the di-
mensions is the implementation-oriented view based on component structure,
and the other is de�ned by abstractions and logic of collaboration. We argue
that unless the view based on collaboration is rigorously taken into account
in early phases of the development, architectures will be based on informal
expectations and implementation bias. This bias may then blur the logic of
the speci�cation, whereas an adequate use of abstractions of collaboration
as basis for architecture will eliminate super
uous di�culties in design and
veri�cation.

Keywords

Logical layers, formal methods

1 INTRODUCTION

A current trend in computing, the shift from sequential programs to interac-
tion and distributed cooperation, is tremendously increasing the complexity
of software systems (Wegner 1997). The ability to deal with collaboration of
multiple parties, however, has not increased accordingly. For instance, while
the 
avors of modularity suited for implementing conventional systems have
been elegantly discussed in (Parnas 1972), modularity applicable to address-
ing abstract cooperation of potentially distributed parties has received virtu-
ally no attention until recently. Currently, the increasing use of design pat-
terns (Gamma et al. 1995) can be regarded as an attempt to address such
issues.
Conventional components, like processes or objects, and collaborative as-

pects embedded in them can be used to de�ne the two dimensions of an archi-
tecture, addressing the structure and the logic of the system, respectively. This
paper introduces a way to use the logical dimension to derive architectures in



2 The two dimensions of an architecture

a rigorous manner. The origins of the approach are in joint actions (Back et

al. 1989), and in the DisCo method (J�arvinen et al. 1990), which is based on
the Temporal Logic of Actions (Lamport 1994). In this paper, the discussion
is at the level of fundamental ideas and the underlying philosophy only. In
particular, all language issues have been omitted.
The rest of this paper is structured as follows. Section 2 discusses the shift

of concern from components to their cooperation. Section 3 forms the core of
this paper by de�ning a way to compose speci�cations with abstractions of
collaboration as units of modularity. Finally, Section 4 concludes the paper.

2 FROM COMPONENTS TO COOPERATION

This section discusses the two dimensions of an architecture. The discussion
starts with conventional architectural de�nitions, which are typically given in
terms of programming-level components constituting the system. Then, the
emphasis shifts from concepts local to individual components to multiparty
cooperation.

2.1 Elements of a structural architecture

Software systems are artifacts that consist of program units. These units are
often viewed as open systems in the sense that they o�er services to their
environments, and encapsulate some attributes. While this approach has been
adapted to support concurrency, it is essentially based on a sequential model
of execution. Each service can be seen as a procedure that produces a certain
output for a given input, possibly taking into account the current state of the
associated program unit. The available services then form the unit's behavior.
With such elements, the task of an architect is to de�ne a satisfying way to
connect the program units with data and control 
ows.
Such an approach emphasizes the role of interfaces connecting the system

and its environment, as well as the interfaces enabling interparty communi-
cation. After identifying convenient interfaces, the focus is set on internals
of individual architectural units, like processes or objects. These units and
the abstractions embedded in them can then be designed and implemented in
isolation. Furthermore, when integrated, their composition should satisfy the
original requirements.
With this view, there are usually no abstractions that would dependably

extend beyond individual program units. Moreover, the behavior of a com-
plete system is available only in an informal sense until the units have been
formally speci�ed (or implemented) and put together. Therefore, there is no
rigorous de�nition of what to implement until the implementation is com-
pleted. This results in inability to explicitly formalize expectations related
to collaboration in an abstract fashion, despite acknowledging that most of



FROM COMPONENTS TO COOPERATION 3

today's problems call for something that extends across objects and ties them
together (Coplien 1997). Moreover, as the environment need not be imple-
mented, the assumptions related to it may never be formalized.
While novel approaches to architectures, like (Allen et al. 1997), enable rig-

orous reasoning on cooperation of components, an architecture formed with
components is still required until collaboration can be dependably addressed.
Sophisticated approaches, like Corba (Vinoski 1997) and the Time-Triggered
Architecture (Kopetz 1997), place the focus on an implementation structure
provided by the standard architecture, but fail to support abstract speci�ca-
tion of the logic of the application. As reasoning about collaboration is hard
with implementation-level concepts (Kurki-Suonio et al. 1998a), properties ex-
tending across objects should be taken into account rigorously at an abstract
level.

2.2 Towards an architecture based on collaboration

Decomposition into implementable modules is not essential for rigorous rea-
soning (Lamport 1997). By shifting the focus from components to their col-
laboration, a system can be viewed to consist of logical layers that introduce
temporal properties of a system in a modular fashion. Such properties can
be safety or liveness properties, formalizing statements of the form \Some-
thing bad will never happen" and \Something good will eventually happen,"
respectively.
With such an approach, each logical layer can be interpreted as a descrip-

tion of a closed system that can be observed but not a�ected from outside.
Unlike open systems, closed systems require no external control or data 
ows.
Instead, such systems are self-contained, i.e., they are capable of performing
operations, and their environment assumptions are explicitly included in the
associated speci�cation in an operational fashion. This interpretation enables
us to de�ne a layer, possibly involving distributed parties, and observe its
properties in isolation. Composition of such layers then provides a way to
de�ne how the layers interfere, resulting in an architecture based on collabo-
ration rather than static component structure.
Related approaches include program slicing (Weiser 1982) and projections

used in program veri�cation (Lam et al. 1984). Unlike in these approaches,
however, we compose new speci�cations with layers, not decompose existing
systems with them. A somewhat restricted form of similar layering can also
be seen in the constraint-oriented speci�cation style, proposed in connection
with LOTOS (Bolognesi et al. 1987).



4 The two dimensions of an architecture

3 DERIVING AN ARCHITECTURE WITH LAYERS

This section discusses the derivation of an architecture with logical layers.
The emphasis is on the mechanisms and abstractions that support layer-based
speci�cation of potentially distributed aspects. Towards the end of the section,
the emphasis shifts to necessary implementation decisions.

3.1 Abstractions of behavior

Software speci�cation requires abstractions. In order to support an abstract
view on temporal behaviors, we introduce the notion of an action as a primitive
operation whose execution is atomic. Thus, an action is a \step" relation
between two sets of values of state variables. When an action can be executed,
it is enabled.
Individual state variables are gathered to objects. Collaboration of the ob-

jects is then de�ned by giving actions that a�ect variables in them. Actions
are de�ned in a manner where objects can take di�erent roles in executions.
During an execution of an action, objects taking the associated roles can be
accessed freely, disregarding issues related to direct implementability.
In the execution model, actions are executed in an interleaving fashion. The

action to be executed next is nondeterministically chosen from those that are
enabled for some combination of participating objects. Similarly, if there are
several sets of objects for which an action can be executed, one of them is se-
lected in a nondeterministic fashion. This nondeterminism enables postponing
of design decisions with respect to control and data 
ows at abstract level.
With this de�nition, actions specify safety properties only. In order to incor-

porate liveness properties in speci�cations, fairness requirements are allowed
to be given with respect to roles de�ned for objects in actions. Such require-
ments ensure that if an action is repeatedly enabled so that an object can
take a role with fairness requirements, the action will eventually be executed
for the object.

3.2 Composition and re�nement

Speci�cations can be made more precise by re�ning them. We restrict our-
selves to re�nements that apply superposition. Such re�nements can only in-
troduce new variables, not remove existing ones. With superposition, safety
properties are preserved by construction (J�arvinen et al. 1990). Preservation
of liveness properties requires additional proofs.
Every re�nement adds a new logical layer to the speci�cation. When lay-

ers are conjoined, the resulting speci�cation is a re�nement of all of them,
ensuring the satisfaction of component layers. Therefore, independent issues



DERIVING AN ARCHITECTURE WITH LAYERS 5

can be speci�ed separately, and later incorporated in the same speci�cation
without risking (safety) properties. This results in straightforward aspect-
oriented speci�cation, where unrelated issues can be separated in the speci�-
cation phase even if their implementations reside in the same program unit,
as demonstrated in (Kurki-Suonio et al. 1998).
Although all re�nements are layers, their conceptual meanings may vary.

For instance, a layer can introduce a new aspect, or de�ne how an existing
aspect is implemented with lower-level mechanisms. The uniform view also
supports rigorous reasoning, as all proofs can be carried out in a similar fash-
ion.

3.3 Utilizing abstractions

When discussing multi-party cooperation, component-based approaches lead
to laborious formalizations, where the focus is set on the implementation-level
communication of individual program units (Kurki-Suonio et al. 1998a). With
logical layers, we have adopted a viewpoint where the development is initiated
with high-level conceptual abstractions (Kellom�aki et al. 1998).
In order to create valid abstractions, they need to be explicitly incorpo-

rated in the speci�cation, with an enforcement policy to ensure that they will
not be accidentally invalidated. As long as abstractions are solely based on
program units, this enforcement is easy and natural to comprehend. How-
ever, the same requirement to enforce abstractions remains valid for abstrac-
tions of collaboration. Therefore, an e�ort is needed to ensure the validity of
existing abstractions when re�ning the speci�cation into an implementable
form (Kurki-Suonio et al. 1998b).
Logical layers support validation of collaboration at an abstract level. Be-

cause abstractions need not be directly implementable, rigorous reasoning and
early validation of the underlying domain model can be considerably simpli-
�ed by omitting unnecessary implementation details. Moreover, when re�ning
the speci�cation into an implementable form, there is a rigorous de�nition of
correctness given at an abstract level.

3.4 Re�nement towards an implementation

With logical layers, application logic can be separated from implementation
details. While design decisions on convenient implementation components still
need to be made, a layer-based speci�cation supports the decisions by provid-
ing a formal model on the intended behavior of the system. The design can
thus be based on a rigorous speci�cation instead of informal expectations and
premature implementation bias.
When top-level abstractions of collaboration have been found satisfying,



6 The two dimensions of an architecture

the e�ort shifts to the derivation of an implementation of abstract collab-
oration with the available lower-level concepts of cooperation. During this
derivation, the focus is on veri�cation of the validity of abstractions. Due to
this veri�cation, we can dependably re�ne a logical architecture, which de-
�nes collaboration at an abstract level, into a form that is implementable
with available communication mechanisms (Kurki-Suonio et al. 1998b). Con-
ventional approaches use similar ideas for mapping �le abstraction to its hard-
ware implementation, for instance. We, however, use layers to de�ne abstract
collaboration and its correct implementation.
In practice, when more concrete variables are used to implement their ab-

stract counterparts, it is necessary to give invariants that de�ne the relation of
abstract and implementation-level variables. Such invariants turn the abstract
variables into non-primitive state functions whose explicit incorporation into
an implementation is not necessary. Re�nement towards an implementation
will result in a situation where the speci�cation more and more anticipates the
�nal structural architecture, with rigorous enforcement that the abstractions
will be satis�ed.
When the design has progressed to a level where all structural compo-

nents and their behavior can be identi�ed, an implementation can be made
in a conventional manner. Obviously, an ideal case would be an automatic
code generator, implementing speci�cations with some feasible implementa-
tion mechanisms. This, however, seems to be unrealistic in the general case,
due to potential variety of desired implementation mechanisms.

4 CONCLUSIONS

Abstract collaboration and its implementation with available communication
primitives were discussed in the context of logical layers. Such a dimension
of an architecture, orthogonal to traditional component-based architectures,
supports design and veri�cation by enabling separation of application logic
and its structural implementation. The validity of abstractions used to con-
stitute the architecture is enforced by embedding a discipline in the associated
speci�cation method, thus facilitating the de�nition of collaboration of poten-
tially distributed parties at an abstract level.

REFERENCES

Allen, R., Garlan, D. (1997). A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology 6, 3, July 1997,
213{249.

Back, R.J.R., Kurki-Suonio, R. (1989). Decentralization of process nets with
a centralized control. Distributed Computing 3, May 1989, 73{87.



CONCLUSIONS 7

Bolognesi, T., Brinksma, E. (1987). Introduction to the ISO speci�cation lan-
guage LOTOS. Computer Networks and ISDN Systems, 14:25{59.

Coplien, J.O. (1997). Idioms and patterns as architectural literature. IEEE
Software, January 1997, 36{42.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns

- Elements of Reusable Object-Oriented Software, Addison-Wesley.
J�arvinen, H.-M., Kurki-Suonio, R., Sakkinen, M., and Syst�a, K. (1990).

Object-oriented speci�cation of reactive systems. In Proceedings of the

12th International Conference on Software Engineering, IEEE Com-
puter Society Press, 63{71.

Kellom�aki, P. and Mikkonen, T. (1998). Modeling distributed state as an ab-
stract object. Accepted to International IFIP Workshop on Distributed
and Parallel Embedded Systems, to be published.

Kopetz, H. (1997). Real-Time Systems. Design Principles for Distributed Em-

bedded Applications, Kluwer.
Kurki-Suonio, R., Katara, M. (1998). Real time in a TLA-based theory of reac-

tive systems. In Proceedings of the First International Symposium on

Object-Oriented Real-Time Distributed Computing, IEEE Computer
Society, 186{195.

Kurki-Suonio, R., Mikkonen, T. (1998a). Liberating object-oriented model-
ing from programming-level abstractions. Object-Oriented Technology:

ECOOP'97 Workshop Reader, (ed. J. Bosch, S. Mitchell), Springer-
Verlag LNCS 1357, 195{199.

Kurki-Suonio, R., Mikkonen, T. (1998b). Abstractions of distributed cooper-
ation, their re�nement and implementation. In Proceedings of Interna-

tional Symposium on Software Engineering for Parallel and Distributed

Systems, (ed. B. Kr�amer, N. Uchihira, P. Croll, S. Russo), IEEE Com-
puter Society, 94{102.

Lam, S.S., Shankar, A.U. (1984). Protocol veri�cation via projections. IEEE
Transactions on Software Engineering, SE-10(4), July 1984, 325{342.

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on

Programming Languages and Systems 16, 3, May 1994, 872{923.
Lamport, L. (1997). Composition: a way to make proofs harder. Digital Re-

search Corporation, Technical Note 1997-030a.
Parnas, D.L. (1972). On the criteria to be used in decomposing systems into

modules. Comm. ACM, 15(12), December 1972, 1053{1058.
Vinoski, S. (1997). CORBA: Integrating diverse applications within dis-

tributed heterogenous environments. IEEE Communications, 14(2),
February 1997, 80{91.

Wegner, P. (1997). Why interaction is more powerful than algorithms.
Comm. ACM, 40(5), May 1997, 80{91.

Weiser, M. (1982). Programmers use slices when debugging. Comm. ACM,
25(7), July 1982, 446{452.



8 The two dimensions of an architecture

5 BIOGRAPHY

Tommi Mikkonen teaches and does research in Software Systems Labora-
tory at Tampere University of Technology. After receiving M.Sc. (1992) and
Lic. Tech. (1995) degrees, he took a brief glimpse on dependable computing by
working for space industry, and has recently rejoined the university. Currently,
he is �nishing his doctoral thesis on abstractions and modularity applicable
to the speci�cation of interaction.


