
A Process View on Architecture-Based
Software Development

Lothar Baum, Martin Becker, Lars Geyer, Georg Molter
System Software Research Group
University of Kaiserslautern
D-67653 Kaiserslautern, Germany
Tel.: +49-631-205-{3427, 3578, 3293, 3266}
Fax: +49-631-205-3558 (shared)
{lbaum, mbecker, geyer, molter}@informatik.uni-kl.de

Abstract
Architectural reuse promises the highest benefit when applied in a systematic man-
ner, combined with the reuse of entire suites of artefacts ranging from requirements
templates to pieces of code. In this paper, we present the concept of an architecture-
based development process that is consequently oriented at reuse in all development
stages. The development steps in this process are performed by reusing already ex-
isting artefacts as skeletons. This results in a bottom-up approach to development fo-
cused at completion of existing artefacts instead of constructing new ones from
scratch.

Keywords
software architecture, reuse-centered development process

1 INTRODUCTION

The important role of architecture for the realization of software projects has been
widely accepted by the research community. The architecture of a software system
in this sense can be seen as an abstraction of various relevant properties of the system
(Bass, 1997). It comprises a set of views, among them structural views on different
levels of abstraction, ranging from the system’s overall structure down to object-ori-
ented design. Each of the different architectural views emphasizes specific aspects,
abstracting from details irrelevant for a certain purpose. Moreover, the architecture
of a software system comprises a guideline or rationale for the development of the
system (Perry, 1992), e.g., by identifying the criteria to be applied for the decompo-
sition of the overall functionality into subsystems.

Decisions about a system’s architecture are among the first usually taken during
system development and therefore influence many characteristics of the application
either explicitly or implicitly. For example, the architecture determines to a large de-
gree especially those nonfunctional properties of the application that cannot be at-
tributed to a distinct set of components — e.g., scalability is no property of a single
component, but an architectural property of the system as a whole. In a certain extent,
a system’s architecture also influences the organization of the project in terms of the
development process used or the structure of the development team.

As a consequence, the choice of architecture may decide about success or failure
of a software project, both with respect to the project’s progress and to the final prod-
uct meeting important requirements. This vast influence makes the architecture of a
successful system an important asset for reuse. While reuse at the level of object-ori-
ented classes or at implementation level provides significant leverage in later stages
of software development, architectural reuse affects some of the most crucial and far-
reaching design decisions. By reusing an appropriate architecture, not only develop-
ment effort can be saved and architectural mistakes are possibly avoided, but also
complete architectural information is made available at the very beginning of the
project. This allows for early architectural analysis and prototyping – further impor-
tant steps towards reducing the risks of large software development projects.

To achieve the highest benefit, architectural reuse should be carried out in a
methodical way. The process model presented in the following section is therefore
based upon the systematic deployment of known architectural models and the explic-
it anticipation of reuse activities in all development steps. The consequences for sin-
gle process steps will be pointed out in the subsequent section. We conclude with a
look at our approaches to validating the concept and at our goals for further improve-
ment.

2 A PROCESS MODEL FOR ARCHITECTURE-BASED
SOFTWARE DEVELOPMENT

When carried out in an ad-hoc and unsystematic way, the instantiation of an archi-
tecture reli es only on the expertise of the developers. In most cases, the architecture
to use is only implicitly existent in the minds of the developers. But even in the rare
cases of explicitly stated architectures, important transformation steps from require-
ments on a higher level of abstraction down to problem-solving structures and solu-
tions are left to the developers’ creativity. Not only that important design decisions
become nearly impossible to trace, but the very same architecture is then likely to be
implemented in different, incompatible ways in subsequent applications. Reuse be-
tween projects is thus prohibited because even artefacts serving the same purpose
might be incompatible from an architectural point of view. Such architectural com-
patibility, however, is known to be a prerequisite for successful reuse (Garlan, 1995)
— an observation that even holds for component-based reuse approaches (Baum,
1998).

Explicitly integrating reuse activities into a process model for architecture-based
reuse-driven software development clearly increases the effectiveness, repeatability,
and traceability of reuse. The basic idea of our process model is to replace traditional
refinement and development activities by steps to complete already existing skele-
tons. To achieve this, application development is performed on the basis of a known
architecture that is accompanied by a reusable framework. This framework imple-
ments the domain-specific abstractions identified by the architecture. Besides this, it
contains implementations of the required interaction mechanisms, code for setting up
the described structures, and the necessary system software elements. In order to en-
sure traceability across the development steps, documentation is provided as part of
the reusable architecture which makes explicit the relationships between the ele-
ments of the various views and models. This kind of dependencies can, e.g., take the
form of traceability matrices indicating which artefacts are affected in which way by
changes to specific elements of the architecture.

Our process model strongly emphasizes the bottom-up character of reuse: On each
stage of the development process, specific types of already existing artefacts are to
be integrated in the product under development. These types lay the foundations for
the solution structures for the respective problem.

For this approach to be effective, two important prerequisites have to be met: First,
all reusable assets have to be architecturally compatible in the sense indicated above,
ensuring they can be combined without encountering severe mismatches. Bundling
the architecture in advance with an entire suite of architecturally compatible reusable
artefacts not only ensures this consistency but also considerably narrows the search
space for reusable assets. Second, the design activities at the respective level of ab-
straction have to be guided towards the existing reusable assets. In order to incorpo-
rate them, the solution to a design problem has to be expressed in terms of these
assets. In our approach, this is accomplished by exploiting information contained in

the system’s architecture, e.g. the explicitly indicated relationships between ele-
ments of architectural models at different levels of abstraction. The reused architec-
ture thus serves both as the basis for the reusable assets and as a basis for the
constructed product.

3 IMPLICATIONS ON SINGLE PROCESS STEPS

In this section, we take a closer look at the implications of the architecture-centric
and reuse-driven approach on two specific steps in the development process.

Domain Engineering and Requirements Analysis
The first stage of our process model comprises a project-specific domain engineering
subprocess. Based upon a reused dictionary and models of the application domain,
project-specific abstractions and concepts are defined and are set in relation to each
other and to the more general domain abstractions. This serves as the foundation for
a consistent terminology throughout the entire development process.

For the requirements analysis stage, our approach provides domain-specific
frames and templates for requirements specification using the NRL SCR method
(Heninger, 1980), as well as catalogs listing criteria to be considered. These tech-
niques facil itate the highly creative process of deriving the application’s require-
ments from the problem description: Most important, proven schemata and
structuring approaches for the requirements description are already known and need
not be engineered anew. Besides this, it is possible to achieve a higher degree of
completeness of the requirements statement, and the requirements descriptions of
subsequently realized applications can be structured similarly by applying these
guidelines. Moreover, because the frames and templates were designed to fit into the
notions and models defined in the domain engineering subprocess, it can be ensured
that the requirements description for the specific application is also done using these
terms.

Another technique for exploiting domain-specific knowledge in order to support
the requirements description is based on the concept of design spaces as originally
presented in (Lane, 1990) and extended in (Baum, 1998). Similar to a faceted classi-
fication scheme (Prieto-Diaz, 1987), the design space for a specific application do-
main provides a uniform and semi-formal way for describing and classifying both
requirements to and –functional and nonfunctional– properties of systems in that do-
main. The design space characterization of the application under development is an-
other means to achieve a higher consistency and quality of the requirements
description: By evaluating the consistency constraints stated in the design space,
contradictory statements about the appli cation can be disclosed.

Refinement and implementation
As already stated above, a system’s architecture comprises a set of models represent-
ing various relevant aspects on different levels of abstractions. In our approach, these
models – especiall y those describing structural aspects – are used as a skeleton for
both the products and the development activities in all stages of the development pro-
cess.

Specifically, in each development activity, certain types of reusable artefacts have
to be integrated in the product under development. A broad variety of techniques for
achieving genericity can be deployed for their realization, as described in (Nehmer,
1997), e.g. The solution structures for the respective design problem are built by in-
stantiating these types, which in this respect can be compared to terminal symbols in
a grammar. The structures that can be created using these artefacts are defined by ap-
propriate rules and constraints. Additionally, the semantics of these solution struc-
tures and the interconnection protocols are made explicit. In this context, design
spaces can be deployed favorably, on the one side describing constraints that have to
be met, on the other side providing hints in the form of design rules. In addition to
the reusable artefacts themselves and the rules and constraints defining the solution
structures, a set of guidelines is given that provide hints on how to solve the respec-
tive design problem, i.e. how to map the domain models to these structures.

As an example, consider the high level structural decomposition of the system. It
identifies from the application domain’s point of view the most important abstrac-
tions and structures in the system. The reused architecture describes an incomplete,
generic high-level structure for systems from this application domain that has to be
refined and completed during development of a specific system: it identifies the prin-
cipal elements, it describes the interconnection and interaction structures that can be
built up, and it describes how to map the appli cation’s specific concepts and constit-
uents to these solution structures.

4 VALIDATION AND FURTHER WORK

Of course, our approach is also affected by some general caveats of reuse. First, a
certain amount of systems has to be expected to be built based on the same set of re-
usable artefacts to make the development of these reusable artefacts economically
sensible. This is particularly true since developing an artefact to be reusable neces-
sarily implies a certain overhead (Brooks, 1995). Thus, especially product line envi-
ronments (Bass, 1996),(Dikel, 1997) can benefit from our architecture-based reuse-
driven approach. Second, there is some effort required to grasp the underlying ideas
and contextual impli cations of reusable artefacts, which is indispensable to avoid
mistakes resulting from wrong deployment. At this point, we intend to provide tools
extending on the concept of Interactive Libraries (Molter, 1996) in order to explicitly
il lustrate the consequences and trade-offs involved. Third, the right balance between
suff icient flexibility of the framework with its reusable assets and suff iciently

tail ored support these assets provide has to be found — compromises at both ends
wil l have to be accepted.

In order to practically evaluate these trade-offs and to assess the potential of the
described process for eff iciently developing applications, we are currently conduct-
ing a feasibility study. To this end, we have developed a reusable architecture and
the accompanying framework for appli cations from the building automation domain.
The architecture is primaril y oriented at room climate control systems, i.e., applica-
tions controlling room temperature, humidity, and air circulation. In a second set of
experiments, we will try to obtain quantitative results about the effects caused by the
development process in order to gain greater insight about the benefits and draw-
backs inherent to our approach.

Besides this experimental validation, it is our goal to investigate further techniques
for capturing the flexibility and the generic potential of reusable artefacts, e.g. of ar-
chitectures and their descriptions, as well as of frameworks or components. This is
especially important in the context of product line settings. Furthermore, we intend
to broaden the focus of our research activities to encompass organizational topics and
software life cycle stages beyond the initial delivery of the product.

5 REFERENCES

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Addison-Wes-
ley, 1997

Bass, L., Cohen, L., Northrop, L.: Product Line Architectures, Int'l Workshop on De-
velopment and Evolution of Software Architectures for Product Famil ies, Avila,
Spain, 1996

Baum, L., Becker, M., Geyer, L., Molter, G., Sturm, P.: Driving the Composition of
Runtime Platforms by Architectural Knowledge, Eighth ACM SIGOPS Europe-
an Workshop: Support for Composing Distributed Applications, Sintra, Portu-
gal, September 1998

Baum, L., Geyer, L., Molter, G., Rothkugel, S., Sturm, P.: Architecture-Centric Soft-
ware Development Based on Extended Design Spaces, Second Int'l Workshop
on Development and Evolution of Software Architectures for Product Families,
Las Palmas de Gran Canaria, Spain, February 1998

Brooks, F.P.: The Mythical Man-Month, anniversary edition, Addison-Wesley, 1995
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture: A System of Patterns, Wiley, 1996
Dikel, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J.: Applying Software Prod-

uct-Line Architecture, IEEE Computer, Vol. 30, No. 8, August 1997
Gamma, E., Helm. R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Re-

usable Object-Oriented Software, Addison-Wesley, 1995
Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse is So

Hard, IEEE Software, 12(6), pp. 17-26, 1995

Heninger, K. L.: Specifying software requirements for complex systems: New tech-
niques and their application, IEEE Transactions on Software-Engineering, SE-
6(1), pp. 2-13, 1980

Lane, T.G.: Studying Software Architecture Through Design Spaces and Rules,
Technical Report CMU/SEI-90-TR-18, Carnegie Mellon Univ., 1990

Molter, G., Baentsch, M., Baum, L., Rothkugel, S., Sturm, P.: Interactive Libraries-
Automatic Guidance for Using Software Components, SFB 501 Report 12/96,
Kaiserslautern, Germany, 1996

Nehmer, J., Sturm, P., Baentsch, M., Baum, L., Molter, G., Rothkugel, S.: Customi-
zation of system software for large-scale embedded appli cations, Computer
Communications 20(1997), Elsevier, June 1997

Perry, D., Wolf, A.: Foundations for the Study of Software Architecture, ACM SIG-
SOFT Software Engineering Notes Vol. 17 Nr. 4, October 1992

Prieto-Diaz, R.: Classifying Software for Reusabil ity, IEEE Software, January 1987

6 BIOGRAPHIES

Lothar Baum studied computer science at the University of Kaiserslautern and re-
ceived his M.Sc. in 1995. Since then he is working as a member of the system soft-
ware group at the University of Kaiserslautern. His interests and research areas focus
on methods and techniques for building tailor-made operating systems on the basis
of generic components.

Martin Becker received his M.Sc. in computer science in november 1997 from the
University of Kaiserslautern. He is currently working as a member of the system
software group. His interests and research areas include the configuration of generic
systems, generic operating systems design and cryptography.

Lars Geyer received his M.Sc. in computer science at the University of Kaiserslaut-
ern in 1997. Since then he is working as a member of the system software research
group at the University of Kaiserslautern. His research interests are focused on pro-
cesses for the development of customized runtime platforms with generic compo-
nents.

Georg Molter received his M.Sc. degree in computer science in december 1994. He
is currently working as a member of the system software research group at the Uni-
versity of Kaiserslautern. His research interests are focused at support techniques for
integrating operating systems knowledge into the software development process and
at architecture-based approaches to software development in general.

	A Process View on Architecture-Based Software Deve...
	Lothar Baum, Martin Becker, Lars Geyer, Georg Molt...
	Fax: +49-631-205-3558 (shared) {lbaum, mbecker, ge...

	Abstract
	Keywords software architecture, reuse-centered dev...
	1 INTRODUCTION
	2 A PROCESS MODEL FOR ARCHITECTURE-BASED SOFTWARE ...
	3 IMPLICATIONS ON SINGLE PROCESS STEPS
	4 VALIDATION AND FURTHER WORK
	5 REFERENCES
	6 BIOGRAPHIES

