
Automated capture and
retrieval of architectural
rationale

H. Richter, P. Schuchhard, and G.D. Abowd
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
{pascal,hrichter,abowd}@cc.gatech.edu

Abstract
The Software Architecture Analysis Method (SAAM) was developed at the
Software Engineering Institute in the mid-90's and has been effective in helping
industrial projects to uncover a shared understanding of the high-level organization
of large software systems as well as to reveal how that structure is impacted by
suggested changes to system requirements. In the MORALE project at Georgia
Tech, we are further investigating the potential for a process such as SAAM to
capture the architectural rationale of an evolving software project. One of the
features of SAAM is that it is a people-oriented process. Yet this creates
difficulties in keeping track of the very rich discussions on system organization
and change. In this paper, we present the use of ubiquitous computing technology
to augment the conventional SAAM process through automated capture,
integration and access to the architectural discussions and artifacts produced by a
SAAM session.

Keywords
architectural analysis, SAAM, ubiquitous computing, automated capture

1 INTRODUCTION

Software evolution is a costly and time consuming software development activity.
Effective system evolution requires understanding both the way that an existing
system accomplishes its tasks and the mission-oriented rationale for any changes
that feed its evolution. The MORALE project at Georgia Tech addresses the
problem of designing and evolving complex software systems. MORALE
addresses these problems by integrating several different technologies: reverse

engineering to extract and visualize architectural information (Jerding 1995);
requirements analysis to structure and understand an organization's changing
mission-oriented goals (Potts 1994); and finally software architecture impact
analysis to determine how requirements changes affect the high-level organization
of a software system.

This paper focuses on a particular process in support of the latter
technique. Specifically, we make use of the Software Architecture Analysis
Method (SAAM) developed at the Software Engineering Institute in the mid-90's
(Bass 1998, Kazman 1996 and Kazman 1994). SAAM is a scenario-based method
that can help extract how changing requirements will impact an already existing
software system. In this context, we can understand the entire SAAM process as a
design rationale technique that is centered on software architecture.

The SAAM process, summarized in Section 3 below, is a very people-
oriented technique, and as such, has advantages and disadvantages. We are
concerned with the disadvantage that SAAM requires additional time and effort to
produce a coherent written summarization of the results of the analysis. In this
paper we investigate how ubiquitous computing technology might address this
disadvantage.

Overview of Paper
In Section 2 we provide background on design rationale and automated capture
environments. In section 3, we present an initial prototype built to investigate how
automated capture tools can support an architectural rationale technique such as
SAAM. The prototype, called SAAMPad, is a meeting room environment centered
around a large electronic whiteboard. We will demonstrate how this prototype
environment has been shaped to support naturally defining a software architecture
and capturing scenario-based impact analyses during a SAAM session. Finally, we
conclude with our future plans for rationale capture of SAAM.

2 BACKGROUND AND RELATED WORK

We have introduced the SAAM process as a design rationale technique centered on
architecture. In the following section we discuss design rationale in general as
well as specific techniques that help to capture or structure the rationale behind
some artifact. Next, we look at the more general problem of capture of live
experiences as a paradigm for multimedia authoring and retrieval.

2.1 Design Rationale

Design rationale is the explanation behind the design - why the design is the way it
is. Rationale can include assumptions made about the system, the alternatives
considered, and the reasoning behind decisions. Often this rationale is contained
only in the minds of the developers of the system. Yet this undocumented
information could help system evolution by exposing previous decision points,
alternatives, and assumptions that are vital to efficiently changing the software.

Rationale capture, however, can require additional effort to document and organize
information alongside the design.

Traditional approaches to rationale capture have involved two methods
for documenting and structuring design rationale: process-oriented and structure-
oriented (Rittel 1973, Shum 1994). A process-oriented approach focuses on
documenting rationale as it occurs during design meetings, yet can disrupt, and
therefore alter, the actual design activity that it is trying to support. A structure-
oriented approach focuses instead on a post hoc structuring of the rationale to show
the complete design argument but risks losing critical information by waiting until
after the fact to record rationale. A nice balance could be achieved if there was a
way to capture the rationale as it occurs, but without introducing interruptions to
the design process.

Conklin et al. (1991) attempted to allow less disruption to the design
process with a graphical tool, gIBIS, to record the rationale. The WinWin project
(Boehm 1994 and Bose 1995) is looking specifically at recording architectural
rationale. While both gIBIS and WinWin attempt to reduce the overhead in
capturing rationale, they focus on particular elements that must still be formally
documented during the discussions. In this next subsection, we discuss the general
problem of capture that aims to provide a ubiquitous yet unobtrusive service.

2.2 Capture

A general challenge in ubiquitous computing is to provide automated tools to
support the capture, integration and access of this multimedia record (Abowd
1996b). The purpose of this automated support is to have computers do what they
do best, record an event, in order to free humans to do what they do best, attend to,
synthesize, and understand what is happening around them, all with full confidence
that the specific details will be available for later perusal.

At Georgia Tech, we have a lot of experience in building environments
that capture live experiences in order to make them available for later review and
summarization. Most of our experience in this area has been applied to the
education domain, in a project entitled Classroom 2000 (Abowd 1998, Abowd
1998b, and Abowd 1996). In Classroom 2000 the many streams of activity in a
typical lecture ---what is spoken, what is seen, what is written down on a
whiteboard and what is shown on public displays--- are combined to provide a rich
interactive experience that is becoming increasingly more difficult to capture using
traditional pen and paper notes.

The challenge in applying ubiquitous technology to the SAAM process is
to provide an organization of multimedia streams that facilitates access to the
architectural rationale. This requires going beyond simple record and playback
schemes to providing meaning to the various activities and records of a SAAM
session. Since SAAM is a structured process, as explained in the next section, our
task is made simpler.

3 ENHANCING SAAM WITH SAAMPAD

The Software Architectural Analysis Method, or SAAM, is a structured method for
understanding the high-level organization of a software system and determining
the impact of requirements changes on that structure. For a detailed description of
SAAM see Bass (1998), Kazman (1996) and Kazman (1994). During a SAAM
session a great deal of architectural rationale can be discussed. Constraints and
assumptions may be raised while understanding the original architecture.
Evaluators may consider a number of solutions and make tradeoffs. Yet users
trying to take detailed notes of all of this information are not likely to fully
participate in the discussions. Additionally, it is hard to know exactly how
important certain items are during discussion so that they may be documented
more fully. Instead, they only become important at the time they are actually
needed. As such, we propose a new way of automatically capturing the entire
experience of a SAAM session and allowing easy access to the information later.

A typical SAAM session is a live event involving discussions by 3-10
designers, managers and facilitators that is centered around drawings of the
architecture on a public display. By converting the public display to an electronic
whiteboard surface and recording the discussion with digital streaming media
technology, we can automatically capture the SAAM sessions and then provide the
ability to salvage summary information afterwards. By allowing the ubiquitous
computing infrastructure to do what it does best, record and capture activity, we
can free the humans to do what they do best, synthesize and understand activity in
a technical discussion.

Our biggest challenge in providing automated capture support is to
enhance the SAAM process without changing the way the method currently works.
The capture tool we propose must (1) allow the users to concentrate on the SAAM
process and not on the capture, (2) provide summary information of the SAAM
activities, and (3) provide users with meaningful ways to access all of the captured
information.

The approach we used to achieve these goals was to start with a general
capture tool, the central tool in Classroom 2000, and extend it to support SAAM
specific activities. To demonstrate SAAMPad, we performed a SAAM evaluation
of the Key Word In Context System (KWIC) described by Parnas (1972) for the
proposed changes listed in chapter 9.3 of Bass et al. (1998). Examples from this
case study are used throughout the rest of the paper. Next we describe how users
will interact with SAAMPad during the different stages of the SAAM process.

4.1 Using SAAMPad

Participants in the SAAM session gather around an electronic whiteboard in a
room capable of recording audio or video. Figure 1 is a picture taken of someone
using SAAMPad in such an environment. The participants then proceed to follow
the steps outlined in the SAAM method. SAAMPad adjusts its behavior to support

each particular SAAM step. SAAMPad's functionality is described for each of the
SAAM stages below.

1. Describe the existing architecture. The team of evaluators draws the architecture
onto the electronic whiteboard, much as they would draw upon a traditional
whiteboard. We created a simple gesture-based interface that would allow for a
clean box-and-line drawing. An architecture for the KWIC system is shown in
Figure 2. What is important to note here is that all of the activity in generation is
captured. Discussion is recorded and the times associated with various actions on
the whiteboard surface (all activity with the pen) is timestamped to allow us to
later index into the discussion.

2. Develop scenarios. The team must develop task scenarios that illustrate the
kinds of activities the evolved system must support and the kinds of anticipated
change to the system. SAAMPad provides a simple interface to record brief names
associated with scenarios as well as explanatory text. Though this part of the
process is not explicitly captured, it would be a simple and potentially useful task
to record the scenario brainstorming session.

3. Perform scenario evaluations. For each scenario, the analysis team describes
how the architecture would execute the scenario, or what modifications would be
necessary to meet it. Additional gestures are added to the SAAMPad interface from
phase 1 to allow adding, deleting and marking components and connectors. Color
is used to denote the changed status of the components. Designers can also use the
pen to highlight the component that is the focus of attention.

Figure 1. The SAAMPad environment.

4. Summarize the information. The purpose of the previous steps, from
SAAMPad's perspective, is to capture relevant timestamps associated to important
SAAM activities. The timestamped activity is associated to parts of the
architecture, meaning that this information can be used to provide a number of
automatically generated summaries and visualizations of the architecture that will
help designers understand the overall impact of the SAAM session. Designers can
view these visualizations for a quick overview of the impact of the SAAM session,
and also use them to index into the other multimedia streams (e.g., the recorded
audio and video of the session) to find more details. Figure 2 shows an example
visualization of a KWIC scenario evaluation. This visualization is further
explained in the following section.

4.2 Visualization

In order to facilitate the retrieval of architectural rationale, we need to organize the
captured information around meaningful structures of the SAAM process.
Architectural diagrams act as the center of discussion, provide a visual
representation of the system, and indicate the effects that scenarios have. As such,
these diagrams serve as the central focus of the capture and access of the rationale.
We chose to use gesture recognition to detect architectural elements, enabling
SAAMPad to recognize events surrounding the architecture without disrupting the
users' discussion. We then organized the visualization around the architecture and
these events. Additionally, the SAAM process is composed of different phases,

Figure 2. Visualization of a scenario evaluation of the KWIC system.
The timeline on the far left represents the entire SAAM session, while
the other timelines show the activities for two specific components.

namely architecture generation, scenario generation, and scenario evaluation.
SAAMPad supports these different phases with tailored capture and visualizations.

When trying to visualize an entire recorded SAAM evaluation, we want to
show all of these events in a way that would support effective browsing by the
designers. The solution we chose was to represent the entire SAAM evaluation
along a timeline that explicitly delimited the generation phase and the individual
scenario evaluation sessions. In Figure 2, the timeline for the whole KWIC SAAM
evaluation is shown on the extreme left of the screen as a simple image broken into
a number of sections. The top section indicates the generation phase of the SAAM
evaluation. Tapping on that portion of the screen reveals a timeline area for the
generation phase in the adjacent portion of the screen as well as the architectural
diagram in the main portion. This phase-specific timeline can show information
for any of the architectural elements shown. For example, tapping on the
component labeled "Input" in Figure 2 would reveal a timeline of events in the
generation phase that are related to that component, indicating when in the phase
that component was created and when it was the focus of attention of the
discussion. The phase-specific timeline is interactive. Tapping it at various places
will launch an audio or video player at that point in the recorded session

Besides this timeline visualization, we are also exploring ways of visualizing
an entire SAAM session, instead of one phase or evaluation at a time. We have
implemented a version of a 'fisheye' diagram, showing the components and
connectors in the initial diagram with the line width representing the frequency that
they change over all of the scenario evaluations. This gives a quick indication of
which are most affected by the scenarios. Another view we have implemented is a
simple textual table of the architectural components and the scenarios in which
they are created or require change. These visualizations provide compact
summaries of the overall results of the SAAM evaluation.

5 CONCLUSIONS AND FUTURE WORK

SAAM is a people-oriented architectural analysis method for extracting how
changing requirements impact an existing software system. SAAM discussions can
be rich in reasoning about the architecture and the impact of changes. Yet trying to
capture this information places a burden on those performing a SAAM evaluation.
We introduced SAAMPad, a tool for the automated capture and retrieval of
architectural rationale surrounding SAAM. SAAMPad utilizes ubiquitous
computing technology extended with architectural semantics to achieve this goal
while preserving the SAAM process. One potential drawback of this tool is that it
concentrates only on supporting the SAAM process and might be less suited when
developers want to try a new way of evaluating systems. However, by
concentrating on a single method, we were able to provide more meaningful ways
of capturing and accessing the rationale.

SAAMPad has so far only been evaluated on a simple case study of the
KWIC system. We plan to perform additional case studies on larger, real-world
systems. Additionally, we plan to investigate more visualization techniques to
improve the access to the architectural rationale and the automated summaries that

are created. We hope that the additional case studies will help us identify specific
areas of improvement. We would also like to take advantage of recognition
technologies so that the system can better understand the content of information
being captured and facilitate more useful retrieval.

6 ACKNOWLEDGEMENTS

This effort is sponsored by the Defense Advanced Research Projects Agency, and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-96-2-0229. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Air Force Research Laboratory, or the U.S.
Government.

7 REFERENCES

Abowd, G.D., Brotherton, J., and Bhalodia, J. (1998) Automated Capture,
Integration, and Visualization of Multiple Media Streams, in Proceedings of
the 1998 conference on IEEE Multimedia and Computing Systems.

Abowd, G.D., Atkeson, C.G., Brotherton, J., Enqvist, T., Gulley, P., and LeMon, J.
(1998b) Investigating the capture, integration, and access problem of
ubiquitous computing in an educational setting, in Proceedings of the 1998
conference on Human Factors in Computing Systems (CHI'98), 440-7.

Abowd, G.D., Atkeson, C.G., Feinstein, A., Hmelo, C., Kooper, R. Long, S.,
Sawhney, N. and Tan, M. (1996) Teaching and Learning as Multimedia
Authoring: The Classroom 2000 project, in Proceedings of the ACM
Conference on Multimedia (Multimedia'96), 187-98.

Abowd, G.D. (1996b) Ubiquitous Computing: Research Themes and Open Issues
from an Applications Perspective. Technical Report GVU96-24, Georgia
Institute of Technology.

Bass, L., Clements, P., and Kazman, R. (1998) Software Architecture in Practice,
Addison-Wesley.

Boehm, P., Bose, P., Horowitz, E. and Lee, M.J. (1994) Software Requirements
Negotiation and Renegotiation Aids: A Theory-W Based Spiral Approach, in
Proceedings of the International Conference on Software Engineering (ICSE
17).

Bose, P. (1995) A Model for Decision Maintenance in the WinWin Collaboration
Framework. Knowledge Based Software Engineering (KBSE'95).

Conklin, J.E. and Yakemovic, K.C.B. (1991) A Process-Oriented Approach to
Design Rationale. Human-Computer Interaction, 6(3&4), 357-91.

Degen, L., Mander, R. and Salomon, G. (1992) Working with Audio: Integrating
Personal Tape Recorders and Desktop Computers, in Proceedings of 1992
conference on Human Factors in Computing Systems (CHI'92), 413-18.

Garlan, D., Monroe, R.T. and Wile, D. (1997) ACME: An Architecture
Description Interchange Language, in Proceedings of CASCON'97, 169-83.

Jerding, D. and Rugaber, S. (1997) Using Visualization for Architectural
Localization and Extraction, in Proceedings of the Fourth Working
Conference on Reverse Engineering, October.

Kazman, R., Abowd, G., Bass, L., and Clements, P. (1996) Scenario-Based
Analysis of Software Architecture. IEEE Software, 13(6), 47-56.

Kazman, P., Bass, L., Abowd, G. and Webb, S.M. (1994) SAAM: A Method for
Analyzing the Properties of Software Architectures, in Proceedings of the
International Conference on Software Engineering (ICSE 16), 81-90.

Minneman, S. Harrison, S. Janseen, B., Kurtenbach, G., Moran, T., Smith, I. And
van Melle, B. (1995) A Confederation of Tools for Capturing and Accessing
Collaborative Activity, in Proceedings of the ACM Conference on Multimedia
(Multimedia'95).

Moran, T.P., Palen, L., Harrison, S., Chiu, P., Kimber, D., Minneman, S., van
Melle, W., Zelweger, P. (1997) Salvaging Multimedia Meeting Records, in
Proceedings of the 1997 conference on Human Factors in Computing Systems
(CHI'97), 202-9.

Parnas, D.L. (1972) On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12), 1053-58,

Potts, C., Takahashi, K., and Anton, A.I. (1994) Inquiry-Based Requirements
Analysis. IEEE Software, 11(2), 21-32.

Rittel, H. and Webber, M. (1973) Dilemmas in a general theory of planning. Policy
Science, 4, 155-69.

Shum, B.S. and Hammond, N. (1994) Argumentation-Based Design Rationale:
What Use at What Cost? International Journal of Human-Computer Studies
40, 4, 603-52.

Stifelman, L.J. (1996) Augmenting real-world objects: A paper-based audio
notebook, in Proceedings of 1992 conference on Human Factors in Computing
Systems (CHI'92), 199-200.

Weber, K. and Poon, A. (1994) Marquee: A tool for real-time video logging, in
Proceedings of 1994 conference on Human Factors in Computing Systems
(CHI'94), 58-64.

Whittaker, W., Hyland, P. and Wiley, M. (1994) Filochat: Handwritten notes
provide access to recorded conversations, in Proceedings of 1994 conference
on Human Factors in Computing Systems (CHI'94), 271-77.

