
Describing software architectures and architectural styles

M. D. Rice
Computer Science Group
Mathematics Department
Wesleyan University
Middletown, CT 06459 USA
Email:mrice@caucus.cs.wesleyan.edu

S. B. Seidman
Department of Computer Science
Colorado State University
Fort Collins, CO 80523 USA
Email: seidman@cs.colostate.edu

1 INTRODUCTION

Software architectures are abstract models that give syntactic and semantic

information about the components of software systems and the relationships

between those components. Architectural organizing principles for software

systems are called architectural styles. We have developed a language called ASDL

(Rice and Seidman, 1996) for describing and comparing architectures and styles.

An ASDL description of a software architecture or style uses three elements:

templates, settings, and units. Templates represent interfaces of components that

are available for inclusion into an architecture. Settings represent architectures that

have been built by instantiating templates. Units represent system hierarchy: they

can encapsulate settings or represent interfaces designed in a top-down manner.

Each element is associated with a generic Z schema (Spivey, 1989) that represent

structural features common to all styles. Features associated with a particular style

are expressed by assigning values to the generic parameters and adding declarations,

constraints, and operations to the schemas, constraining the configuration of the

elements that make up an architecture. ASDL also includes operations that support

construction of a software architecture within a style.

2. AN OVERVIEW OF ASDL

2.1 Templates and Settings

 The following generic schema describes ASDL templates:

ASDL_Library [Indices, Attributes, Parts]

interfaces : Templates >|→ FF1Ports

port-attr : Ports |→ Indices → Attributes
part : Templates |→ Parts
interp : Templates |→ Interpretations
Collection : FF1Templates

Primitives ⊆ Collection
Collection = dom interfaces = dom interp = dom part
disjoint ran interfaces
dom port-attr = ∪ ran interfaces
{dir, type} ⊆ Indices ∧ {in, out} ⊆ Attributes
∀ p ∈ dom port-attr • port-attr(p).dir ∈ {in, out}

The values of the schema parameters describe a specific style. The templates in

Collection represent interfaces of components that can be included into a software

architecture. The elements of the schema define the ports that constitute a

template’s interfaces. port-attr assigns attribute values that determine the

characteristics of a port, part assigns each template to a style-specific category, and

interp defines a template’s interface semantics as a composition of guarded CSP

processes (Hoare 1985, Rice and Seidman 1996). If a template τ has ports p and q

with direction attributes in and out, then the CSP process

interp(τ) = *(p ? x → q ! f(x) → SKIP)

specifies that the template acts as a filter represented by the function f..

 Primitive templates correspond to interfaces of architecture components that

have been preloaded into the library. Members of Collection \ Primitives are

templates that correspond to interfaces of encapsulated composite architectures.

Members of Templates \ Collection can serve as reference templates that

correspond to interfaces designed in a top-down fashion.

 The schema constraints define the requirements needed for any style. They

require that each template have a nonempty interface, a category assignment,

attribute values, and interface semantics, and that the interfaces of distinct

templates are disjoint. Furthermore, they require that dir and type, which give a

port’s direction and data type, are indices supplied for all styles, and that the only

acceptable attribute values for dir are in and out.

 Settings represent architectures that have been built by instantiating templates as

nodes that represent the architecture’s components. A node has external interfaces

called slots that correspond to (and inherit attributes from) ports on the node’s

underlying template. Slots can be labeled; shared labels are used to represent

relationships among nodes, such as data communication.

 The following generic schema describes ASDL settings:

ASDL_Setting [Indices, Attributes, Parts]
ASDL_Library [Indices, Attributes, Parts]
node-parent : Nodes |→ Templates

 slots : FF(Nodes × Ports)

slot-attr : Nodes × Ports |→ Indices → Attributes
label : Nodes × Ports |→ Labels
comp-expr : ProcessExpressions
semantic-descr : Labels |→ SemanticDescriptions
slots = dom slot-attr
dom label ⊆ slots
dom semantic-descr = ran label
∀ n ∈ dom node-parent •

node-parent(n) ∈ Collection ∧ p ∈ interfaces(node-parent(n))
⇒ (n, p) ∈ dom slot-attr ∧ slot-attr(n, p) = port-attr(p)

The schema components define the syntactic features of the nodes representing the

components of an architecture: the templates from which the nodes were

instantiated, the node slots, and the interfaces’ characteristics and labels. Other

schema components describe the semantics of the architecture. Semantic_descr

assigns semantic abbreviations to labels, and composition_expr specifies how the

nodes in a setting are composed for execution purposes. A composition expression

is a CSP process in which node names are viewed as processes. For example, it

may specify that the nodes in a setting will be executed in parallel.

 The constraints require that the slots representing the interfaces of a node n

consist of the pairs (n, p), where p is a port of the template node-parent(n), that the

slot attributes are inherited from those of the corresponding ports, and that semantic

abbreviations are assigned to all labels.

 Semantic abbreviations correspond to a variety of communication capabilities.

For example, the abbreviation usc represents unidirectional synchronous

communication; its meaning is given by the CSP expression

 [usc] = *(in ? x → out ! x → SKIP).

 The execution semantics of a module can be derived from the semantic

interpretations of the templates underlying the nodes, the composition expression,

and the semantic descriptions of the labels that specify the connections between

nodes.

2.2 Units and Hierarchy

The ASDL_Setting schema represents an architecture as a self-contained

computational unit. The ASDL_Unit schema uses virtual ports to represent an

architecture’s external connections. virtual-port-descr assigns semantics to virtual

ports, and connect describes the links between slots and virtual ports.

ASDL_Unit [Indices, Attributes, Parts]
ASDL_Setting [Indices, Attributes, Parts]
interface-attr : Ports |→ Indices → Attributes
virtual-ports : FFPorts

connect : Nodes × Ports |→ FFPorts

virtual-port-descr : Ports |→ Interpretations
dom connect ⊆ Slots
∪ ran connect ⊆ virtual-ports
dom virtual-port-descr = virtual-ports
virtual-ports = dom interface-attr
∀ p ∈ virtual-ports • { interface-attr(p).dir} = {slot-attr(s).dir : p ∈ connect(s)}

ASDL_Unit requires that the direction of data movement for a virtual port be

consistent with that of any slots to which it is linked. Further restrictions are

style-dependent. For example, type-consistency requirements may be placed on

connect, and virtual-port-descr may specify broadcasting or multiplexing behavior.

Since ASDL operations can be used to add the external interface of a unit into the

library as a template, units provide powerful and flexible support for hierarchical

descriptions of software architectures.

2.3 Operations

ASDL’s generic operations support incremental specification of software

architectures: setting operations to create and delete nodes, assign labels to slots,

specify a composition expression, and select semantic abbreviations, interface

operations to specify virtual ports, attributes, links, and virtual port descriptions,

an encapsulation operation to create a new library template based on a unit, and

operations that define the units needed to support top-down design. Style-specific

operations are constructed by adding new signatures and constraints to generic

operations or by incorporating operations into a new operation.

 For example, the encapsulation operation ASDL_External creates a new

library template from a unit. The virtual ports of the unit become the ports of the

template. The attributes of these ports are derived from the unit’s interface. The

template's interpretation is derived from the unit’s semantic information: template

interpretations, composition expression, label abbreviations, and semantics of the

virtual ports.

 In Rice and Seidman (1994), a family of generic connector templates was used to

describe a top-down design methodology. This is easier in ASDL, since it

provides an operation to incorporate a unit into an existing setting as a pseudonode

based on a reference template. The included unit corresponds to an empty setting

whose internal structure can be constructed later.

3. EXAMPLE: DESCRIBING THE PGM ARCHITECTURAL STYLE

3.1 Overview of PGM

The Processing Graph Method (PGM) is a coarse-grain dataflow software

methodology developed at the US Naval Research Laboratory for signal processing

applications. The nodes of a PGM graph (Kaplan and Stevens, 1995) consist of

PGM transitions that represent computations and data restructuring operations, and

PGM places that represent data transfers. Graph edges may only exist between

nodes of different category. The execution of a transition is triggered by the arrival

of sufficient data at the transition's input ports. The transition then reads data from

these ports, performs the specified computation, and writes data to the transition’s

output ports. Places offer two forms of data transmission between transitions:

queues use a first-in, first-out communication protocol and graph variables provide

rewritable data.

 A PGM graph corresponds to a software architecture, and the constraints

governing the configuration of PGM graphs define a PGM architectural style. A

textual description of these constraints is given in Kaplan and Stevens (1995).

3.2. Describing the PGM style in ASDL

PGM nodes are either transitions that represent computations or data restructuring

operations, or places that represent data transfers. Transitions are ordinary or

special, and there are five special transitions. Places are graph variables or queues.

Each node has ports that transmit data to and from other nodes.

 We first make some assumptions about the generic parameters:

• Indices contains the field category

• Attributes contains transition, place, and graph, and the names of the PGM data

types.

port-attr assigns attribute values to ports. The dir and type attributes indicate the

direction and data type used by a port. The category attribute indicates whether the

template to which the port belongs is a transition, place, or graph.

• Parts = Transitions ∪ Places ∪ {Graph}

• Transitions = { Ordinary({Tα}, φ, Τ), Fanin(T, n), Fanout(T, n),

Pack(T),Unpack(T), U_Merge(T, n)}

• Places = {G_Var(T), Queue(T)}.

 The element Graph of Parts represents a graph that is treated as a single node.

An ordinary transition receives data of type {Tα}, computes the function φ, and

outputs data of type T. Special transitions restructure data of type T (and possibly

of size n). The members of Places store data of type T.

PGM_Library = ASDL_Library [Indices, Attributes, Parts] |

PGM_Library_Constraints.

The first two constraints are

Primitives = part
-1
(Transitions ∪ Places)

∀τ ∈ Primitives, ∀ p ∈ interfaces(τ) • port-attr(p).category = part(τ)

The primitive templates in the library must be either transitions or places, and a

port inherits the value of category from the corresponding template.

 The remaining constraints describe the semantics of place templates. For each

kind of place, constraints describe the interface and its semantics. A PGM graph

variable holds a single rewritable data token. The relevant constraints are

part(τ) = G_Var(T) ⇒ interfaces(τ) = {(INPUT, τ), (OUTPUT, τ)}∧
port-attr(INPUT, τ).dir = in ∧
port-attr(OUTPUT, τ).dir = out ∧
port-attr(INPUT, τ).type = port-attr(OUTPUT, τ).type = T

interp(τ)(R, S) = *(({INPUTr ? data → SKIP : r ∈ R})

({OUTPUTs ! data → SKIP : s ∈ SSSS}))

A graph variable template has one input and one output port, each with type T.

The template’s interface is always ready to receive or supply data. The parameters

RRRR and SSSS represent the channels linked to the input and output ports, respectively.

 The behavior of a PGM queue is more complex. Since the queue’s capacity to

store data tokens is limited, it must check whether sufficient space is available

before receiving data. A queue template therefore has an input port, an output port,

and a port that is used for communicating the queue's capacity. The relevant

constraints are:

part(τ) = Queue(T) ⇒
interfaces(τ) = {(CAPACITY, τ), (INPUT, τ), (OUTPUT, τ)} ∧
port-attr(CAPACITY, τ).dir = port-attr(INPUT, τ).dir = in ∧
port-attr(OUTPUT, τ).dir = out ∧
port-attr(INPUT, τ).type = port-attr(OUTPUT, τ).type = T ∧
port-attr(CAPACITY, τ).type = [0..maxint]

interp(τ)(R, S) =

*(((INPUT ∈ R) &
((INPUT ? read; amt → Input_Data(data, amt))

 (INPUT ? query_space →
INPUTop ! capacity - #data → SKIP)))

((OUTPUT ∈ S) &

((OUTPUTop ? consume; c; o → Consume_Data(data, c, o))

 (OUTPUTop ? write; r; o → Output_Data(data, r, o))

 OUTPUTop ? query_content → OUTPUT !#data → SKIP)))
 ((CAPACITY ∈ R) &

((CAPACITY ? read; amt → CAPACITY ? capacity → SKIP)

 (CAPACITY ? query_space → CAPACITYop ! 1 → SKIP))))

 The second constraint describes a queue template’s response to input on the

INPUT, OUTPUT
op

, or CAPACITY channels. If INPUT ∈ RRRR , the queue is

willing to receive data, and the process continues as described. If INPUT ∉ RRRR , the

queue is not willing to receive data, and the input portion of the queue process is

equivalent to SKIP . The symbols consume, read, write, query_content,

and query_space are tags. If a transition port is connected to OUTPUT, the

transition sends query_content to determine if the queue contains enough data to

permit the execution of the transition. If a transition port is connected to INPUT,

the transition sends query_space to determine if the queue has enough space to

store data resulting from the transition’s execution. If read is received on READ

or CAPACITY, then the corresponding process will read the requisite amount of

data. Similarly, an appropriate process responds to requests received on OUTPUT
op

by consuming data, outputting data, or outputting the number of tokens currently

stored in the queue. Descriptions of these processes are given in (PGM, 1997).

 An ASDL setting describes an architecture within a specific style, and a PGM

setting therefore describes a PGM graph. The PGM-specific version of the

ASDL_Setting schema is obtained by adding new signature elements (indicated

in italics) and constraints. Name stores the name of the graph, link indicates the

pairs of linked PGM ports, exec-status indicates the graph’s execution status, and

state holds the state of its place nodes.

PGM_Setting [Indices, Attributes, Parts]
ASDL_Setting [Indices, Attributes, Parts]
PGM_Library [Indices, Attributes, Parts]
name : Char*
link : FF((Nodes × Ports) × (Nodes × Ports))

exec-status : (run, suspend)
state : Nodes |→ seq T
PGM_Setting_Constraints

The constraints include:

∀ b ∈ ran label • semantic-descr(b) = bsc

(link ⊆ slots × slots) ∧ ((r, s) ∈ link ⇔ label(r) = label(s))

 (r, s) ∈ link ⇒ (slot-attr(r).type = slot-attr(s).type)
∧ (slot-attr(r).dir ≠ slot-attr(s).dir)
∧ (slot-attr(r).category ≠ slot-attr(s).category)

 ({(r, s), (r, t)} ⊆ link) ∧ (s ≠ t) ⇒ slot-attr(r).category = G_Var

The first constraint states that communication between node ports in a setting is

bidirectional and synchronous. The second and third constraints express the rules

that govern edges in PGM graphs: they are modeled by slots that share the same

label and the same data type, but that have opposite direction and category. The

last constraint requires that a slot that is related to more than one slot by link must

be associated with a node instantiated from a graph variable. It follows that a slot

that is associated with a node instantiated from a transition or queue can only be

linked to one other slot.

5. REFERENCES

Hoare, C. A. R. (1985) Communicating Sequential Processes, Prentice-Hall,
Englewood Cliffs, NJ.

Kaplan, D.J. and Stevens, R.S. (1995) Processing graph method 2.0 semantics.
Manuscript, US Naval Research Laboratory.

Draft Processing Graph Method Standard (1998), Naval Research Laboratory.

Rice, M.D. and Seidman, S.B. (1994) A formal model for module interconnection
languages, IEEE Transactions on Software Engineering 20, 88-101.

Rice, M.D. and Seidman, S.B. (1996) Using Z as a substrate for an architectural
style description language, Technical Report CS-96-120, Department of
Computer Science, Colorado State University.

Spivey, J.M. (1989), The Z Notation, A Reference Manual, Prentice-Hall,
Englewood Cliffs, NJ.

