
Synchronized Execution Sequence Based Software Architecture for

Object-Oriented Embedded Systems

Toshiaki Aokiy, Akira Kawaguchiyy, Tomoji Kishiyy, Takuya Katayamay

y Japan Advanced Institute of Science and Technology
yy NEC Corporation

Abstract

According to the increase of size and complexity of em-
bedded software, object-oriented software methodolo-
gies are going to be adopted in this domain. The OO
methodologies so far developed, however, mainly focus
on analysis phase of software development and do not
pay much attention on design phases where the embed-
ded software is di�erent from the usual information sys-
tems. In the embedded systems, hardware restrictions
and time constraints are very severe and we need to
take these factors into consideration in the earlier stage
of the design phase where logical structures extracted in
the analysis phase are transformed into software struc-
ture.

In this paper we propose a software architecture
for building embedded systems using object-oriented
methodologies. This architecture is based on the con-
cept of synchronized sequence of method execution
which is derived from object interaction diagrams found
in most OO-methodologies. This architecture facilitates
to estimate timing requirements of the constructed sys-
tems and was successfully adopted in an industrial set-
ting in prototyping a real product.

1 Introduction

Embedded software put into industrial and consumer
products is becoming bigger and bigger with the ad-
vances of hardware technologies and increase of services
they have to o�er. This makes their developer to switch
their development methods to object-oriented methods
which have been successfully used for large scale infor-
mation systems.

However, development of embedded systems requires
their speci�c properties to be taken into consideration
such as time and hardware constraints. This makes the
straightforward adoption of object-oriented methodolo-
gies diÆcult as these constraints have to be considered

Analyzing in OOSE

Interaction Model

SES-Based Design Model

Software Product structured
by SES-Based Architecture

Transforming manually

Transforming
semi-automatically

Analysis Phase

Design Phase

Implementing

Figure 1: Overview of SES Approach

in design phase rather than implementation phase. To
solve this problem we need a design model which is
suited for the embedded system domain and is able to
represent such non-functional properties, and this model
has to be converted into software architecture which can
be e�ectively realized on available software/hardware
infrastructures.

In this paper we propose a software architecture for em-
bedded software which is called a synchronized execution

sequence based architecture, abbreviated as SES-based

architecture. This architecture represents software as
a collection of sequences of method execution which is
not blocked due to waiting hardware and resource avail-
ability. This architecture will make analysis of timing
requirements easier than other architectures based on
the direct behavior of objects. Also, this architecture
could be directly constructed from object interaction di-
agrams obtained in analysis phase in OO methodologies
such as OOSE[2].

The concept of SES has been successfully adopted in
developing a telephone system at NEC corporation[3].
This paper tries to formalize SES and propose a software

1

architecture base on SES. In Chapter 2, we introduce
SES concept using a small example in the telephone sys-
tem. Chapter 3 introduces SES model and explain how
it is constructed from interaction model developed in the
analysis phase. Chapter 4 de�nes SES-based software
architecture assuming the usual RTOS implementation
infrastructure.

2 Synchronized Execution Se-

quence

We introduce here SES concept using an example which
appeared in the development of a telephone system
at NEC corporation. The system has been developed
adopting OOSE methodology, where USECASE, or ob-
ject interaction diagram plays a central role. Of course,
these models represent logical structures of the target
system and do not involve timing or resource informa-
tion.

Consider an interaction diagram in Figure2, where PLL
and RF are object performing phase lock looping and
radio wave transmission respectively. Though these ob-
jects represent logical entities in the system, we need to
consider, in the design phase, that the time PLL object
returns Finished PLL set event after receiving Requir-

ing PLL set event is very long compared to other op-
erations, as it has to wait for PLL hardware to �nish
its phase locking operation. So, if we divide the op-
eration performed by PLL object into two operations
which are executed before and after the wait operation
respectively, we can organize the entire operations into
two execution sequences which will not be blocked by
waiting PLL hardware to �nish its operation. These
sequences are called Synchronized Execution Sequences

and are executed eÆciently in the usual computational
environment with the help of an coordinator which man-
ages correct invocation of SES.

A prototype telephone system has been developed using
SES concept. Realtime constrains were easy to satisfy
as SES is never blocked and its timing properties are
analyzed without much diÆculty. Though memory re-
quirements were not met when every SES is mapped to
a task in a realtime OS, this was also solved by merging
tasks. The �nal system required 10 percent additional
processing time and memory compared to the one de-
veloped by a conventional method.

3 SES-based Design Model

Logical structures constructed in the analysis phase
have to be transformed into design models considering

RF ObjectProcessing packets
Object

Radio Object

PLL Object

Interaction Model

Domain Object Model

Terminal

Finish creating a packet Requiring to set
PLL

Finished
setting PLLSent Data

Processing packets
Object RF Object Radio Object PLL Object

Decomposed into
two sequences of
processes

Asynchronized
process

Sent Data

Figure 2: Analysis Model of a Telephone System

hardware and resource constraints. Especially, in em-
bedded system development, these constraints are more
strict than the usual information systems and the design
models have to allow to incorporate such constraints di-
rectly. To this end, they should be based on operational
characteristics of available computer hardwares and op-
erating systems. SES is an abstraction of threads which
will run unblocked under the control of some central co-
ordinator which plans their invocation. In this paper
we assume that OOSE like methodology will produces
object interaction models as the result of analysis phase.

3.1 SES

SES is de�ned as a sequence of event communications
and related processes in objects subject to the following
conditions.

Condition 1: Any process in a SES is executed se-
quentially.

Condition 2: Any process in a SES is executed syn-
chronize with the succeeding operation in the SES.

An element of SES is represented as e1:o1 ! o2:p2 and
denotes a fact that upon receiving an event e1 form
object o1, object o2 executes a process p2. SES is then
represented as a sequence of such elements:

e1:o1! o2:p2 e2:o2 ! o3:p3 � � � en�1:on�1! on:pn

SESs are derived from interaction diagrams. Consider
the interaction diagram in Figure3 and try to extract
SESs from it. We assume the processes p2 and p3 could
be executed in parallel and execution of p3 involves
hardware operation which take a long time. In this case,

2

A B C

Parallel execution Asynchronized
process

e1
p1 e2

p2

e3

e4
p3

external

A
e1

B C

p1 e2

p22’

e3

e4 p32’

p31’

p21’ Access to
hardware

Reply from
hardware Hardware

external

SES

Modifying interaction model
and extracting SES.

Interaction model

SES-based design model

Figure 3: Extracting SES from Interaction Model

p2 and p3 are split into (p210; p220) and (p310; p320) re-
spectively and the following two SESs are obtained.

e1:external ! A:p1 e2:A! B:p210 e3:B ! C:p310

reply:hardware! C:p320 e4:C ! B:p220

SESs derived are not unique and the following SESs are
also obtained from the same interaction diagram.

e1:external ! A:p1 e2:A! B:p2
e3:B ! C:p310

reply:hardware! C:p320

Choice among possible SES structures is, of course,
an important design decision and will be made on de-
sign/implementation constraints and performance con-
siderations.

3.2 SES-based Design Models

A SES speci�es a fraction of computation in the sys-
tem under consideration. Usually the system involves
multiple SESs which are invoked repeatedly. SES-based
design model is introduced to represent possible com-
putation in the system and de�ned as a set of SESs
whose invocation in controlled by a coordinator whose
control structure is described by a state transition dia-
gram. Speci�cally, with each state of the coordinator is
associated a set of SESs which are executed in parallel
when the coordinator is in the state. State transition oc-
curs when an event is created from some of the SESs. In
Figure4, three SESs ses1; ses2; ses3 are executed in par-
allel in the state s1. If an event e1 is created from one
of them, the coordinator makes state strantition from
s1 to s2 where two SESs ses4 and ses5 are allowed to
execute.

ses1
ses2

ses3

ses4

ses5

A set of SESs.

Executed parallely

s1

s2

s3

s4

e1

e2

e5

e4

e3

Figure 4: SES-based Design Model

A SES-based design model UM is de�ned as follows.

UM
def
= (SES; STsys)

where SES is the set of SESs under consideration and
STsys is a state transition diagram representing the co-
ordinator which controls execution of SESs.

STsys
def
= (Ssys; Esys; Tsys; ssys;Msys)

where E is a set of events sent from SES;
Ssys : a set of states;
Tsys : Ssys �Esys ! Ssys;

ssys 2 Ssys(an initial state);
Msys : Ssys ! Pow(SES)

The mappingMsys assigns to a state s SESs which are
executed in the state s. They are executed in parallel.

3.3 Access Control over Resources

In general, SESs attached to a state run in parallel and
they may access to a resource simultaneously and we
need access control mechanisms such as semaphore to
avoid it. Introduction of this kind of mechanism will,
however, cause a blocked status of SES execution and
makes its timing estimate diÆcult. This also consumes
precious time resource of the system.

In the practical embedded system design, this problem
is solved by carefully scheduling and planning the use of
the resource and try to not use such access control fea-
tures dynamically. We followed this strategy and intro-
duced the coordinator to control the execution of SESs
so that their execution is not blocked by waiting to ac-
cess to resources or undesirable racing of processes will

3

run

wait

ready

sleep wakeup
disp

undisp

sleep

Figure 5: State transition diagram of task

not occur. Though this will decrease the description
power of our model, it will increase its analyzability
which is considered more important in designing reli-
able embedded systems.

4 SES-based Software Architec-

ture

SES design model is realized by a software architecture
that consists of SES components and coordinator com-
ponent. We describe how these components are built
assuming a popular implementation environment.

4.1 Implementation Environment

Here we will brie
y describe an implementation environ-
ment to run SES-based software. We assume a realtime
operating system (RTOS) is available in the environ-
ment, where tasks are units of execution and their in-
vocation is controlled by a scheduler. Though there are
a variety of RTOSs and their features, we assume only
a small fraction of them which will be common to all of
them.

4.1.1 Tasks

We assume tasks have three states running; wait and
ready and they have conventional meaning. The states
are switched by receiving events (Figure5).

The events sleep and wakeup are issued by tasks,
and disp and undisp are sent from scheduler to acti-
vate/suspend tasks.

4.1.2 Scheduler

Scheduler sends undisp event to suspend running task
and disp to activate a ready task. It will use a schedul-

sleep
wakeup

sleep
wakeup

sleep

wakeup

Coodinator Task

SES task

Figure 6: Overview of SES-based Architecture

ing algorithm to select a ready task and also it will have
mechanisms to control priority of tasks. We are not in-
terested in these things here as our architecture do not
assume speci�c scheduling algorithms and mechanisms.

4.2 SES-based Software Architecture

SES-based design models are implemented by SES-
based software architecture consisting of SES tasks and
coordinator task which run on a RTOS(Figure 6).

The coordinator task is an implementation of the state
diagram in the design model. It sends the events
sleep; wakeup to SES tasks to control their activation
according to the state diagram.

4.2.1 Architecture of SES

SESs in the design model are implemented as SES tasks
in the SES-based software architecture.

Processes in SES are implemented as methods of ob-
jects and the role of the SES is realized by a sequence
of these method calls. The task needs an additional
control for the sequence of the method calls, which we
call implicit control object as this part does not appear
explicitly in the interaction diagrams obtained in the
analysis phase(Figure 7). In the implicit control object,
the following three things are done.

1. Periodical monitoring of events sent to SES

2. Doing processes in SES

3. Notifying results to the coordinator task

The implicit control looks like:

4

wait

run

ready

SES Task

Implicit Control Object

method3
........

method2
.......

method1
.......

Implemented Objects

call call call

A B C

A B C

SES

Interaction Model

Software Product

Figure 7: Aechitecture of SES Task

implicit_control_object {

while(1){

while(watch ()); /* if actor is not active,

this task is sleep for a moment. */

B.method1() ;

C.method2() ;

D.method3() ;

sendMessage(coordinator_task, message);

}

}

Usually, we need to add additional control structures to
the above code as we only extract typical and partial
structure of the system in forming interaction diagrams
and exception handling features are not usually cap-
tured in the analysis phase.

4.2.2 Architecture of Coordinators

The coordinator task is just an implementation of state
diagram of the SES-based design model. It waits for
a completion event from SESs of the current state and
send out sleep event to them and wakeup event to SESs
of the next state.

5 Conclusion

A software architecture for implementing object-
oriented embedded systems is introduced in this paper
which is based on the concept of synchronized sequence
of method execution. SES-based architecture allow us

to (1) derive programs naturally from interaction dia-
grams in object-oriented analysis method like OOSE,
(2) decrease wasteful time spent in RTOS such as for
busy waiting, and (3) facilitate to estimate execution
time. These properties are very important in building
embedded systems which are usually time critical.

This architecture is emerged from an experience of de-
veloping a telephone system. One of the key issues in
implementing embedded system is to build the system
within a give hardware cost. In the current method,
one task is generated from one SES and this usually
increases the number of tasks and increases the size
of memory required. In the telephone system develop-
ment, multiple tasks are manually merged into a single
task to avoid this problem. We need to study to op-
timize the number of SESs given a set of interaction
diagrams.

We consider SES-based implementation has advantage
in estimating execution time, however, current model
does not have features to represent timing information
explicitly . We need to augment our current model with
timing information.

References

[1] Shaw,M., Garlan, D.: Software Architecture, Pren-
tice Hall, 1996.

[2] Jacobson, I., Christerson, M., Jonsson, P., Over-
gaard, G.: Object-Oriented Software Engineering,
Addison-Wesley, 1992.

[3] Kawaguchi, A., Kishi, T.: Object-Oriented Design
Methodologies for Embedded Systems, NEC Tech-
nical Journal, Vol.50, No.12, pp.28-34, 1997.

5

