
Data Engineering Education with Real-World Projects
Paul S Grisham, Herb Krasner, and Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin

{grisham, hkrasner, perry}@ece.utexas.edu

Abstract
This paper presents an experience report on teaching Data
Engineering using a real-world project domain. Our course
introduces databases within the context of Systems and
Information Engineering, supplementing relational
database theory with requirements engineering, design, and
analysis. The primary deliverable of the course was a
semester-long project to implement an information system
in a real-world application domain, interacting with an
external customer with uncertain requirements. We believe
that real-world projects motivate students to apply good
Software Engineering principles in the classroom and
encourage those principles to be adopted into industrial
practice.

Keywords
Software Engineering Education, Systems Engineering,
Requirements Engineering, Database Systems.

1. Introduction
The Center for Lifelong Engineering Education (CLEE) at
the University of Texas at Austin offers a Master of
Science degree program in Software Engineering in
Engineering for practicing professionals. This program,
commonly referred to as Option III, is organized to
accommodate a full-time work schedule. Classes are
intensive, and meet one weekend per month. The program
of study includes 33 graduate credit hours, and is a
combination of standard classroom lecture, topical
conference courses, and a Master’s Report. In the Fall
Semester of 2004, a new course, ECE 382V: Data
Engineering, was added to the curriculum. The course was
designed as an introductory course on database concepts
within a Systems and Information Engineering context.

The use of real-world projects in software engineering
or requirements engineering classes is not new, but in
designing the new course, we wanted to motivate the
connection between relational database theory, design, and
the practical software engineering aspects of systems and
information engineering. To accomplish this goal, we used
a single, semester-long, real-world project – a course
registration system with complex and ambiguous
requirements – that each student group would design and
implement. The project environment relied on the
availability of a customer representative who provided
requirements and evaluated the final deliverables. We

believe that the experience of applying the theoretical
aspects of relational databases to this project in a dynamic
environment motivates the adoption of good Software
Engineering principles outside the classroom.

2. The Project Domain
The CLEE Online Registration System is a web-based
application to provide a management system for CLEE's
various courses, conferences, and training programs.
Instead of designing and implementing a generic class
registration system with generic requirements, we selected
the CLEE domain specifically because it had complex
requirements, such as state regulations for certification
reporting and data integration with other university
information systems.

Without the system, CLEE staff must manually
process each registration, as well as process invoicing,
billing, and payment. Moreover, the University of Texas
system utilizes several large information systems for
tracking financial, auditing, educational, logistical, and
licensing and certification information. CLEE staff must
enter the event and registration information into these
systems manually.

The goals of the CLEE Online Registration System
project are to automate the existing portions of the existing
online registration system and to add new functionality for
logistic support. The new registration system must
integrate registration with course management and
maintain historical records for use by individual users and
CLEE staff. The system must also generate a variety of
financial and marketing reports.

3. Course Organization
The classroom component of the course consisted of ten,
four-hour lectures, meeting approximately every fourth
weekend from August 20, 2004, through December 3,
2004. Lectures were highly intensive, with reinforcing
homework and advance readings assigned between class
meetings. A take-home mid-term examination was also
assigned to test student understanding of relational
database theory.

The class project was designed to run for the duration
of the semester. The class was divided into ten teams of
four or five students. Early homework assignments

required students to perform requirements analysis, while
later assignments called for students to create designs and
schemas that formed the basis of their project
implementation.

Students began by evaluating and modeling the current
system. Over the course of the semester, group interviews
were conducted with a customer representative during class
time. The class used Blackboard, email, and other online
coordination tools to share information about requirements.
During the long period between classes, questions about
requirements were emailed to a member of the teaching
staff, who compiled them, interviewed the customer
representative, and made the answers available to the class.

Based on the requirements provided by the customer
representative, a comprehensive System Requirements
Specification (SRS) document was compiled by the
teaching staff and delivered to the students. The structure
of the SRS was derived from several sources, and the final
SRS is outlined in Figure 1. By this point in the semester,
students had already submitted their initial data models and
schema based on the unorganized requirements. With the
SRS, students were asked to review the requirements and
revise their designs, identify shortcomings, and clarify still
uncertain requirements.

The SRS defined 13 operational scenarios, 40
functional and data requirements, and 16 non-functional
requirements. Students were required to design their data
models and schema to accommodate all of these
requirements. For purposes of implementation, the scope
of the project was scaled down to require implementation
of only 10 scenarios, 39 of the functional requirements, and

9 of the non-functional requirements. Many of the
eliminated requirements were technology requirements
outside the scope of the class.

In the interest of making the project fair for all
students and streamlining the technical support, students
were required to implement the project using open-source
tools for their database, application server and
programming language. Students were required to hand-
code their databases using SQL, and were not allowed to
use advanced modeling tools that support automatic
generation of code. Students were allowed to use any
coordination, groupware, or version management tools they
chose.

4. Project Evaluation
Project evaluation was divided into four major
components: homework, project notebook, project
demonstration, and peer evaluation.

The homework assignments represented incremental
delivery of the project, based on the current state of the
project. The initial homework assignment, for instance,
was to review the current state of the CLEE Online
Registration System, perform an initial evaluation of data
requirements, and generate a set of questions for the
customer. As the lectures covered more database theory,
students were required to generate models and schemas,
revising their designs as the requirements evolved. We
attempted to provide as much constructive feedback as
possible for each submission and revision.

The project notebook represented the final version of
the various models and schemas generated and revised
throughout the semester, including the data design as well
as the implementation sources and any project analysis
provided by the students. Specifically, the project
notebook was required to contain:

1. Introduction
- Purpose, scope, definitions, acronyms, etc.

2. General Description
- Existing system analysis
- Stakeholders
- Goals

3. Operational Scenarios

4. Functional and Data Requirements

5. Non-Functional Requirements
- User-Interface Requirements
- Software Interface Requirements
- Performance Requirements
- Security Requirements
- Class-Specific Requirements

6. Open Issues

7. Delivery Requirements and Schedule

Appendix: Collection of CLEE data artifacts

Figure 1. SRS Organization

• The E/R model of the problem domain
• A data dictionary of the problem domain, the

relational schema of the database
• The SQL DDL of the database
• The SQL DML for all queries used by the

required scenarios
• Complete source code (PHP, HTML, CSS, and

graphics used by the website)
• Test cases and results
• A brief discussion of the design challenges and

compromises the team encountered
• A brief evaluation of the technology used for the

project

The project notebook was manually inspected to
ensure that each scenario and requirement within the
project scope was sufficiently implemented. Grading used

a spreadsheet-based instrument to track coverage of
requirements.

A significant portion of the final notebook grade was
reserved for analysis and discussion. Students were
instructed to provide a “brief, but insightful” discussion of
the major design challenges and compromises as well
technical evaluation of the software tools used in the class.
We were intentionally vague on this requirement, and
many of the groups impressed us with their level of critical
analysis of their own projects.

Each group was required to demonstrate their project
in class to an evaluation panel made up of the customer
representative, and teaching staff. Time did not permit a
full acceptance test, but instead, each group was assigned a
unique subset of scenarios to demonstrate. The evaluation
panel attempted to select an mix of simple and complex
scenarios and to exercise distinct areas of the
implementation. Each team was also required to
demonstrate one scenario of their choosing, which offered
a chance to explain some especially innovative or
interesting aspect of their implementation.

The evaluation panel used a standard instrument for
grading, which measured each team’s performance in a
number of qualities against a Likert scale. The questions
used in the demonstration evaluation instrument are listed
in Figure 2.

The final component of the project grade was peer
evaluation. Peer assessment offers many benefits, and is
gaining in acceptance as a necessary element in the
classroom. During the demonstrations, students were
required to observe the demonstrations and provide
feedback. Each student was provided a simplified version
of the demonstration evaluation instrument.

In addition, group members were required to rate their
teammates in terms of contribution and level of effort, as
well as their own performance on the team project against
that of their teammates. This gave the teaching staff the
ability to evaluate group performance in the presence of
extenuating circumstances or troublesome team members.

The final projects were generally satisfactory, and

occasionally exceptional, and the grading reflected the
generally high quality of the students’ work. Final course
grades were commiserate with expectations for highly
motivated graduate students. (avg.: 92.5; med.: 92.9; std.
dev.: 4.50, where 90-100 is an A)

We were concerned that the uncertainty in the project
would overwhelm our busy students, and lead to frustration
and resistance. Instead, the project grades were generally
higher than the overall course grades. (avg.: 94.7; med.:
95.2; std. dev.: 4.67) We found that, overall, the students
coped with the complexity and uncertainty.

The exam scores were generally lower than the overall
class grades. (avg.: 87.0; med.: 89.0; std. dev.: 9.00, which
includes a 3 point positive curve) These numbers suggests
that the project component actually improved the overall
class grade. For dedicated team members on dysfunctional
teams that produced unsatisfactory projects, excellent
exam, homework, and individual participation scores could
be sufficient to merit a higher grade.

5. Discussion
5.1 Requirements Uncertainty
The distinguishing characteristic of our project is the
complex and uncertain nature of the requirements the
students were dealing with. The project was sufficiently
complex that there was no single correct solution to the
problem. Moreover, it was clear early in the semester that
a full implementation of the system was impossible within
a single semester.

Requirements uncertainty can derive from instability
(changes over time) and diversity (the differences in
understanding between stakeholders) [5]. We also
consider poorly understood requirements, those that are
incomplete or ambiguous at the point of design [6]. In this
project, uncertainty arose from the diversity of stakeholder
requirements and incomplete requirements that were
exposed through negotiations between the students and the
customer proxy.

We intentionally allowed requirements to remain
vague and uncertain for as long as the students left them.
Students recognized that it was their responsibility to
clarify and resolve requirements uncertainty. The final,
official version of the SRS, including implementation
scope, was not given to the students until approximately 3
weeks before the project demonstrations. At this point, the
students were expected to have completed their working
relational database design and be implementing it.

The team seemed prepared and confident.

The team answered all my questions satisfactorily.

The team website seemed easy to use.

The team website was visually appealing.

I was satisfied with scenario demonstration X.

My overall satisfaction with the system as demonstrated
was…

Figure 2. Demonstration Evaluation Questions

Despite their best attempts to clarify the requirements,
there were several requirements the students never
adequately understood. For instance, eight of ten groups
failed to deliver a satisfactory implementation of the
marketing effectiveness report as defined by the SRS. The

customer provided example marketing reports and sample
operational data, and discussed the marketing reports
requirement at every customer interview. We found that
there was a disconnect between the way that the customer
expressed the problem as a feature and the way the
student’s thinking on the problem as designers.

We did not intentionally add complexity or confusion
into our process but allowed the situations to develop the
way that they do in real projects, only rarely becoming
involved to arbitrate conflict. We differentiate our real-
world problem approach from the controlled failure
environments of the Live-Through Case Histories
approach, which intentionally inject failure scenarios into
an ongoing class activity [3].

The teaching staff had to constantly monitor the
project and adjust the scope and requirements to bring the
final project expectations to an appropriate level of effort.
At several points during the semester, we had to reassure
the students that the final project scope would be
manageable by their project teams, assuming that they had
stayed current with the deliverables. We had to be willing,
even at the last minute, to scale down the project if we
perceived that we had misjudged the level of effort or skills
of our students.

It is exactly for this reason that we think that this type
of project can be used in other types of classes. Even
though our students were mature, highly motivated, and
often had years of technical experience, we found that the
infrequent class schedule made incremental delivery and
immediate feedback difficult. With a traditional graduate
class, the instructor and students interact two or three times
per week, instead of twice per month.

5.2 Student Teams
Originally, we planned to assign students to the project
teams, but after resistance from the students, we allowed
the students to form their own teams. The basis of the
students’ concerns were that many of the students had
worked together on teams in the past, and they already
knew how to overcome the differences in geography, work
schedule, etc. Since many of our students were from out of
town, it seemed reasonable to allow them to form teams
that would minimize coordination difficulties. Prior work
suggests that successful teams need time and face-to-face
collaboration to build trust and agree on team goals [1].

In practice, it worked extremely well for some teams
but was maximally inconvenient for other groups. One
group could be formed of four database technologists who
work for the same company in the same city, while people
who live and work in different states and didn’t naturally
join with another group could form another group of
teammates.

In allowing teams to self-form, we also did not
consider the technical expertise of the groups. We could
have tried to balance teams with respect to the level of
experience students had. Some of our students were
practicing database technologists, while others had no prior
formal computer science or engineering education. Studies
of student teams suggest that students respond well to
teams in which they perceive that their partners’ skills are
comparable to their own [2], and it is reasonable to assume
that this perception was also a motivating strategy in
students’ team formation.

There are many methods that can be used to build fair
teams in the classroom [4]. In industry, project teams made
of members of equivalent experience and capabilities are
rare. There is a positive impact on student perceptions and
performance working when working with familiar teams,
but there is also a benefit in approximating team situations
that motivate the need for process and team management.
As the goal of the project is to teach good software
engineering practices, the teaching staff must create an
environment that allows motivated students to succeed
even in the context of a dysfunctional team.

5.3 Technologies
Our customer actually preferred that we use the same
commercial web application system that the university’s IT
group uses, but we could not afford to provide those tools
to our students. We admit that in this case, our decision of
development platform was somewhat arbitrary.

We asked the students to provide a technology
evaluation as a part of their project notebook submission.
Student responses varied from simple claim that the
technologies used in the class were sufficient for the
project, to extensive comparisons with other technology
options.

Students used additional technologies of their choice
for implementing and managing their project, such as
version management, programming editors, and code
libraries. We encouraged our students to provide technical
evaluation for all of these tools. For many of our students,
even those with a background in databases, we found that
the course project provided them with a useful experience
in technology evaluation.

5.4 Intellectual Property Concerns
Students were generally concerned about the level of effort
required to complete the project and grading standards.
However, we heard a very common concern from our
students that we found surprising. Our students were very
concerned that we would take their projects and deploy
them without properly compensating them for their work.
They recognized that the class activities were very similar
to their own real-world jobs. One student said that he dealt
with very similar situations as part of his job. We viewed

his comments as an indication that we were providing a
good environment for applying the theory and disciplines
we were teaching.

In general, though, we believe that although the
requirements are real, the class project implementations
should not necessarily be deployable. Performance,
security, reliability, and even licensing issues are well
beyond the scope of a one-semester class on data
engineering. In addition, it is important to define up-front
to the customer representative what their involvement will
be and what the expected deliverables are [6]. In our case,
the customer representative was a member of the CLEE
staff, which meant that we did not have to manage
expectations with an external organization.

5.5 Good Software Engineering Practices
In their project notebooks, many students talked about their
experiences in trying to coordinate a large uncertain
project. Our students determined quickly that risk factors
like having geographically dislocated teams, uncertain
requirements and fluctuating problem scope, and lack of
coordination tools such as version control, would
eventually undermine the success their project. We
encouraged our students to develop their own best
practices and discuss them with the teaching staff and with
each other.

The most common issue students shared with us
related to requirements uncertainty and implementation
scoping issues. Several teams developed methods to
arbitrate differences in requirements interpretation within
their teams. Others attempted to define concrete
acceptance criteria for those requirements. One team
actually designed their data model for maximum flexibility
to respond to the stream of changes and clarifications over
the semester. That team went on to discuss the long-term
cost of the flexibility in their design in terms of time and
complexity.

The second most common issue for teams was team
coordination and management. Several teams had team
members in multiple cities, or even multiple states. We
expected that students would use the team coordination
facilities in Blackboard to manage documentation and
design arbitration. Instead we found that many teams used
undocumented meetings, phone conversations and email,
relying on ad hoc coordination methods to manage their
team. Many teams expressed regret that they had not been
more disciplined in the use of standardized naming
conventions, version management, and other coordination
methods.

One team, however, established an organizational
structure, and even named a data model coordinator. This
team defined a structured process to propagate changes to
requirements through the documentation, data model, and

even the implementation itself. This team had
comparatively few crises, and was successful at
distributing the level of effort over the semester, instead of
scrambling at the end to meet the deadline.

6. Conclusions
During the teaching of this course, we discovered that our
students were able to experience the challenge of working
with a large, complex project with uncertain requirements
in a relatively low-risk environment. The project provided
exposure to typical real-world software engineering
problems. Moreover, this approach motivated the need for
good software engineering process management and
disciplined data and requirements engineering.

The course structure tied the lecture material directly
to both illustrative sample problems and the ongoing
project context. Homework assignments were created
around project deliverables, which facilitated continual
feedback to the students, and ensured that the level of
effort was more evenly distributed throughout the semester.
The final determination of implementation scope was
deferred until late in the semester and based on the
approximate level of effort the students were capable of
delivering.

The project domain was complex enough, that even
though the students converged on a single view of the
requirements, each team’s data model was unique. The use
of a single project domain for the entire class is appropriate
because it enables a single customer representative to serve
for the whole class, and because it enables the entire class
to discuss and resolve requirements uncertainty.

In summary, it was clear to us that exposure to real-
world software engineering issues in the environment of
the classroom motivates the appreciation and adoption of
good software engineering practices. To our surprise,
student performance on these real-world projects was
typical for team-based projects in general. Although the
projects presented special challenges, they did not
adversely affect overall class performance. In addition,
many students actually demonstrated better understanding
of the material on the project than on the examination.

7. Acknowledgments
Our thanks to Nicole Evans, Graduate Coordinator for
CLEE, for being an excellent customer representative; to
Jaime Puryear, Senior Marketing Manager of CLEE, for
providing operational data; and to Chris Chimera, for
providing technical information. We also thank the
students from the Fall, 2004, ECE 382V: Data Engineering
class for being willing to learn and work hard, and for
generally having a good sense of humor about everything.

8. References
[1] Gil, Gurgit S., Dewayne E. Perry and Lawrence G.

Votta. A Case Study of Successful Geographically
Separated Teamwork. In Proceedings of Software
Process Improvement ’98 (SPI98), (Monte Carlo,
December 1-4, 1998).

[2] Katira, Neha, Laurie Williams, and Jason Osborne.
Towards Increasing the Compatibility of Student Pair
Programmers. International Conference on Software
Engineering 2005 (ICSE’05), (St. Louis, MO, May 15-
21, 2005).

[3] Klappholz, David. and Larry Bernstein. Overcoming
Aversion to Software Process through Controlled
Failure. Presentation. DoD Software Technology
Conference 2002 (STC 2002), (Salt Lake City, UT,
May 2, 2002).

[4] Michaelsen, Larry, Arletta Bauman Knight and L. Dee
Fink. Team-Based Learning. Stylus, Sterling, VA,
2004.

[5] Sarma R. Nidumolu. Standardization, Requirements
Uncertainty, and Software Project Performance.
Information & Management (31:3) (Dec. 1996), pp.
135-150.

[6] Perry, Dewayne E. and Carol S. Steig. Software Faults
in Evolving a Large, Real-Time System: a Case Study.
4th European Software Engineering Conference
(ESEC93), (Garmisch, Germany), (Sept. 1993).

[7] Williams, Judith C. (Moderator), Bettina Blair, Jürgen
Börstler, Timothy C. Lethbridge, and Ken Surendran.
Client Sponsored Projects in Software Engineering
Courses. 34th SIGCSE Technical Symposium on
Computer Science Education, (Reno, NV), (Feb. 19-
23, 2003).

	Introduction
	The Project Domain
	Course Organization
	Project Evaluation
	Discussion
	Requirements Uncertainty
	Student Teams
	Technologies
	Intellectual Property Concerns
	Good Software Engineering Practices

	Conclusions
	Acknowledgments
	References

