Analyzing Source Code in Source Control Repositories

Position Paper

Harvey P. Siy
Dept. of Computer Science
University of Nebraska at Omaha

hsiy@mail.unomaha.edu

ABSTRACT

Empirical studies based on version control repositories of-
ten make use of data about deltas, ignoring the source code
fragments comprising the body of the deltas. Analysis tech-
niques that mine the information in the delta body can sub-
stantially augment the data available from source control
repositories. We sketch 2 approaches to analyzing the delta
body, applying the analyses to the identification of interfer-
ing changes.

1. INTRODUCTION

Source control repositories store information that is used
to recreate any version of a given source code artifact. Many
empirical case studies rely on information about the source
code changes, e.g., size of change, duration and number of
related changes, developer who made the change, etc. These
data, often obtained in combination with higher level change
management repositories and project databases, have been
indispensable in assessing maintainability of legacy code,
identifying defect-prone components, evaluating the impact
of process and technological changes, and studying various
other evolution phenomena.

In most studies, the source code itself is generally ignored.
As a result, there is a limit to how much information can be
deduced from such analysis because there is little knowledge
of what was actually being changed. To get to this knowl-
edge, we need to analyze the source code and augment the
change data with semantic information mined from the frag-
ments that were actually inserted, deleted or modified.

Part of the reason that there are few results in this direc-
tion is the difficulty of working with source code. Program
analysis tools work on versions (snapshots) of code. For
long-lived sources, there can easily be hundreds, perhaps
thousands of versions for every source file. We need analy-
sis tools that scale up not only in terms of the size of the
version being analyzed but also in terms of the number of
versions being analyzed. Also, most program analysis tools,
especially for identifying data dependencies (slices), require

Dewayne E. Perry
Dept. of Electrical and Computer Engineering
University of Texas at Austin

perry@ece.utexas.edu

that the source should compile. We need analysis techniques
that relax this requirement.

The first need is addressed by developing code analysis
techniques that work directly with the native source con-
trol repository format. Typically, systems like SCCS and
CVS store their delta information together with the code
fragments in the same file. It is therefore sensible to have
tools that directly “parse” those files and do not require
recreating individual versions. This also allows us to take
advantage of the relative similarities between any pair of
successive versions.

The second need stems from the recognition that we often
do not need (not immediately) the level of precision provided
by standard tools that perform sound static analysis of the
code. We can live with some uncertainty as a result of using
approximate analysis techniques.

In this paper, we outline some approaches for efficiently
performing approximate analysis of source code fragments.
In the process, we also present some new visualization tech-
niques to support the analysis.

2. MOTIVATIONS

The impetus for this work arose from the need to identify
and measure the amount of semantic interferences between
changes to the code that happen in parallel. [2] To detect se-
mantic interference between two deltas, the straightforward
approach is to extract a version of the source where both
deltas are applied, perform program slicing, and verify that
there is a slice which includes both deltas. This is a tedious
process as the appropriate version of the source has to be
identified first. Furthermore, program analysis tools require
the code to compile in order to build their internal represen-
tations. (For example, see [1].) This has several problems
when mining large source control repositories:

e There is no guarantee of the syntactic correctness of
any given version.

e Language definitions change over time. What was once
syntactically correct may no longer be true today.

e Even if the version is syntactically correct, it is of-
ten missing necessary header files. Much effort is then
spent trying to figure out the correct versions of the
header files to use.

To address these problems, tools are proposed in this pa-
per that operate on the version history files themselves.
These tools trade the precision of using program analysis
tools in exchange for the ability to analyze many versions of
code.



Our approach does not exclude the use of program anal-
ysis tools altogether. Once versions of the code have been
isolated and identified as interesting, we can use these tools
to conduct more precise analyses.

3. REPOSITORY FILE FORMATS

We examine briefly how several source control repositories
store version history. We will describe how delta texts are
stored in SCCS. A comparison is then made to the RCS file
format used by CVS.

3.1 SCCS file format

SCCS stores all text changes inline. [3] Whenever a new
version is checked in, it is compared against the most recent
saved version. At each location where a set of lines had
been added, the added text is inserted into the SCCS file,
bracketed between a pair of control lines ~AI and ~AE. ("A
stands for the Control-A character.) At each location where
a set of lines had been deleted, the deleted text in the SCCS
is bracketed by another pair of control lines “AD and ~AE. A
set of lines that had been modified is treated as a deletion
and an insertion. An example follows:

“AI 1
#include <stdio.h>

int main(int argc, char *argv[])
1{
int i;
~AD 2
for (i=0; i<argc-1; i++) {
“AE 2
“AI 2
printf ("The number of arguments is %d\n", argc);
~AD 3
for (i=0; i<argc; i++) {
“AE 3
“AI 3
for (i=1; i<argc; i++) {
“AE 3
“AE 2
printf ("arg = %s\n", argv[il);

return(0) ;
}
“AE 1

The number at the end of each control line is the number
of the delta that inserted or deleted the enclosed line.

3.2 RCS file format

RCS adopts a different approach to store text changes.!
It stores the most recent version of the code and stores a log
of the deltas in the reverse direction. [4] Whenever a new
version is checked in, its entire text replaces the text of the
most recent version. It is then compared against the version
it just replaced. At each location where a set of lines had
been added in the new version, a log entry is appended to the
RCS file specifying a deletion of the inserted lines, meaning
that the lines that were added in the new version should
be deleted if recovering the previous version. Analogously,
if a set of lines had been deleted in the new version, a log
entry is appended to the RCS file specifying an insertion
of the deleted lines, followed by the text of the lines that

'Tn this paper, we discuss only the case for the main trunk.
Branch deltas are not covered.

were deleted. Applying the same changes to the example in
Section 3.1:

1.3
@#include <stdio.h>

int main(int argc, char *argv[])

1{
int i;
printf ("The number of arguments is %d\n", argc);
for (i=1; i<argc; i++) {
printf("arg = %s\n", argv[il);
}
return(0) ;
1.2
Qds 1
a8 1
for (i=0; i<argc; i++) {
Q
1.1
@d7 2
a8 1
for (i=0; i<argec-1; i++) {
Q

3.3 A uniform data representation

Rather than dealing with multiple formats, an alternative
is to preprocess the files into a uniform data representation
from which subsequent analysis can be carried out. The
delta body can be thought of conceptually as an array in
which every line that was ever inserted has an entry. Each
entry includes:

1. dinsert — the delta that inserted that line
2. ddelete — the delta that deleted that line
3. dtext — the line of text inserted

An important constraint is that the line ordering must
preserve the line order for all versions. In the preceding
example, the for statement versions must be stored such
that they occur before the body of the for statement. This
constraint makes it relatively simple to compose together
the lines for a given version: a line is included if the delta
number of the version is between dinsert and ddelete.

Construction of this representation from SCCS is straight-
forward because SCCS deltas are stored inline. Constructing
this from RCS is more complicated, however an algorithm
based on the piece table concept [4] can yield a relatively
efficient implementation.

Figure 1 illustrates this representation for an actual SCCS
file. Every line of code ever inserted is represented by a
horizontal line. Each line is plotted starting at the time of
the delta that inserted it up to the time of the delta that
deleted it. The color coding in this figure reflects the degree
of indentation.

Figure 2 is a visualization of the version history of Fig-
ure 1. For each version, the lines that were included are
identified and gaps resulting from the excluded lines are re-
moved. This view enables us to see the growth of each ver-
sion. Each version is plotted along the x-axis according to
its delta creation time. The color coding again reflects the



200
L

400
L
=

600
L

LINE
800
L

1000
L

W

1400
L

1985 1990 1995 2000 2005

TIME

Figure 1: Visualization of deltas from an SCCS file.
Each horizontal line represents the lifetime of a line
of text. The color coding reflects the degree of in-
dentation, ranging from red (little indentation) to
blue (deep indentation).

degree of indentation and helps to give a sense of continu-
ity or discontinuity between successive versions, especially if
dramatic changes are occurring. Since the deltas are plot-
ted on a timeline and deltas tend to occur in bunches, it is
not easy to visually pick out periods of high delta activity.
Therefore we included the line graph at the bottom of the
plot to indicate the frequency of monthly delta activities.

This visualization style is borrowed from CVSscan [5].
CVSscan visualized every version of a file as a column with
each row color-coded according to some attribute of the par-
ticular line of code, such as indentation. The x-axis on
CVSscan is the delta number instead of the delta creation
time.

4. SOURCE CODE ANALYSES

We now discuss how we might approach the problem of
detecting semantic interference.

4.1 Text-based Analysis

The first approach assumes that we have already per-
formed a data dependency analysis on the most recent ver-
sion of the source and we want to know if a pair of dependent
statements had, in their past, been changed in parallel.

We identify the set of deltas that modified a particular
line by tracing its version history using text-based analysis.
The difficulty with tracing is that source control repositories
do not record modifications per se, but as insertions and
deletions. Since a line may be modified several times during
its life, we define a heuristic for identifying the line in its
earlier incarnations: as we trace back the history of a line,
we look at when it was inserted, and from there, whether a
“similar” line was deleted, and trace that line further back.

Since source control repositories operate on lines, this task
involves a textual comparison of lines. A line-oriented dif-
ferencing tool can be integrated into the algorithm. The
general algorithm is outlined below. From a given line [
which is an index into the data representation described in
Section 3.3:

°1 1 |||||||!| N1 ||\|\|| H || [ |]|||
Rl 0 00N
|

200

LINE
800 600 400
I I I

1000
I

1200
I

1400
|
[
(
(

Figure 2: Visualization of deltas from an SCCS file.
Each vertical line represents one version. The x-axis
marks when the delta for that version was created.
The line graph at the bottom of the plot indicates
the frequency of monthly delta activities.

Q.enqueue((l,1))
DeltaSet.init(LIN ES[l].dinsert)
while —Q.empty() do
(1, simm) « Q.dequeue()
for { di | within RANGE of 1}
if LINES[l].dinsert = LINES[dl].ddelete
then
Newsim <—
diff(LINES|l].dtext, LIN ES[dl].dtext)
if newsim > THRESHOLD
then
Q.enqueue((dl, sim * newsim))
DeltaSet.add(LIN ES[dl].dinsert)

stm is defined as a similarity measure between 0 and 1.
As the trace proceeds further back, the absolute similarity
value is passed along in the queue. diff is defined to be
a text differencing function similar to Perl’s Algorithm.::diff
module, except that it returns a similarity value instead of
the actual differences. DeltaSet set is the candidate set of
deltas involved.

It is possible that more than one candidate line can be
found. Based on the algorithm above, all candidate lines
will be traced. Alternately, an interactive approach can be
taken where the user chooses which one to follow.

The delta visualization from the previous section can be
used to trace the history of a line or a set of lines. The
color fades as the absolute similarity with the original line
decreases.

4.2 Syntactic Analysis

The second approach involves syntactic analysis of the
delta text.? First, the delta texts are parsed as explained
below (Section 4.2.1). The goal is to annotate each delta
with input and output variables. Input variables to a delta
are those referenced within that delta. Output variables
are those whose values may have been changed within that
delta. There will also be variables we will call indeterminate
because we cannot tell if they are inputs or outputs.

For this discussion, we will assume that the programming
language is C, although much of it can be adapted to any
language.



Second, time-varying call dependencies are extracted from
deltas involved in function calls and function heads. These
are annotated with the versions where they hold. Indeter-
minate variables are resolved as input or output variables to
the extent possible. The function each delta belongs to is
also identified.

We now have the information needed to check if a given
pair of deltas might be interfering. If the deltas are in the
same function, we make a quick comparison to verify if the
input variable in one is an output variable in another delta.
If the deltas are in different functions related by an applica-
ble call dependency, the formal parameters must be trans-
lated to the actual parameters first.

42.1 Parsingthetext of a delta

The general strategy is to approach this as one would
when cursorily reading a source file. We make certain as-
sumptions:

1. Any given version has only minor or no syntax errors.
This assumption allows us to parse the program state-
ments using a loose grammar that accepts a superset
of the language, as outlined below. While the code
is not required to be syntactically correct, we expect
more meaningful results when it is closer to being syn-
tactically correct.

2. Identifiers whose definitions are not present are as-
sumed to be declared in some other files. This as-
sumption eliminates the need for finding other files to
understand the behavior of one source file. There is
no need for preprocessors as well.

3. Coding styles are generally followed. For example,
identifiers that are in all capital letters are assumed to
be macro definitions. Also, multi-line comments (en-
closed by /* */) start every new line with a *. This
lets us easily filter out comments and compiler direc-
tives.

The text being inserted or deleted may contain one of the
following:
elementary statement,
variable, function or type declaration,
function head,
decision or loop head (if, while, switch, do),
compound variable or type declaration head,
compound statement or data delimeter ({ or }),
compiler directive, comment or blank line

Since the inserted or deleted line of code may only consti-
tute a partial statement, the first step is to reconstruct the
whole statement. With C or C-like languages, an approx-
imate statement can be reconstructed by searching down-
ward until a line with ¢’ or ‘}’ is encountered, and upward
until a line with ’;’ or ‘{’ is encountered.

Once a complete statement text has been reconstructed,
the text can be tokenized and then parsed using a grammar
oriented towards recognizing statements. Some elements of
this grammar include:

(Stmt) == (CStmt) | (Head) | (Tail)

(Head) ::= (FuncHead) | (StmtHead) | ‘do’ | (DeclHead)
(StmtHead) ::= ( ‘while’ | ‘if’ | ‘switch’ | ‘for’ ) ‘C (Ezpr) ‘)’
(FuncHead) ::= (Type) (Identifier) ‘C (ParamList) )’
(ParamList) ::= € | (VarDecl) | (ParamList) ¢,” { VarDecl)

(Tail) ::= ‘while’ ‘C (Ezpr) ‘)’ | ‘else’

(CStmt) ::= (Asgn) | {VarDecl) | {Ezpr) | (Jump)

(VarDecl) ::= (Type) (IdentifierList)

(IdentifierList) ::= (Identifier) | (Identifier) *,” (IdentifierList)
(Asgn) 1= (LVal) ‘=" {Ezpr)

(LVal) ::= (Identifier) | (Ezpr)

(Ezpr) ::= ( (Identifier) | (Operator) )+

(Jump) ::= ‘return’ [ (Ezpr) | | ‘break’ | ‘continue’

Assuming that the original text can be succesfully com-
piled by a C compiler, each statement can be successfully
parsed by this loose grammar. From the mini-syntax tree
created, variables are extracted and classified as input or
output. There will also be many indeterminate variables,
especially arguments to function calls.

For deltas with multiple statements, the input and output
sets of each statement are unioned together.

5. DISCUSSIONS

We have briefly sketched a pair of approaches for approxi-
mate analysis of the source text within a delta. Development
of prototypes is underway and will be applied to the iden-
tification of semantic interference in a large source control
repository for an industrial system. A key question to an-
swer is effectiveness, whether the approaches can be tuned
such that the proportion of false positives will not be over-
whelming.

We also note that these techniques provide information
for other kinds of tasks. Tracing the history of a crucial
function can be used to add more weight to all deltas that
affected that function. Tracing the history of a line of code
can be used to discover change rationale.

Likewise, the syntactic information obtained can be used
to assess the relative importance of a delta in terms of the
number of deltas related to it. This can be an indicator of
the potential for problems when a change is added on top
of this one, as well as the effort required to get the change
right.

Finally, in our discussion of representing and storing the
delta information, we have assumed that all deltas are ap-
plied sequentially. This is not necessarily the case in many
development processes which track multiple versions from
the same source file. This implies changes to the way ver-
sions are calculated since not every sequentially defined delta
is applied.

6. REFERENCES

[1] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree matching.
In Proceedings of the International Workshop on Mining
Software Repositories (MSR’2005), St. Louis, Missouri, May
2005.

[2] D. Perry, H. Siy, and L. Votta. Parallel changes in large scale
software development: An observational case study. ACM
Trans. on Software Engineering and Methodology,
10(3):308-337, July 2001.

[3] M. J. Rochkind. The Source Code Control System. IEEE
Trans. on Software Engineering, 1(4):364-369, Dec. 1975.

[4] W. F. Tichy. RCS—a system for version control. Software
Practice & Ezxperience, 15(7):637-654, July 1985.

[5] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan:
Visualization of code evolution. In Proceedings of the 2005
ACM Symposium on Software Visualization, St. Louis,
Missouri, May 2005.



